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All microorganisms are exposed to periodic stresses that inhibit growth. Many bacteria and fungi weather
these periods by entering a hardy, nonreplicating state, often termed quiescence or dormancy. When this
occurs during an infection, the resulting slowly growing pathogen is able to tolerate both immune insults
and prolonged antibiotic exposure. While the stresses encountered in a free-living environment may differ
from those imposed by host immunity, these growth-limiting conditions impose common pressures, and
many of the corresponding microbial responses appear to be universal. In this review, we discuss the com-
mon features of these growth-limited states, which suggest new approaches for treating chronic infections
such as tuberculosis.
A defining feature of Mycobacterium tuberculosis, the causative

agent of tuberculosis, is its slow growth. The maximal doubling

time of this bacterium is approximately 20 hr and is significantly

slower when exposed to stresses such as those encountered in

the host. Indeed, the bacterial population found in chronically in-

fected animals replicates only once every 100 hr or more (Gill

et al., 2009; Muñoz-Elı́as et al., 2005), and subpopulations of

bacteria are thought to cease growth entirely for significant

periods. The importance of this relatively quiescent behavior is

difficult to overstate, as it likely underlies the chronicity of the

infection as well as the requirement for extended antibiotic

therapy.

Dormancy, latency, and persistence are conceptually related

terms used to describe the propensity of M. tuberculosis to

arrest its growth in response to host-imposed stress. Because

this behavior is very different fromwell-studied model organisms

or agents of acute infection, it is sometimes considered an

unusual selective adaptation specific to the pathogenic myco-

bacteria. While this trait is likely adaptive, it is by no means

unusual. In fact, slow to negligible replication is the norm in the

microbial world, where organisms often inhabit environments

that are incompatible with rapid growth. In this review, we will

consider mycobacterial dormancy in this broader ecological

context.

Three Strategies to Weather the Storm
All microbes are subjected to changing environments, and the

basic requirements for growth (carbon, nitrogen, phosphorus,

water, etc.) are not always available. The evolutionary success

of virtually all microbial species requires the ability to weather

these periods, and the spectrum of survival strategies used by

different microbial species has been studied for decades (Stein-

haus and Birkeland, 1939). In general, these strategies can be

described as variations of three general themes (Figure 1).

Bust and Boom

The physiology of organisms that evolved in consistently

nutrient-rich environments, such as the bacteria Escherichia

coli, are tuned to maximize growth rate (Neidhardt, 1999). Under
nutrient-replete conditions in which bacterial metabolism is often

studied, these organisms maximize their growth at the expense

of economy by using relatively inefficient fermentative pathways

to generate energy (Wolfe, 2005). Upon nutrient exhaustion the

majority of these bacterial populations die, leaving a few viable

organisms that subsist on the corpses of their siblings. Slow

growth and cell death are balanced during this period (Finkel,

2006). When environmental conditions become more favorable,

the few survivors resume growth. The ability to replicate rapidly

is likely to be an essential component of this strategy, as these

organisms must outcompete neighboring microbes to consume

the newly introduced nutrients.

Cellular Quiescence

A distinct strategy for surviving periods of growth-limiting stress

appears to be favored by bothM. tuberculosis (Betts et al., 2002;

Mitchison and Coates, 2004; Wayne, 1976) and many environ-

mental bacteria (Lewis and Gattie, 1991). When these organisms

are exposed to growth-limiting stress, the bulk of the bacterial

population slows or arrests its growth and can persist in a viable

nonreplicating state for months or even years (Corper and Cohn,

1933). These ‘‘quiescent’’ cells can be differentiated from truly

dormant spore-like forms because they display nominal meta-

bolic capacity, maintain their membrane potential, and do not

undergo obvious morphological differentiation (Gengenbacher

et al., 2010; Rao et al., 2008). This strategy allows the viable bac-

terial population size to be maintained throughout the period of

stress (Jones and Lennon, 2010), relieving the emphasis for rapid

growth seen in the bust-and-boom model.

True Dormancy

Sporulation is the purest form of microbial dormancy. When

exposed to growth-restricting stress, some bacteria undergo

an asymmetric cell division to produce a hardy metabolically

inactive daughter cell called a spore (Stragier and Losick,

1996). Upon exposure to favorable environmental conditions, a

fraction of spores germinate and initiate rapid growth to reestab-

lish the population. This strategy could be viewed as a combina-

tion of the first two. The spore, while fundamentally distinct,

shares many structural and biochemical features with quiescent
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Figure 1. Strategies to Overcome Growth-Limiting Stress
All microorganisms encounter periods during which growth is impossible.
Three fundamental themes describe the strategies used to weather these
periods. ‘‘Bust and boom’’ describes a strategy that relies on the dynamic
persistence of a small subpopulation, ‘‘sporulation’’ is defined by the pro-
duction of metabolically inactive spores, and ‘‘quiescence’’ describes a
metabolically active nonreplicating cell that is resistant to many environmental
insults. These strategies differ in several important respects including the
population density of persistent organisms, the sensitivity of these cells to
toxins and antibiotics, and the differential dependence on rapid growth to
repopulate the niche.

Figure 2. Common Themes in Microbial Quiescence
Growth arrest can be induced by many stimuli and can have a variety of
consequences on the cell. Shown are common growth-limiting stresses
encountered by environmental microbes and pathogens. With a few notable
exceptions, most of the growth-limiting stresses encountered in these envi-
ronments are similar. Some responses to these insults are linked to a particular
stress. For example, specific DNA repair pathways are necessary to resist
oxidative and nitrosative stress, and the remodeling of carbon metabolism will
be different in hypoxic versus normoxic conditions. In contrast, other re-
sponses appear to be secondary to growth arrest per se. For example, a wide
variety of growth-inhibiting stresses trigger carbon storage and cell wall re-
modeling, and the maintenance of energy homeostasis is universally required
for viability. PMF, proton motive force; ROS, reactive oxygen species; RNI,
reactive nitrogen intermediate.
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cells, which promote long-term survival. Upon germination,

however, rapid growth may be advantageous to repopulate the

niche. Indeed, the 10min replication time of some spore-forming

species of the clostridia bacteria are among the fastest known

(Kreidl et al., 2002).

Historically, the strategies at either end of this spectrum have

been most heavily studied. This is due to the experimental

tractability of rapidly growing organisms, not because these

strategies are more common or important. Indeed, it has been

estimated that 60% of the microbial biomass on earth exists in

a quiescent state (Cole, 1999; Lewis and Gattie, 1991). Despite

its ubiquity, we still know relatively little about the regulatory

mechanisms and physiological changes that define microbial

quiescence. While these cellular adaptations are not exactly

the same for all organisms or under all conditions, common

themes can be defined (Figure 2). In this review, we will consider

the general adaptations that are required for quiescence in

diverse microorganisms and discuss how these insights might

be used to develop more effective therapies for chronic infec-

tions such as tuberculosis.

Common Features of Quiescent Cells
Carbon Storage

An almost universal property of quiescent cells is the accumula-

tion of carbon stores, although the chemical structure of the

storage form can differ. During low growth states, the yeast

Saccharomyces cerevisiae accumulates glycogen, trehalose,

and triglycerides as the main forms of metabolizable carbon

(Gray et al., 2004). The bacterial pathogen Vibrio cholerae accu-

mulates glycogen in preparation for survival in nutrient-poor

environments (Bourassa and Camilli, 2009). Additionally, many

bacteria store fatty acids in the form of triglycerides (Daniel

et al., 2004; Kalscheuer et al., 2007) and wax esters (Sirakova

et al., 2012). Both triglycerides and wax esters also accumulate

in plant seeds (Radunz and Schmid, 2000), indicating that this

mode of storage is advantageous for organisms that represent

vastly separated domains of life. In addition, linear plastic poly-

mers like polyhydroxyalkanoates and poly-b-hydroxybutyric
644 Cell Host & Microbe 13, June 12, 2013 ª2013 Elsevier Inc.
acid can serve as a carbon repository in a variety of bacteria

living in the soil and the rhizosphere (Kadouri et al., 2005).

What is the purpose of carbon storage? The most intuitive

answer is that these cells are simply ‘‘storing nuts for winter,’’

and these nutritional stores can be rapidly mobilized to fuel

growth when environmental conditions improve. This role has

been most clearly demonstrated in the S. cerevisiae cell, where

the trehalose stores that accumulate in stationary cultures are

immediately consumed upon addition of freshmedia to fuel rapid

regrowth (Shi et al., 2010). Glycogen may serve a similar role in

V. cholerae, a bacterium whose life cycle relies on periodic

switches from the nutrient-replete mammalian gut to nutrient-

poor aquatic environments (Bourassa and Camilli, 2009).

Carbon storage has also been found to play an important role

in remodeling cellular carbon fluxes and facilitating entry into the

quiescent state. Diverse stresses, such as low oxygen, low pH,

or low iron, all induce a storage response in M. tuberculosis

through the activation of a common sensor-kinase system,

DosRST (Bacon et al., 2007; Baek et al., 2011; Daniel et al.,

2011). The DosS sensor likely responds to alterations in cellular

redox state in these contexts (Honaker et al., 2010), and triggers

the synthesis of triglycerides that are stored in large cytosolic

inclusions (Garton et al., 2002). The impact of this response

appears to extend beyond the generation of nutrient stores.

That is, disruption of the triglyceride biosynthesis pathway in

M. tuberculosis reverses the growth arrest that is normally

caused by these stresses, but has little effect on the subsequent

recovery of growth when the stress is relieved (Baek et al., 2011).

This inverse relationship between growth and triglyceride pro-

duction appears to result from the redirection of acetyl-CoA

from the TCA cycle, where it is used to generate energy during

aerobic respiration, into lipid synthesis, where acetyl CoA serves

as a building block for fatty acids. The growth-limiting effect of
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carbon storage is unlikely to be restricted to mycobacteria. For

example, S. cerevisiae mutants that are unable to produce

glycogen or trehalose consume more CO2 than the wild-type

strain during slow growth (Silljé et al., 1999), indicating higher

TCA flux in the absence of carbon storage. The almost universal

propensity ofmicroorganisms to accumulate acetyl CoA-derived

carbon stores under growth-limiting stresses suggests that this

may represent a common strategy for reducing growth and

metabolic rate.

Cell Wall Modification

Virtually all bacteria are surrounded by an elastic meshwork of

peptidoglycan that maintains cellular integrity under changing

environmental conditions. This structure is composed of glycan

chains, consisting of N-acetylglucosamine (NAG) and N-acetyl-

muramic acid (NAM), crosslinked through short peptide moi-

eties. Not surprisingly, the long-term survival of both spores

and quiescent cells depends on specific alterations in the

composition of this structure. For example, in stationary phase

cultures, the Gram-positive bacteria Staphylococcus aureus

generates a cell wall that is structurally different from the pepti-

doglycan found during exponential phase growth, in that it con-

tains fewer pentaglycine bridges, which crosslink the glycan

chains, and is significantly thicker (Zhou and Cegelski, 2012).

Similarly, the level and gradient of crosslinking are important

for the formation of bacterial spores. In the spore peptidoglycan

layer of the soil-dwelling bacteria Bacillus subtilis, the peptide

side chains serving as crosslinkers are completely or partially

removed from the NAM residues and replaced by muramic-d-

lactam, a specificity determinant for germination autolytic en-

zymes, at every second NAM position in the cortex glycan

strands. As a consequence, overall levels of crosslinking are

markedly decreased in the spore cortex as compared to the

vegetative cell wall (Atrih et al., 1996). Thus, common features

of the peptidoglycan in both quiescent cells and spores are

reduced crosslinks and increased peptidoglycan mass.

The regulation of these modifications is likely complex, but

recent observations suggest that extracellular D-amino acids,

such as D-methionine and D-leucine, could play an important

role. D-amino acids accumulate to millimolar levels in the super-

natants of stationary phase bacterial culture, where they regulate

cell wall synthetic enzymes and are incorporated into the pepti-

doglycan polymer. The increased abundance of D-amino acids

in cultures of nongrowing cells and their ability to alter the

osmotic sensitivity of V. cholerae (Lam et al., 2009) suggests a

likely role in remodeling the cell wall for quiescence.

Like many other bacteria,M. tuberculosismay vary the cross-

linking of its peptidoglycan in slow growth states (Lavollay et al.,

2008). During exponential growth,M. tuberculosis peptidoglycan

is crosslinked largely via linkages between the third and fourth

amino acids in the stem peptide, the chain of amino acids in

peptidoglycan that crosslinks adjacent strands (i.e., 4/3

linkages). However, in stationary phase the cell wall primarily

consists of 3/3 crosslinks. While not all investigators have

observed these changes (Kumar et al., 2012), altered crosslink-

ing could significantly change the physical characteristics of

the cell wall. In addition, 3/3 crosslinks are made by transpep-

tidases that are insensitive to b-lactam antibiotics that inhibit cell

wall synthesis, suggesting the reduction in 4/3 linkages may

reduce antibiotic susceptibility. Indeed, when the L,D-transpep-
tidase (MT2594/Rv2518c) responsible for making the 3/3 link-

ages in M. tuberculosis was inactivated, the bacteria became

more susceptible to the b-lactam antibiotic amoxicillin, and

persistence in animals was attenuated (Gupta et al., 2010).

The mycobacterial cell wall is much more complex than those

surrounding the organisms discussed above, and the full com-

plement of alterations that accompany quiescence have yet to

be defined. Mycobacterial peptidoglycan is conjugated to an

additional glycan layer and finally to a functional outermembrane

composed of very long chain fatty acids called mycolic acids.

Surrounding this hydrophobic layer is a capsule that is largely

comprised of the polysaccharide a-glucan. Thickening of the

mycobacterial cell wall upon hypoxia-induced stasis was first

demonstrated more than 30 years ago (Wayne, 1976). More

recently, a computational model of theM. tuberculosis response

to hypoxia was used to predict a large increase in production of

cell wall components like mycolic acids and peptidoglycan

(Fang et al., 2012). This prediction is consistent with electron

microscopy studies that demonstrate thickening of the outer

mycolic acid and/or capsule layers of the cell wall (Cunningham

and Spreadbury, 1998). A major physiological outcome of

these changes is decreased permeability of the cell wall,

and the uptake of several classes of antibiotics into quiescent

M. tuberculosis is significantly decreased relative to replicating

cells (Sarathy et al., 2013).

In addition to its structural roles, cell wall metabolism also

appears to play an important role in generating signals that regu-

late the germination of spores and the exit from quiescence. In

B. subtilis, the PrkC Ser/Thr kinase responds to the presence

of extracellular peptidoglycan fragments and induces spore

germination (Shah et al., 2008). These fragments are released

by growing cells, providing a mechanism by which the spore

can sense the presence of a favorable growth environment using

cues from neighboring bacteria. M. tuberculosis expresses a

similar Ser/Thr kinase, PknB, which is also capable of binding

extracellular peptidoglycan fragments (Mir et al., 2011) and reg-

ulates cell wall synthesis and growth (Gee et al., 2012). Activation

of this kinase could explain the ability of spent culture medium to

promote the regrowth of quiescent mycobacteria, as this activity

depends on secreted lysozyme-like proteins (Mukamolova et al.,

1998) that could act by liberating peptidoglycan-derived PknB

ligands.

Macromolecular Synthesis and Stability

It may seem intuitive that RNA and protein synthesis will proceed

at negligible rates in the quiescent cell. However, the dynamics

of macromolecular synthesis are more complicated than they

appear and vary during the entry, maintenance, and exit from

quiescence. During entry and exit, protein synthesis accelerates.

Protein turnover increases 5-fold in famished E. coli cells due to

proteases that are produced in early stationary phase. This

enhanced protein turnover during the transition to the growth-

limited state facilitates de novo protein synthesis in the absence

of an exogenous carbon source (Shaikh et al., 2010), and the

required amino acids are provided by peptidase-dependent

autophagy, in which amino acids are produced via protein

hydrolysis and degradation (Reeve et al., 1984). Similarly,

increased protein turnover may also be required for exiting the

quiescent state. Regrowth of M. tuberculosis from hypoxia-

induced stasis is accompanied by an increase of the ClgR
Cell Host & Microbe 13, June 12, 2013 ª2013 Elsevier Inc. 645
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regulatory protein, which induces expression of the ClpXP prote-

ase that uses ATP hydrolysis to unfold proteins for subsequent

degradation (Sherrid et al., 2010). Here, increased protein turn-

over is a likely indicator of the wholesale metabolic remodeling

necessary to shift between growth states.

Once quiescence is established, however, it is reasonable to

assume that the synthesis of RNA and protein will slow consid-

erably. Indeed, quiescence in S. cerevisiae is accompanied by

a 3- to 5-fold decrease in overall transcription rate (Choder,

1991), and a 20-fold decrease in protein synthesis (Fuge et al.,

1994). The mechanisms underlying the reduction of macromo-

lecular synthesis in slowly growing E. coli have been explored

in great detail. While the rate of nascent RNA and polypeptide

chain elongation remains relatively constant, the number of syn-

thetic sites decreases (Pedersen, 1986). As approximately half of

the mass of the rapidly growing E. coli cell is comprised of pro-

tein synthesis machinery, the economy realized by this strategy

is evident (Neidhardt, 1999). The same analysis has not been

performed on nonreplicating cells, and it remains likely that

both initiation and elongation rate slow. This could be the result

of specific regulatory systems, such as the stringent response,

which controls ribosomal RNA transcription during stress (Stal-

lings et al., 2009), and is critical for M. tuberculosis survival in

both hypoxia- and starvation-induced stasis (Primm et al.,

2000). In addition, low levels of nucleotide triphosphates and

amino acids could nonspecifically limit elongation rate. This

would be consistent with the proposed mechanism by which

the drug pyrazinamide kills nonreplicating M. tuberculosis by

inhibiting trans-translation, a mechanism for recycling stalled

ribosomes (Shi et al., 2011).

The apparent reduction in RNA synthesis upon mycobacterial

entry into quiescence is coupled to a 15-fold increase in mRNA

stability (Rustad et al., 2013), and these stable mRNAs are

required to sustain pools of essential proteins (Rao and Li,

2009). This phenomenon is not unique to mycobacteria. In

both S. aureus and S. cerevisiae, mRNA transcripts are globally

stabilized in response to stationary phase and stress (Anderson

et al., 2006; Jona et al., 2000). In addition, slow growth induces

the preferential stabilization of a set of transcripts in E. coli (Geor-

gellis et al., 1993), indicating that survival requires the continual

synthesis of select proteins. In support of this model, studies

have shown that stationary phase E. coli requires the continual

expression of a subset of genes that are controlled by the sS

subunit of the RNA polymerase, including many genes in-

volved in cellular stress responses (Talukder et al., 1996). Addi-

tionally, a subset of mRNAs are strongly induced in quiescent

S. cerevisiae (Werner-Washburne et al., 1996). In sum, while

the rate of macromolecular synthesis clearly decreases in quies-

cent cells, continual transcription and translation occurs. The

ability of RNA polymerase and DNA gyrase inhibitors to kill non-

replicating mycobacteria indicates that these activities may also

be required for survival (Betts et al., 2002; Sala et al., 2010).

Energetics and Metabolism during Quiescence

Maintenance of membrane potential and ATP synthesis is not

required for sustaining the viability of spores, even though a

repertoire of ATPases and ATP-dependent regulatory proteins

is utilized during the initiation of germination (Errington, 2003).

In contrast, quiescent bacteria maintain their membrane poten-

tial (Pernthaler and Amann, 2004; Rao et al., 2008), and energy
646 Cell Host & Microbe 13, June 12, 2013 ª2013 Elsevier Inc.
homeostasis appears to be critical for survival. In nonreplicating

M. tuberculosis cells starved for oxygen or nutrients, ATP levels

are maintained at a steady level, which is only 5-fold lower than

replicating cells (Gengenbacher et al., 2010; Rao et al., 2008).

This maintenance of ATP homeostasis is clearly important, as

disruption of the proton motive force or chemical inhibition of

the F0F1 ATP synthase involved in ATP synthesis induces cell

death in nutrient-starved or hypoxic cultures (Rao et al., 2008;

Sala et al., 2010). Diverse strategies can be used to maintain

energy homeostasis. Both respiratory and fermentative path-

ways can support the long-term survival of bacteria in stationary

phase (Duwat et al., 2001). Similarly, M. tuberculosis harbors a

number of respiratory systems utilizing both oxygen and nitrate

as terminal electron acceptors (Boshoff and Barry, 2005).

When respiration is not possible, recent data suggest that

fermentation can lead to succinate secretion, which plays an

important role in maintaining membrane potential (Watanabe

et al., 2011; Eoh and Rhee, 2013). This general strategy is used

by a number of Gram-positive andGram-negative organisms un-

der respiration-limited conditions (Engel et al., 1994; Schnorpfeil

et al., 2001).

While the overall rate of carbon utilization decreases in quies-

cence, a few metabolic pathways display enhanced flux (Sauer

et al., 1999; Zhang et al., 2009). The specific pathways used to

maintain the quiescent cell are diverse, and their relative impor-

tance depends on the peculiarities of both the organism and the

environment. However, common themes have emerged, such as

a central role for the glyoxylate shunt in adapting to the growth-

limited state. This pathway consists of isocitrate lyase and

malate synthase and is responsible for the conversion of isoci-

trate and acetyl-CoA into malate and succinate. This bypasses

a segment of the TCA cycle that is normally siphoned to produce

biosynthetic precursors. While initially considered simply as an

anapleurotic system that is used to replenish TCA intermediates

during growth on nonglycolytic carbon sources such as lipids

(Muñoz-Elı́as and McKinney, 2005), recent studies indicate that

these reactions are an essential component of metabolic cycles

that sustain diverse bacterial species in slowly growing states.

The glyoxylate shunt is an essential component of the phospho-

enolpyruvate-glyoxylate cycle in E. coli (Fischer and Sauer, 2003)

and the ‘‘GAS’’ pathway in mycobacteria (Beste et al., 2011).

These pathways are important for the utilization of glucose, in

contrast to the canonical role for the glyoxylate shunt in lipid

catabolism. In both cases, these cycles are used to uncouple

glucose oxidation from the production of reducing equivalents,

and may function to maintain the redox state of the cytosol. In

the mycobacterial case, inhibition of isocitrate lyase causes

cell death in both hypoxia- and starvation-induced quiescence,

supporting the importance of these pathways in nongrowing

states (Gengenbacher et al., 2010; Eoh and Rhee, 2013).

Preservation of Genome Integrity

Maintaining genome fidelity when little or no metabolic capacity

is available for canonical DNA repair mechanisms is a challenge

faced by both quiescent cells and dormant spores. One strategy

common to both types of cells is altering chromosomal structure

to a more chemically stable form. The chromosome of stationary

phase E. coli assumes an extremely compact structure. A

nucleoid-associated protein called Dps, which is expressed

only in stationary phase, mediates biocrystallization of the
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nucleoid and protects DNA from damage (Martinez and Kolter,

1997). This compaction of DNA can be very dynamic as bacteria

enter and exit different growth states. In the photosynthetic

cyanobacterium, Synechococcus elongates, a circadian clock-

controlled mechanism induces periodic chromosome compac-

tion during the night (Smith andWilliams, 2006), and the resulting

alterations in DNA supercoiling control global gene expression

patterns (Vijayan et al., 2009).M. tuberculosismight use a similar

mechanism to protect its chromosome. A mycobacterial his-

tone-like protein, Lsr2, mediates chromosome compaction and

protection from reactive oxygen and nitrogen species (Summers

et al., 2012). The mechanisms underlying this protective ability

are unclear but could be related to the reported association

between Lsr2 and a FAD-binding flavoprotein thatmediates gen-

eral oxidative stress resistance (Du et al., 2012). The compact

packaging of bacterial DNA can be also facilitated by cationic

metabolites, such as polyamines, which have been implicated

in the protection of DNA from chemical damage (Baeza et al.,

1991). M. tuberculosis synthesizes a repertoire of polyamines

that facilitate transcription and DNA replication (Marton and

Pegg, 1995), although the roles of these compounds during

cellular quiescence remain unknown.

Truly dormant spores are not able to actively maintain their

chromosome but depend on the induction of DNA repair sys-

tems upon exit from the dormant state. While the nominal meta-

bolic capacity of the quiescent cell likely allows a subset of DNA

repair mechanisms to operate continuously, the relative activity

of different systems in growing and nongrowing states remains

uncertain, and distinct organisms favor different strategies.

Some microorganisms arrest growth with a single chromosome

(Valcourt et al., 2012), while others, such asM. tuberculosis, exit

the cell cycle with two chromosomal copies (Wayne, 1977).

Thus, high-fidelity recombinational repair mechanisms, which

often dominate in growing cells, are only available to a subset

of quiescent organisms. Despite the apparent presence of a

recombinational template in nonreplicating M. tuberculosis,

this organism still appears to utilize more error-prone repair sys-

tems. For example, error-prone translesion polymerases, which

replicate past DNAdamage lesions, are important for the survival

of slowly growingM. tuberculosis in chronically infected animals

(Boshoff et al., 2003). Similarly, mycobacteria rely on nonhomol-

ogous end-joining (NHEJ), in which double strand breaks are

imprecisely rejoined, to repair double-stranded breaks in quies-

cent states (Shuman and Glickman, 2007). The use of the low-

fidelity NHEJ system under these conditions could be due to

its dependence on ribonucleotides as opposed to deoxyribonu-

cleotide triphosphates, which may be limiting in nonreplicating

cells (Gong et al., 2005).

The particular DNA repair pathways used by quiescent organ-

isms have significant implications for genome evolution. While

the mutation rate of rapidly growing organisms is largely deter-

mined by the error rate of the replisome (Kunkel, 2004), the fidel-

ity of DNA repair systems might dominate in organisms that

spend a significant portion of their existence in slowly growing

states. Consistent with this model, it was recently estimated

that the M. tuberculosis genome accumulates mutations at a

similar rate in active and latent infection states (Ford et al.,

2011), and mutations accumulate in a time-dependent and not

replication-dependent manner (Ford et al., 2013). As drug resis-
tance inM. tuberculosis is the product of spontaneous mutation,

the specific DNA repair pathways that are operational in the

quiescent state could determine the rate at which resistance

emerges.

Strategies to Eradicate Quiescent Bacteria
Arguably, the most important factor limiting tuberculosis control

efforts is the exceptionally long treatment course that is required

to prevent relapse. While the standard regimen of antitubercular

drugs rapidly kills replicating bacteria in vitro, the same drugs

must be administered for at least 6 months to effectively treat

an active TB infection. The reduced activity of antibiotics in the

in vivo environment is not specific to mycobacteria and is often

attributed to slowly replicating or quiescent populations of the

pathogen (Eagle, 1952; McDermott, 1958). The antibiotic sensi-

tivity of quiescent bacterial populations has been investigated

extensively in the context of environmentally induced stasis in

M. tuberculosis (Mitchison and Coates, 2004; Rao et al., 2008;

Xie et al., 2005), drug-tolerant populations found in biofilms

(Brown et al.,1988), and nonreplicating ‘‘persister’’ subpopula-

tions that exist even in rapidly growing cultures (Balaban et al.,

2004). In all situations, quiescent bacterial populations are less

sensitive to existing antibiotics that target functions necessary

for cell growth. In principle, the identification of cellular functions

that are important for the regulation or maintenance of quies-

cence should suggest new strategies for eliminating nonreplicat-

ing bacterial populations and could be used to accelerate the

treatment of chronic infections. The following three general

approaches have been pursued to this end.

Inhibit Pathways that Are Essential in the Quiescent

State

In the case of M. tuberculosis there is an anecdotal correlation

between drugs that retain activity against nonreplicating cells

in vitro and those that have the strongest sterilizing activity in vivo

(Mitchison and Coates, 2004), although this correlation is not

absolute. As a result, new drug candidates are generally tested

for their ability to kill quiescent bacteria. Among the several

new regimens under development, a combination that includes

drugs retaining activity against nonreplicating cells, bedaquiline,

PA-824, and moxifloxacin, showed the highest early bactericidal

activity in a recent human trial (Diacon et al., 2012). While none of

these drugs were developed specifically to kill in a growth rate-

independent manner, all three might have been predicted to

have this ability based on their mechanism of action. Bedaquiline

inhibits the F0F1 ATP synthase, a function required for energy

maintenance (Andries et al., 2005), PA-824 is a nitroimidazole

that kills via nonspecific nitrosative (nitrogen radical-mediated)

damage (Singh et al., 2008), and moxifloxacin produces DNA

breaks at sites of ongoing transcription (Drlica et al., 2008).

These observations suggest that specifically targeting other

functions necessary for survival, such as those maintaining

carbon flux, energy generation, or redox maintenance, might

represent a productive strategy to produce more effective ther-

apies (Table 1).

Sensitize the Quiescent Cell to Existing Antibiotics

As an alternative to targeting what is likely a restricted set of

pathways that are necessary for maintaining viability in the

absence of replication, it may also be possible to alter the

physiology of the quiescent cell to render it more antibiotic
Cell Host & Microbe 13, June 12, 2013 ª2013 Elsevier Inc. 647



Table 1. Strategies to Eradicate Quiescent Bacterial Populations

Pathways that May Be Essential during

Quiescence Known Drugs/Inhibitors References

RNA synthesis Rifampin Betts et al., 2002; Mitchison and Coates, 2004

Proton motive force/ATP generation Bedaquiline, possibly pyrazinamide Gengenbacher et al., 2010; Rao et al., 2008;

Zhang et al., 2003

DNA gyrase/DNA integrity Fluorquinolones Hussain et al., 2009; Sala et al., 2010

Trans-translation Pyrazinamide Mitchison and Coates, 2004; Shi et al., 2011

Cell wall remodeling Carbapenem Hugonnet et al., 2009

Glyoxylate shunt None Beste et al., 2011; Muñoz-Elı́as and McKinney,

2005

Reductive TCA branch None Eoh and Rhee, 2013; Watanabe et al., 2011

Strategies to Resensitize Quiescent Cells Examples References

Inhibit stringent response Increases antibiotic sensitivity in P. aeruginosa

biofilm

Nguyen et al., 2011

Modulate toxin/antitoxin systems Determines the proportion of quiescent cells

in a population

Lewis, 2007

Enhance antibiotic uptake Metabolite supplementation increases

aminoglycoside uptake

Allison et al., 2011

Impose nonspecific nitrosative damage Nitromidazoles (e.g., Metronatazole, PA-824,

Delamanid)

Singh et al., 2008

Enhance TCA activity Sensitizes to multiple antibiotics Baek et al., 2011; Kohanski et al., 2007

Strategies to Remove Quiescence-

Inducing Cues

References

Biofilm dispersion Disrupts starvation-induced quiescence Potera, 2010

TNF modulation Enhances anti-TB therapy Bourigault et al., 2013

Immunosuppression Accelerates antibacterial therapy in animal models Assfalg et al., 2010; Lenaerts et al., 2003
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susceptible. Two recent studies have focused on increasing anti-

biotic activity by altering flux through central carbonmetabolism.

In M. tuberculosis, antibiotic efficacy is reduced as a result of

carbon storage responses that lower TCAflux.Geneticmutations

or nutritional supplements that inhibit triglycerideproduction, and

thus drive activity of the TCA cycle, or directly enhance TCA flux

were found to enhance antibiotic activity in quiescent cells in vitro

and in animal models (Baek et al., 2011). A similar approach for

enhancing TCA-dependent antibiotic activity by metabolite sup-

plementation was subsequently found to enhance aminoglyco-

side activity in E. coli and S. aureus (Allison et al., 2011). Another

promising approach is inhibiting the stringent response. This

systemcoordinates cellular physiologyduring slowgrowth states

in many bacteria, and genetic inhibition of the stringent response

sensitizes Pseudomonas aeruginosa biofilms to antibiotics

(Nguyen et al., 2011). While metabolite supplementation might

not be practical formany infections of the deep tissues, and small

molecule modulators of these pathways are not currently avail-

able, these studies provide proof for the concept that quiescent

cells can be rendered antibiotic susceptible.

Alter the Growth-Limiting Stress

Instead of directly modulating bacterial metabolism, it may be

possible to enhance drug efficacy by removing the specific envi-

ronmental pressures that induce quiescence. For example, non-

replicating, antibiotic-tolerant cells are found in relatively high

numbers in bacterial biofilms (Lewis, 2007), and the disruption

of the biofilm architecture increases antibiotic activity at least

in part by reversing this differentiation (Musk and Hergenrother,
648 Cell Host & Microbe 13, June 12, 2013 ª2013 Elsevier Inc.
2006). Similarly, it may be possible to modulate the host immune

pressures that induce the antibiotic tolerant state. Overt immu-

nosuppression can enhance antibiotic activity in a number of

models (Assfalg et al., 2010; Lenaerts et al., 2003). Even more

subtle chemical modulation of tumor necrosis factor (TNF) sig-

naling, which plays central roles in the inflammatory response,

has been shown to accelerate antituberculosis therapy in ani-

mals (Bourigault et al., 2013).

Thus, both the host and the pathogen can be manipulated to

increase antibiotic efficacy. A more detailed understanding of

the specific pressures that limit growth during infection and the

pathogen’s adaptations to these stresses could lead to the

rational development of new synergistic therapies that accel-

erate antibacterial treatment.
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Atrih, A., Zöllner, P., Allmaier, G., and Foster, S.J. (1996). Structural analysis of
Bacillus subtilis 168 endospore peptidoglycan and its role during differentia-
tion. J. Bacteriol. 178, 6173–6183.

Bacon, J., Dover, L.G., Hatch, K.A., Zhang, Y., Gomes, J.M., Kendall, S., Wer-
nisch, L., Stoker, N.G., Butcher, P.D., Besra, G.S., and Marsh, P.D. (2007).
Lipid composition and transcriptional response of Mycobacterium tubercu-
losis grown under iron-limitation in continuous culture: identification of a novel
wax ester. Microbiology 153, 1435–1444.

Baek, S.H., Li, A.H., and Sassetti, C.M. (2011). Metabolic regulation of myco-
bacterial growth and antibiotic sensitivity. PLoS Biol. 9, e1001065. http://dx.
doi.org/10.1371/journal.pbio.1001065.
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K., Kruger, N.J., Ratcliffe, R.G., and McFadden, J. (2011). 13C metabolic flux
analysis identifies an unusual route for pyruvate dissimilation in mycobacteria
which requires isocitrate lyase and carbon dioxide fixation. PLoS Pathog. 7,
e1002091. http://dx.doi.org/10.1371/journal.ppat.1002091.

Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A., and Duncan, K. (2002).
Evaluation of a nutrient starvation model of Mycobacterium tuberculosis
persistence by gene and protein expression profiling. Mol. Microbiol. 43,
717–731.

Boshoff, H.I., and Barry, C.E., 3rd. (2005). Tuberculosis—metabolism and
respiration in the absence of growth. Nat. Rev. Microbiol. 3, 70–80.

Boshoff, H.I., Reed, M.B., Barry, C.E., 3rd, and Mizrahi, V. (2003). DnaE2
polymerase contributes to in vivo survival and the emergence of drug resis-
tance in Mycobacterium tuberculosis. Cell 113, 183–193.

Bourassa, L., andCamilli, A. (2009). Glycogen contributes to the environmental
persistence and transmission of Vibrio cholerae. Mol. Microbiol. 72, 124–138.

Bourigault, M., Vacher, R., Rose, S., Olleros, M.L., Janssens, J., Quesniaux,
V.F., and Garcia, I. (2013). Tumor necrosis factor neutralization combined
with chemotherapy enhances Mycobacterium tuberculosis clearance and re-
duces lung pathology. Am. J. Clin. Exp. Immunol. 2, 124–134.

Brown, M.R., Allison, D.G., and Gilbert, P. (1988). Resistance of bacterial bio-
films to antibiotics: a growth-rate related effect? J. Antimicrob. Chemother. 22,
777–780.

Choder, M. (1991). A general topoisomerase I-dependent transcriptional
repression in the stationary phase in yeast. Genes Dev. 5(12A), 2315–2326.

Cole, J.J. (1999). Aquatic microbiology for ecosystem scientists: new and re-
cycled paradigms in ecological microbiology. Ecosystems (N.Y.) 2, 215–225.

Corper, H.J., and Cohn, M.L. (1933). The viability and virulence of old cultures
of tuercule bacilli. Am. Rev. Tuberc. 28, 856–874.

Cunningham, A.F., and Spreadbury, C.L. (1998). Mycobacterial stationary
phase induced by low oxygen tension: cell wall thickening and localization of
the 16-kilodalton alpha-crystallin homolog. J. Bacteriol. 180, 801–808.

Daniel, J., Deb, C., Dubey, V.S., Sirakova, T.D., Abomoelak, B., Morbidoni,
H.R., and Kolattukudy, P.E. (2004). Induction of a novel class of diacylglycerol
acyltransferases and triacylglycerol accumulation in Mycobacterium tubercu-
losis as it goes into a dormancy-like state in culture. J. Bacteriol. 186, 5017–
5030.

Daniel, J., Maamar, H., Deb, C., Sirakova, T.D., and Kolattukudy, P.E. (2011).
Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid
droplets and acquires a dormancy-like phenotype in lipid-loaded macro-
phages. PLoS Pathog. 7, e1002093. http://dx.doi.org/10.1371/journal.ppat.
1002093.

Diacon, A.H., Dawson, R., von Groote-Bidlingmaier, F., Symons, G., Venter,
A., Donald, P.R., van Niekerk, C., Everitt, D., Winter, H., Becker, P., et al.
(2012). 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide,
and moxifloxacin combinations: a randomised trial. Lancet 380, 986–993.

Drlica, K., Malik, M., Kerns, R.J., and Zhao, X. (2008). Quinolone-mediated
bacterial death. Antimicrob. Agents Chemother. 52, 385–392.

Du, Y., Zhang, H., He, Y., Huang, F., and He, Z.G. (2012). Mycobacterium
smegmatis Lsr2 physically and functionally interacts with a new flavoprotein
involved in bacterial resistance to oxidative stress. J. Biochem. 152, 479–486.

Duwat, P., Sourice, S., Cesselin, B., Lamberet, G., Vido, K., Gaudu, P., Le Loir,
Y., Violet, F., Loubière, P., andGruss, A. (2001). Respiration capacity of the fer-
menting bacterium Lactococcus lactis and its positive effects on growth and
survival. J. Bacteriol. 183, 4509–4516.

Eagle, H. (1952). Experimental approach to the problem of treatment failure
with penicillin. I. Group A streptococcal infection in mice. Am. J. Med. 13,
389–399.
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Kalscheuer, R., Stöveken, T., Malkus, U., Reichelt, R., Golyshin, P.N., Sabir-
ova, J.S., Ferrer, M., Timmis, K.N., and Steinbüchel, A. (2007). Analysis of stor-
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