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SUMMARY

The relationship between the host and its micro-
biota is challenging to understand because both
microbial communities and their environments are
highly variable. We have developed a set of tech-
niques based on population dynamics and infor-
mation theory to address this challenge. These
methods identify additional bacterial taxa associ-
ated with pediatric Crohn disease and can detect
significant changes in microbial communities
with fewer samples than previous statistical ap-
proaches required. We have also substantially
improved the accuracy of the diagnosis based on
the microbiota from stool samples, and we found
that the ecological niche of a microbe predicts its
role in Crohn disease. Bacteria typically residing
in the lumen of healthy individuals decrease in dis-
ease, whereas bacteria typically residing on the
mucosa of healthy individuals increase in disease.
Our results also show that the associations with
Crohn disease are evolutionarily conserved and
provide a mutual information-based method to
depict dysbiosis.
C

INTRODUCTION

Hosts rely on microbiota for the digestion of food (Breznak and

Brune, 1994), vitamin biosynthesis (Turnbaugh et al., 2007),

behavioral responses (Cryan and Dinan, 2012), protection from

pathogens, (Buffie et al., 2012), and other functions (Stefka

et al., 2014). The host-microbe relationship, however, can turn

awry due to a simple infection, changes in nutrition, or a more

nuanced dysbiosis. Microbial dysbiosis has been implicated in

many human diseases including diabetes, autism, and obesity.

A particularly strong relationship between disease and micro-

biota exists for Crohn disease (CD) and ulcerative colitis, the

two major subtypes of inflammatory bowel disease (IBD) (Maz-

manian et al., 2008; Greenblum et al., 2012; Manichanh et al.,

2012), characterized by chronic inflammation of the gastrointes-

tinal tract, which causes significant morbidity and can lead to

colorectal cancer or death (Card et al., 2003). With more than

1.4 million people affected in the United States (CCFA, 2015),

IBD poses an urgent challenge to understand the link between

microbiota and human health.

The development of IBD depends on a diverse set of factors

including lifestyle (Bernstein and Shanahan, 2008), environment

(Danese et al., 2004), and genetic predisposition (Jostins et al.,

2012). Gut microbes also contribute to IBD, and deviations

from the microbial composition of the healthy human gut have

been detected in patients with long-standing or newly diagnosed
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Figure 1. High Variability of Bacterial Abundances in the Human Gut

Microbiota

(A) Abundance variation across all genera detected in PIBD-CC dataset.

Genera are ranked by their mean relative abundance in controls.

(B) Mean genera abundances are distributed according to a power law.

(C) Rank-abundance distributions are shown for three typical genera in con-

trols. The high subject-to-subject variability (two to three orders of magnitude)

is typical for other genera, other phylogenetic levels, and in CD.
IBD (Gevers et al., 2014; Papa et al., 2012). Mouse studies have

demonstrated that microbes are required for IBD, and microbial

dysbiosis precedes IBD onset (Kim et al., 2007; Overstreet et al.,

2010); moreover, microbiome-derived compounds can amelio-

rate chronic intestinal inflammation (Furusawa et al., 2013).

Given the substantial role of microbes in the disease, we need

to carefully characterize the changes in the microbiota that

accompany IBD, particularly in early or new-onset disease This

information can improve IBD diagnostics, identify disease sub-

types, elucidate the mechanisms of IBD onset and progression,

and uncover novel therapeutic strategies.

Although 16S rRNA and metagenomic sequencing provide a

detailed view of the gut microbiota, translating these data into

clinical insights has been difficult (De Cruz et al., 2012). The anal-

ysis is often complicated by the extreme variability of the micro-

bial abundances across both patients and species. As a result,

commonly used statistical approaches may overlook important

changes associated with IBD and fail to translate these changes

into useful predictions. Here, we present a set of methods to

identify changes in gut microbial composition associated with

a disease and use them to diagnose CD based on an individual’s

microbiota. The performance of these methods was evaluated

on two datasets: the previously interrogated RISK cohort, the

most comprehensive dataset of treatment-naive pediatric CD

(Gevers et al., 2014), and an independently obtained Pediatric In-

flammatory Bowel Disease Consortium Cohort (PIBD-CC),

which similarly includes only pediatric patients with treatment-

naive IBD and controls (see Experimental Procedures and

Tables S1 and S2). Our methods had a substantially higher sta-

tistical power and could find disease-associated microbes with
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fewer samples compared to more commonly used statistical

approaches.

In addition to the development and validation of the improved

approaches to the statistical analysis and depiction of microbial

communities, we report several important biomedical findings.

Both CD and healthy microbiota showed a power-law distribu-

tion of taxa abundance, indicating that the vast majority of taxa

are rare, including those associated with the disease. The sub-

ject-to-subject variation of microbial abundance was also

extreme and posed a significant challenge to standard statistical

methods. Despite this high variation, we identified additional

taxa associated with CD and found that the phylogenetic trees

of CD-associated and health-associated bacteria do not over-

lap, suggesting that factors promoting health or disease have

distinct evolutionary history.We also found that microbes prefer-

entially associated with the ileal mucosa in healthy people prolif-

erate in the stool of patients with CD, whereas bacteria more

prevalent in the stool of healthy people tend to decrease in abun-

dance in patients with CD. This observation allowed us to

develop a diagnostic tool based on non-invasively collected

stool samples. Contrary to the previous analysis of the RISK

cohort (Gevers et al., 2014), we found that both stool and ileal

mucosal samples have equal predictive power.

RESULTS AND DISCUSSION

Here we focus on two independent cohorts of patients with CD

and non-IBD controls: PIBD-CC and RISK. Both cohorts were

mostly pediatric (ages 2–20 years), balanced with respect to

sex, race, and other factors (Table S1), and contained only sub-

ject with newly diagnosed and treatment-naive CD. The PIBD-

CC contained only ileal mucosa samples, whereas RISK had

samples from both stool and ileal mucosa. For both cohorts,

the compositions of bacterial communities in mucosal and stool

samples were obtained via DNA extraction followed by 16S

rRNA gene sequencing and processing with the Quantitative In-

sights Into Microbial Ecology (QIIME) software (Caporaso et al.,

2010); see Experimental Procedures and Gevers et al. (2014) for

further details. The sizes and sequencing depth of the two co-

horts were very different. RISK is larger with over 700 patients

and �30,000 mean number of reads per sample. In contrast,

PIBD-CC had only 87 patients with the mean number of reads

per samples of only�3,000. These order of magnitude variations

in sample sizes and sequencing depths span the spectrum ofmi-

crobiome research and illustrate the performance of our statisti-

cal approaches in different settings: from a pilot study to a large

nation-wide effort.

High Variability in Microbial Abundances
Host-associated microbial communities are highly variable (Fig-

ure 1A). The first aspect of this variability is the power law distri-

bution of relative abundances of different taxa (Figure 1B). This

power-law variability is observed in both health and CD as well

as in both microbiota obtained from a single subject and aver-

aged across the cohort. Not only do different taxa have abun-

dances that vary by orders of magnitude, but also the number

of taxa grows as their abundance declines, so most taxa are

rare. While the more abundant taxa are probably more important
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Figure 2. Log-Transformation Reduces the Variability and Helps

Detect Significant Changes in Abundance between Control and CD

(A) The scatterplot shows the mean abundances of all genera in control versus

CD in PIBD-CC. The purple symbols correspond to the largest changes in the

mean abundance between control and CD.

(B) The same as (A) but for mean log-abundance. Note the dramatic reduction

in the deviation from the diagonal compared to (A). The green symbols label the

largest changes in the mean log-abundance.

(C and D) The statistical significance of outliers in (A) and (B) is evaluated in (C)

and (D). The large difference in mean abundance for Clostridium cluster XIX is

not statistically significant, whereas the highly significant association of

Roseburia is only detected by the mean log-abundance.
for gut health, even a rare microbe can trigger chronic inflamma-

tion or dysbiosis (Powell et al., 2012) Thus, analysis should be

able to handle many rare taxa and integrate changes in abun-

dances across taxa with different prevalence. The second

aspect of this high variability is the dramatic subject-to-subject

variation in the abundance of a single taxon observed in both

healthy subjects and patients (Figure 1C). The abundance of a

given genus typically varies by more than two orders of magni-

tude among individuals, even for highly abundant microbes like

Bacteriodes and Roseburia. Deep sequencing of a large number

of samples is an expensive and time-consuming way to over-

come the high variability in species abundance. Moreover, large

sample sizes may not be available for rare or emergent diseases.

Hence, methods that can manage with both small sample sizes

and high variability are needed to analyze changes in microbial

communities.

Log-Abundance Is a Less Variable Metric Than
Abundance
Our main observation in Figure 1 is that the variation of species

abundances is better captured on a logarithmic rather than linear
C

scale. Indeed, variations in diet, immune pressure, and other as-

pects of host-microbe interactions affect microbial composition,

for example, by changing the growth rates of the different bacte-

rial species (Caballero and Pamer, 2015). The randomness asso-

ciated with growth rates is known to break the assumptions of

the central limit theorem in statistics and even prevent the

convergence of the sample mean to the true population mean

(Redner, 1989). These difficulties can be resolved with a simple

log-transformation of the data; instead of describing each taxo-

nomic unit by its average abundance, as it is commonly done in

the literature (Claesson et al., 2011; Wang et al., 2014), we first

computed logarithm of the relative abundances in each sample

and then averaged them over the samples (see Experimental

Procedures).

Log-transformation resolvedmany of the complications due to

the high variability of the gut microbiota (Figure 2) and the arti-

facts of the compositional bias due to the conversion of

sequence counts into relative abundances (Friedman and Alm,

2012). We found that when abundances are used to detect dis-

eases-associated taxa, large variation made it hard to detect any

significant association between a taxon and the disease. When

log-abundances were used instead, several significant associa-

tions were detected as determined by low p values for permuta-

tion tests of association (Figure 2).

Log-transformations have become standard in other areas of

bioinformatics (Quackenbush, 2002), but they are not univer-

sally used in microbiome research (Gevers et al., 2014; White

et al., 2009; Huse et al., 2014). Although a few microbiome

studies have incorporated log-transformations in their analysis

(Hong et al., 2006), untransformed data or non-parametric sta-

tistical tests are predominantly used to detect associations (Le

Chatelier et al., 2013; David et al., 2014; Qin et al., 2014; Wang

et al., 2014). Analysis of untransformed data suffers from the

extreme variation in the microbiome abundances whereas

rank-based, non-parametric methods discard some of the

available information and lose statistical power. Indeed, small

changes in abundance typically result in large changes in

rank when relative abundances have a fat-tailed distribution

(Huse et al., 2014).

Comparison of Methods to Detect Associations
We compared the performance of log-transforms and other

commonly used techniques, which can be divided into four clas-

ses. The first class includes mean abundance, mean log-abun-

dance, and median. These statistics represent the distribution

of relative abundances found in a particular group of subjects

by a single number. The second class contains methods aiming

to estimate the actual distributions of relative abundances in

each of the subject groups and then quantify the differences

between these distributions. Such methods include Kolmo-

gorov-Smirnov statistic, Kullback-Leibler divergence, L2-norm

distance, and mutual information between the distribution and

diagnosis (Reza, 2012; Experimental Procedures). The third

class is based on the regression of the diagnosis on the abun-

dance of a given taxon, and we examined the linear regression

on arcsine-square-root transformed abundances (Gevers et al.,

2014). Finally, the fourth class consists of the non-parametric

methods based on the differences in the ranks of taxa across
ell Reports 14, 945–955, February 2, 2016 ª2016 The Authors 947
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Figure 3. Statistical Methods Differ in Their Ability to Detect Association

(A) The number of significantly associated orders (FDR = 0.05; permutation test) is shown for different statistical tests and different number of orders tested.

Orders were tested in the order of their abundance. Initially, the number of detected orders increases with the number of tests because true positive results are

more likely to be included in the set of orders tested, but it eventually declines because the threshold for statistical significance increases with the number of tests.

MA, mean abundance; MEA, median abundance; MLA, mean log-abundance; AS, arcsine-square-root.

(B) The maximal number of associations detected by a procedure illustrated in (A) is shown for three phylogenetic levels (O, order; F, family; G, genus); mean log-

abundance outperforms other methods.

(C) The procedure illustrated in (A) was applied to subsamples from the RISK data. The mean log abundance outperforms other methods for all sample sizes;

see Figure S1 for statistical significance. Error bars are SDs from ten sub-samplings.

The power of the detected associations at discriminating control from CD samples and further details are shown in Figure S1.
subject groups. Here, we examined the Wilcoxon rank-sum sta-

tistic (Le Chatelier et al., 2013) commonly used in ecological liter-

ature (Hoekstra et al., 2001). The UniFrac statistic (Lozupone and

Knight, 2005) was not considered because it is primarily based

on the presence and absence of evolutionary distant taxa,

whereas no major taxa losses or gains have been observed in

the data (Figure 1A).

For many of the aforementioned statistics, there are approx-

imate methods to estimate their significance. These methods,

however, rely on assumptions that may not hold for the highly

variable data on microbiota composition. To avoid the associ-

ated biases in comparing the different methods, we subjected

all statistics to the permutation test, which is an exact statistical

test of association (Experimental Procedures). Moreover, we

analyzed different phylogenetic levels separately as not to

bias false discovery rate (FDR) estimates by the correlations

among higher and lower phylogenetic ranks. The results of

our comparison of different methods to detect associations in

the PIBD-CC dataset are shown in Figure 3A. Surprisingly,

the mean log-difference—one of the simplest tests—detected

more orders, families, and genera associated with CD than

any other method. Because all of the evaluated methods relied

on the same assumptions about the data and had the same

FDR, the higher number of detected associations faithfully rep-

resents the higher statistical power of a test to distinguish

signal from noise.

To test if the advantage of the mean log-abundance method is

robust, we repeatedly subsampled the ileal mucosa samples

from the larger RISK cohort at various sample sizes ranging
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from 50 to 350 with equal number of control and CD and ob-

tained the average number of associations detected with the

FDR corrected q value lower than 0.05. This analysis (Figure 3C)

shows that the mean-log difference identified more taxa across

all sample sizes. A comparable number of associations was also

detected using the arcsine-square-root transform, which is

similar to the log-transform because both discount the contribu-

tion of samples with exceedingly large relative abundance.

Nevertheless, the number of associations detected by our

method was significantly higher for most sample sizes tested

(Figure S1). Importantly, none of the methods approached satu-

ration in the number of identified taxa as the amount of data

increased. This indicates that larger studies may uncover addi-

tional taxa associated with CD and provide deeper understand-

ing of this disease. We also note that the association of taxa with

the disease status is highly heterogeneous across subjects (Fig-

ure S1), a finding that parallels the recent discovery of twomicro-

biome clusters in patients with CD: one similar to and one

different from the typical control microbiome (Lewis et al., 2015).

The associations detected by the mean log-abundance

method in RISK cohort are shown in Figure 4. In total, we identi-

fied 15 orders, 26 families, 31 genera, and 20 species associated

with CD; many of them not found by previously used methods

(Gevers et al., 2014). In agreement with the previous studies,

some of the strongest associations were with the Lachnospira-

ceae family, a core and ancient member of the commensal

microbiota and Pasteurellaceae family, which contains many hu-

man pathogens (De Cruz et al., 2012). The additional associa-

tions found in RISK data are also unlikely to be spurious because



Figure 4. Significant Associations in the RISK Cohort

The phylogenetic tree of associated taxa (detected by the mean log-abundance). Note that the phylogenetic trees formed by the health-associated and disease-

associated bacteria have little overlap, suggesting deep evolutionary roots of traits related to health and disease. New findings compared to Gevers et al., 2014

are shaded. The findings from stool samples are shown in Figure S2.
many of these taxa were previously identified in other IBD co-

horts or are otherwise known to contribute to disease. For

example, the association of Staphylococcus with CD is known

from a different IBD cohort (Nguyen et al., 2010), Turicibacter

is less abundant in the fecal samples from dogs with IBD (Sucho-

dolski et al., 2012), Eikenella can cause periodontitis and other

infections in the oral cavity (Aas et al., 2005), and some strains

of Enterobacteriaceae thrive in the presence of inflammation

and outcompete the healthy microbiota in mice (Garrett et al.,

2010). Of special interest are the two commensal species Bac-

teroides fragilis and Fecalibacterium prausnitzii that suppress

inflammation and have received a lot of attention in IBD literature

(De Cruz et al., 2012). Although we found a strong association
C

between health and F. prausnitzii, no significant effect of B. fra-

gilis could be inferred from the data.

Many of the taxa enriched in controls are known to provide

important functions for gut health. For example,Roseburia,Blau-

tia, and F. prausnitzii produce butyrate, which acts as an energy

source for epithelial cells in the gut (Duncan et al., 2002). Supple-

menting patients with such bacteria or the metabolites they pro-

duce could then be a potential intervention strategy (Furusawa

et al., 2013). In contrast, a majority of the taxa enriched in CD

are known to be opportunistic pathogens (Mukhopadhya et al.,

2012). Collectively, these previous studies suggest that some

of the CD-associated bacteria are deleterious to the host,

whereas some of the health-associated bacteria are beneficial
ell Reports 14, 945–955, February 2, 2016 ª2016 The Authors 949
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Figure 5. Microbiota Composition Distinguishes Health from Disease

(A) Principle component analysis (PCA) on abundance data yields poor separation of CD and control samples; the ellipses contain 95% of the probabilities for

control and CD samples, centering at the corresponding centroids.

(B) Maximal mutual information component analysis (MMICA) on log-abundance data yields a much better separation of CD and control samples; the ellipses

contain 95% of the probabilities for control and CD samples, centering at the corresponding centroids. The difference between the distances to the centroids is

statistically significant; see Figure S3.

(C) The first MMIC trained on RISK cohort can classify both RISK and PIBD-CC samples. For RISK data, the curve is the averages over 5-fold cross validation.

See also Figure S3.
to the host. However, further experimental studies that can

establish causality are required to determine the specific roles

of the associations reported in Figure 4.

The increase in the number of pathogenic bacteria in CD

may reflect the overall decline of gut health. We tested this hy-

pothesis by looking for a link between active inflammation and

bacterial composition using the mean log-abundance method,

but failed to detect any significant associations in agreement

with other studies (De Cruz et al., 2012). The types of patho-

gens established in the gut could affect disease progression

beyond inflammation, a hypothesis worthy of further

investigation.

Association Congruence across Phylogenetic Ranks in
Ileal Microbiome
Phylogenetic structure of associations is rarely discussed in mi-

crobiome research. Most studies focus on order or family-level

associations because the large number of genera and species

increases the number of hypotheses tested and reduces the sta-

tistical power. However, to link compositional changes in micro-

biota to human health, we need to understand the relationship

between ecological functions and phylogenetic distance better.

Typically, related organisms have similar genomes and

occupy similar ecological niches. Yet, studies of parasites, sym-

bionts, and commensals have shown that closely related spe-

cies could have dramatically different life styles and effects on

the host (Siddall et al., 1993; Moran et al., 2008). We found

that, when a higher phylogenetic level is more abundant in CD,

then lower level associations are more abundant in CD as well

(Figure 4). A similar pattern of phylogenetic congruence is also

observed for the taxa decreased in CD. In fact, only 4 out of 92

associations do not follow this rule. Although these exceptions

can be attributable to the 5% FDR, they might also indicate

particularly interesting microbial dynamics associated with the

disease.

Phylogenetic congruence could be driven by conserved

ecological traits or by a single lower-level taxon contributing to
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the association at the higher level. Consistent with the first mech-

anism, the strong association between CD and Enterobacteria-

ceae results from the weak associations of several genera in

this family (Figure 4). The second mechanism could explain the

association between CD and Bifidobacteriaceae family, which

seems to be primarily driven by a single species—Bifidobacte-

rium adolescentis.

Given these patterns of associations, there is likely an optimal

phylogenetic level for microbiome analysis. Strain and species

level may be too idiosyncratic since the behavior of genetically

very similar organisms could be very different, whereas order

and family level may be too coarse and miss important ecolog-

ical functions present only in a specific genus. Here we found

that the genus level yields not only the largest number of associ-

ations, but also better patient classification compared to order

and species levels (Figure S1).

Classification of Ileal Samples
Diagnostics is an important application of microbiota associa-

tion studies in CD; so we attempted to classify patients in

RISK and PIBD-CC as CD or controls based only on the

composition of their gut microbial communities. None of the

commonly used unsupervised clustering methods could pro-

vide an acceptable classification of the data (see Experimental

Procedures). Similarly, principle component analysis (PCA)

based on microbial abundances of either all or only significantly

associated genera could not differentiate patients with CD and

controls (Figure 5A), consistent with the earlier analysis by

Gevers et al. (2014). To improve on PCA performance, we im-

plemented a supervised projection method by maximizing the

mutual information between the linear combination of log-abun-

dances of significantly associated bacterial taxa and diagnosis

(see Experimental Procedures). This technique, termed

maximal mutual information component analysis (MMICA),

effectively filters out large patient-to-patient variation in micro-

biome composition due to numerous factors unrelated to the

disease, and focuses on the few variables indicative of CD.
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and Ileal Samples

(A) Mean AUCs of classifiers developed in this

study, Gevers et al. (2014), and Papa et al. (2012),

based on all available ileal or stool samples.

(B) SVM classifiers based on a subgroup of sub-

jects with both ileal and stool samples in the RISK

cohort. Ileal and stool samples had similar

discriminating power, whereas their combination

further increased performance.
MMICA showed dramatic improvement over PCA for both RISK

(Figure 5B) and PIBD-CC (Figure S3). In particular, the first two

components contained more than half of the information on the

diagnosis (44% and 9% of maximally possible 0.98 bits).

MMICA was also a significant improvement over a single genus

analysis. Roseburia, the most informative genus, explained only

16.5% of the information compared to the 44% explained by

the first maximal mutual information component (MMIC).

Thus, MMICA significantly increases the diagnostic information

contained in a single metric, capturing the major difference be-

tween controls and CD.

We inspected the contribution of each genus to the MMICs

and found that the first MMIC was primarily comprised of Rose-

buria, Turicibacter,Blautia, andHoldemania. All four generawere

decreased in CD, so the first MMIC was primarily negatively

correlated to CD (Figure 5B; Figure S3). The second MMIC con-

tained bacteria that both decrease and increase in CD and was

mainly in the direction of Dorea, Erwinia, and Actinobacillus.

The probability distribution along this second MMIC was

bimodal for CD and unimodal for control patients. Most vari-

ance-based methods would not be able to take advantage of

such differences in the distribution, suggesting that informa-

tion-based approaches such asMMICA could have an important

advantage for microbiota studies.

In addition to being a powerful depiction tool, MMICA was

also able to classify samples as CD or control based on their

microbial composition. We found that a simple classifier that

uses the projection on first MMIC as a microbial dysbiosis in-

dex yields an area under the curve (AUC) of 0.84 (Figure 5C).

To test the power of this method, the MMIC-based classifier

was trained on the RISK cohort and applied to the PIBD-CC

dataset. Despite the fact that PIBD-CC samples were indepen-

dently collected, processed using different protocols, and

sequenced at much lower depth, the classifier achieved a

high AUC of 0.71, suggesting that the first MMIC is a robust

indicator of dysbiosis that could reach a sufficient power for

clinical applications.

Classification on Stool Samples
Stool samples hold the key to non-invasive diagnostics of IBD,

but two recent studies reached opposite conclusions on the

feasibility of predicting IBD from stool microbiota. On the one

hand, Papa et al. (2012) found stool samples to be very predic-

tive with an AUC of 0.83, but their cohort contained patients un-
C

dergoing treatment for established disease and thus could have

a much larger difference in the microbial composition between

patients with CD and controls due to past and current medica-

tion use and prolonged inflammation. On the other hand, Gevers

et al. (2014) found that, for treatment-naive children, stool sam-

ples were a poor predictor of the diagnosis, yielding an AUC of

only 0.66.

The stool samples from the RISK cohort were reanalyzed by

performing a log-transformation and identifying genera signifi-

cantly associated with CD (Figure S2). We then trained an SVM

classifier on the log-abundances of the significant genera and

found a substantially higher mean AUC of 0.72 (95% CI 0.663–

0.770), which is approaching clinically useful values (Figure 6A).

This higher value of AUC (0.72 versus 0.66) underscores the

advantage of our methods for small-to-medium datasets with

high variability. Although our method improved the classification

power of stool samples in RISK, we still found that ileal samples

were more informative (AUC of 0.84 versus 0.72), in agreement

with the RISK analysis (Gevers et al., 2014).

The above comparison, however, is not entirely valid because

there were fewer stool than ileal samples in the RISK cohort and,

unlike the ileal samples (CD to controls ratio of 254 to 187), the

stool samples are very imbalanced (CD to controls ratio of 187

to 31). One way to make the comparison more fair is to focus

only on patients who have both stool and ileal samples because

that would make the training and test data the same for both

stool and ileal based classifiers. In addition, this approach allows

one to test whether stool and ileal samples contain equivalent or

complementary information.

The RISK cohort had 74 patients (14 controls and 60 CDs)

with both stool and ileal samples. Because the sample size

was too small to detect a sufficient number of significant asso-

ciations and find MMICs, we used all 31 significant genera

found in ileal samples (shown in Figure 4) as features in an

SVM classifier (Experimental Procedures). In contrast to the

RISK-wide analysis above (Gevers et al., 2014), we found that

stool samples contain comparable information to ileal samples

(AUC of 0.84, 95% CI 0.747–0.911 versus 0.81 95% CI 0.654–

0.925); see Figure 6B. This observation agrees with previous

findings in patients with established and treated CD (Papa

et al., 2012) and raises the possibility that stool samples may

actually aid in the initial diagnosis of CD. We also found that

an SVM classifier trained on both ileal and stool samples had

an AUC of 0.94 (95% CI 0.908–0.979) (Figure 6B); however,
ell Reports 14, 945–955, February 2, 2016 ª2016 The Authors 951
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Figure 7. Stool- and Ileum-Dwelling Bacteria Have Distinct Contributions to IBD

(A) Mean log-abundance of top 50 abundant genera in ileal and stool microbiota for patients with CD. Note that health-associated bacteria are more abundant in

stool than ileum (above the diagonal), whereas CD-associated bacteria are more abundant in ileum (below the diagonal).

(B) The same as (A), but the beginning and end of the arrows show the mean log-abundance in control and CD respectively; thus, the arrows show the shift in the

community associated with CD. Note that stool and ileal abundances change almost equally.

(C) The preference of a genus for ileal versus stool habitat is strongly correlated with the change in its abundance between the stool of patients with CD and

controls.
with the limited number of samples, it is premature to say

whether stool and ileal microbiota contain complementary in-

formation or the increase in AUC simply came from doubling

the number of features in the training data.

Differential Enrichments of Health and CD-Associated
Microbes in Ileum and Stool
The subset of patients with both ileal and stool samples

described above allowed us to examine the relationship between

ileal and stool microbiota further. Specifically, we asked whether

bacterial genera have similar abundances in ileal mucosa and

the stool of patients with CD (Figures 7A and 7B). On average,

the relative abundances of bacteria in stool and ileal samples

were similar, but therewas a striking difference between bacteria

increased and decreased in CD (Figure 4). Bacteria associated

with health were more abundant in the stool than in the ileum

in patients with CD, whereas bacteria associated with CD were

preferentially found in the ileum.

One possible interpretation of these data is that some of the

bacteria decreased in CD perform essential digestive functions

in the gut and therefore are primarily found in the stool whereas

opportunistic pathogens primarily colonize the mucosa and

trigger IBDwhen not controlled by the immune system.Microbial

dysbiosis may then be driven further by mucosal oxygenation,

which disrupts the normal intestinal oxygen gradient (Albenberg

et al., 2014). This hypothesis would suggest that bacteria’s role in

CD can be predicted by its abundance in the ileal mucosa and

stool of healthy patients: Bacteria more abundant in stool should

decrease in CD and bacteria abundant in the mucosa should in-

crease. Indeed, we found a very strong correlation (R2 = 0.62,

p = 1.3 3 10�11) between the difference of stool and mucosal

abundances in controls and the changes in the stool of patients

with CD relative to controls (Figure 7C). Consistent with our find-

ings, previous studies have found that stool microbiota consist

of two distinct components: one shed from the mucosa and

a separate non-adherent luminal population (Eckburg et al.,
952 Cell Reports 14, 945–955, February 2, 2016 ª2016 The Authors
2005). Our results further suggest that these different compo-

nents may play a distinct role in IBD.

Conclusions
Broad abundance distribution of different taxa and high patient-

to-patient variability challenge existing statistical tools to detect

microbial associations with disease. We found that performing

statistical analysis on the logarithm of relative abundances

makes patterns of microbiota changes more clear and robust.

For both the RISK and PIBD-CC datasets, our technique

required fewer samples for similar statistical power and identi-

fied additional taxa associated with CD. Discovered associa-

tions could distinguish patients with CD versus non-IBD using

a new classifier and depiction tool that identifies directions in

the multi-dimensional space of microbial abundances with

maximal information on the diagnosis. This maximal mutual in-

formation components analysis was superior to the commonly

used principle component analysis and remained informative

when validated on the independently obtained PIBD-CC

dataset.

Our analysis indicates that health- and disease-associated

bacteria have distinct ecology and evolutionary history. We

found that bacteria increased in CD and bacteria decreased in

CD formed two largely non-overlapping phylogenetic trees, sug-

gesting that factors promoting health or disease have deep

evolutionary roots and are not frequently exchanged between

gut bacteria. Moreover, bacteria that proliferate in CD are prefer-

entially associated with ileal mucosa, whereas bacteria

decreased in CD reside mostly in the stool. The connection be-

tween lumen andmucosa compartments enabled patient classi-

fication using either ileal biopsies or stool samples with about

equal accuracy.

Collectively, our results provide a set of statistical tools for

the analysis of microbiome data, refine the link between shifts

in microbial abundances and disease, and show the relevance

of microbiota to the diagnosis and management of pediatric CD.



EXPERIMENTAL PROCEDURES

Study Populations

Clinical characteristics of patients from the RISK cohort have been previously

described (Gevers et al., 2014). The PIBD-CC is a previously unreported

cohort of children (ages 1–17 years) who underwent endoscopic evaluation

for IBD at seven centers in the United States (MassGeneral Hospital for Chil-

dren, University of California San Francisco, Children’s Hospital of Philadel-

phia, University of Chicago, Texas Children’s Hospital, Children’s Center for

Digestive Healthcare-Atlanta, GA, Children’s Healthcare of Atlanta [Scottish

Rite and Egleston Children’s Hospital campuses]) from September 2005 until

January 2008 (Emory University HIC IRB number 060-2002 and additional

approval by local internal review boards of all participating institutions).

PIBD-CC patients with terminal ileal biopsies and available clinical data (24

children with newly diagnosed, treatment-naive CD and 63 non-IBD control

subjects) were included in this study. Clinical characteristics can be found

in Tables S1 and S2. The study was supported by the following grant:

Role of Infectious Agents in Pediatric Crohn’s Disease, NIH R03 DK064544

(principal investigator, B.D. Gold).

Sample Collection

PIBD-CC

During diagnostic ileocolonoscopy, terminal ileal mucosal biopsy specimens

were obtained using standard biopsy forceps and immediately placed in liquid

nitrogen or dry ice and stored at �80�C until use.

RISK

The collection of the RISK cohort is presented in Gevers et al., 2014; 441 ileal

samples (184 control and 245 CD) and 218 stool samples (31 control and 187

CD) were extracted from the RISK cohort dataset after filtering out the ones

with antibiotic exposure for detection of taxa associated with CD. A subgroup

of these patients (14 control and 60 CD) with both ileal and stool samples were

used for the analysis in Figures 6 and 7.

DNA Extraction and 16S rRNA Gene Sequencing

PIBD-CC

Bulk DNA was extracted from samples using the QIAGEN Stool DNA kit. Tag-

encoded FLX amplicon pyrosequencing was performed as described (Bailey

et al., 2011; Callaway et al., 2010; Finegold et al., 2010; Handl et al., 2011) us-

ing Gray28F 50TTTGATCNTGGCTCAG and Gray519r 50 GTNTTACNGC

GGCKGCTG, with primers numbered in relation to the primary sequence of

E. coli 16S rRNA (Brosius et al., 1978). Initial generation of the sequencing li-

brary used one-step PCR with 30 cycles, generating amplicons extending

from the 28F primer with average read length of 400 base pairs (bp). Tag-en-

coded FLX amplicon pyrosequencing analyses used a Roche 454 FLX instru-

ment with titanium reagents, and titanium procedures performed at the

Research and Testing Laboratory (Lubbock, TX).

Following sequencing, all failed sequence reads, low-quality sequence

ends, tags, and primers were removed, and sequence collections depleted

of non-bacterial ribosome sequences and those with degenerate base calls,

homopolymers >5 bp in length, reads <200 bp, and chimeras (Gontcharova

et al., 2010), as described (Bailey et al., 2011; Callaway et al., 2010; Finegold

et al., 2010; Handl et al., 2011).

OTU Picking

PIBD-CC

We used a naive Bayes classifier with confidence cutoff = 0.5 and RDP data-

base (Cole et al., 2014) for OTUs assignments.

RISK

OTU picking was described in Gevers et al., 2014. Briefly, OTUs were picked

using closed reference OTU picking by QIIME software (Caporaso et al., 2010)

and at 97% similarity against the Greengenes database (DeSantis et al., 2006).

Logarithmic Transformation of Relative Abundance

Tables of OTU counts were transformed into relative abundances by adding a

pseudocount of 1 and normalization. These were transformed into mean log

abundances by first taking the natural logarithm and then averaging over the

samples.
C

Probability Distribution Estimation

Kolmogorov-Smirnov statistic, Kullback-Leibler divergence, L2-norm dis-

tance, andmutual information are defined on probability distribution functions,

which were obtained by kernel density estimation methods (Khan et al., 2007).

We used Gaussian kernels and chose their bandwidths according to Silver-

man’s thumb rule (Silverman, 1987).

Statistical Significance

Statistical significance was evaluated by a permutation test with 106 permuta-

tions. The FDR correction at the level 5% was performed using Benjamini-

Hochberg method. To avoid imposing an arbitrary abundance cutoff on

taxa, we analyzed all possible cutoffs and reported the maximal number of as-

sociations, as illustrated in Figure 3A. Concretely, for each phylogenetic level,

the taxa were first ranked by their mean log-abundances for both control and

CD separately, and then merged in a single list according to their minimal rank

in the two lists. We then performed association tests for species with ranks be-

tween 1 and k for all possible values of k and reported the maximal number of

association. This procedure was applied uniformly to all methods presented in

Figure 3.

Maximal Mutual Information Component Analysis

To find MMIC1, we obtained a linear combination of taxa log-abundances,

which maximizes the mutual information about the diagnosis. The second

component was also found as a linear combination maximizing the mutual in-

formation on the diagnosis, but subject to the constraint that the correlation

coefficient between MMIC1 and MMIC2 equals zero. Our approach is

related to a recent method developed in neuroscience (Faivishevsky and

Goldberger, 2012).

Software Packages and Classification

Kernel density estimation of the probability distribution function, Kolmogorov-

Smirnov statistic, Pearson r, and Wilcoxon rank-sum statistic were computed

by Python package SciPy 0.14.0. Mean abundance difference/ratio and

median abundance difference were computed using their definitions. PCA,

all unsupervised clustering methods, and all supervised classifiers were per-

formed using Pythonmachine learning package scikit-learn 0.15.2 (Pedregosa

et al., 2011). The supervised classifiers included logistic regression with L1

penalty, support vector machine, and random forest. The best parameters

for the classifiers were found by a 5-fold cross-validation. Their performances

were then measured by the area under the ROC curve, which was obtained by

averaging results from 5-fold cross-validations.

ACCESSION NUMBERS

The accession number for the raw PIBD-CC 16S rRNA sequencing data re-

ported in this paper is NCBI: PRJNA297124.
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