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a b s t r a c t

This paper is concerned with the electromagnetic theory of microstretch elasticity. First, the initial
boundary value problem is formulated in the framework of the linear dynamic theory of microstretch
magnetoelectroelastic solids. Then, the spatial behavior of solutions is studied in both bounded and
unbounded regions. The obtained result gives an exact idea of the domain of influence, in the sense that
for each fixed time in a given interval, the entire activity vanishes at distanced from the support of the
given data greater than a time-dependent threshold value. The study of spatial behavior is completed
by an exponential decay estimate inside the domain of influence. As a by product a uniqueness result
holding for both bounded and unbounded bodies is derived. Finally, the effect of a concentrated micro-
stretch body force is studied.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The interaction of electromagnetic fields with deformable
bodies has been the subject of many theoretical investigations in
continuum mechanics (see for example the books of Tiersten,
1969; Eringen and Maugin, 1990; Zhou, 1999; Yang, 2005).

Several recent works (Eringen, 1999, 2003, 2004; Lee et al.,
2004) are dedicated to formulate electromagnetic theories for elas-
tic bodies with inner structure. Thus, in the papers by Eringen
(2003) and Lee et al. (2004) it was introduced a continuum theory
of micromorphic electromagnetic thermoelastic solids, while Erin-
gen (2004) derived the electromagnetic theory of microstretch
elasticity. The intended applications of these theories are to porous
elastic bodies such as bones and ceramics, synthetic materials con-
taining microscopic components (e.g., nanocomposites), solids
with microcracks, etc. (see Eringen, 1999).

Special cases of the field equations are the theory of piezoelec-
tricity and the theory of magnetoelasticity. These theories consider
only static or quasi-static electromagnetic fields. Thus, the
mechanical equations are dynamic while the electromagnetic
equations are static and the electric field and the magnetic field
are not dynamically coupled. We recall that the linear theory of
microstretch piezoelectricity was studied by Ies�an (2006) and
Quintanilla (2008), while in the paper by Ies�an and Quintanilla
(2007) some important theorems have been proven for micro-
stretch thermopiezoelectricity. Moreover, the basic equations
governing the bending of microstretch piezoelectric plates have
been treated by Ies�an (2008a), and a linear theory of microstretch
ll rights reserved.
thermopiezoelectricity without energy dissipation has been pre-
sented by Ies�an (2008b).

Here we consider the full electromagnetic theory of micro-
stretch elasticity (Eringen, 2004). Our goal is to investigate the
spatial behavior of solutions to the magnetoelectroelastic initial
boundary value problem. It is worth to note that in the framework
of microstretch piezoelectricity, the problem of spatial behavior of
solutions has been tackled by Quintanilla (2008). He derived a
spatial decay estimate for the solution to the problem of a homo-
geneous and isotropic semi-infinite cylinder in motion, subject to
homogeneous initial and boundary data except for that prescribed
on the base. Quintanilla (2008) utilized a measure of solution
which leads to a polynomial decay estimate in terms of the dis-
tance from the loaded end of the cylinder. The reason for which
the result is not of exponential type is due to the quasi-static fea-
ture of the considered problem. In piezoelectricity the electric
fields are considered quasi-static, although the mechanical equa-
tions are dynamic. Or in mathematical terms, the theory of piezo-
electricity combines hyperbolic with elliptic equations.

The purpose of this paper is to show that if the full electromag-
netic theory of microstretch elasticity is considered then a stronger
result can be obtained, in contrast with the special case of quasi-
static piezoelectricity. Thus, introducing an adequate measure of
solutions and utilizing its properties we get both a domain of
influence and an exponential decay estimate inside the domain
of influence (see Chirit�ă and Ciarletta, 1999 for corresponding re-
sults in elasticity and viscoelasticity). The result is proved in the
general context of anisotropic and inhomogeneous magnetoelec-
troelastic microstretch bodies. And clearly, the result holds for
dynamic piezoelectricity (or dynamic magnetoelasticity).

Such studies are motivated by the rapid development of smart
structures technology and the current models introduced to
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describe the behavior of solids with inner structures, such as ani-
mal bones, solids with microcracks, foams and other synthetic
materials. For example, when the electromagnetic theory of micro-
stretch elasticity was introduced in the paper by Eringen (2004),
the following application coming from medicine has been given
as motivation: ‘‘a physical exercise therapy program designed for
bone healing is based on deformations and motions of bones under
the application of a mild amount of stress. Clinically, it is also known
that an electromagnetic field applied to bone hastens the healing pro-
cesses, Satter et al. (1999). These processes involve interactions of
electromagnetic fields and mechanical deformations of porous solids,
namely bones.’’ Going further with this reasoning, we may ask, for
example, what happens during the therapy program with the
healthy bone tissue? How do external loads (of mechanical or/
and electromagnetic origins) applied to a region which need to
be cured affect the rest of the bone, which let say is healthy and
must not be deformed? The domain of influence provides a clear
answer for this problem.

In the next Section we set down the basic equations and formu-
late the initial boundary value problem. Then, we discuss the
restrictions imposed on the constitutive coefficients and establish
some preliminary estimates in Section 3. The spatial behavior of
solutions is described in the Section 4. Following Chirit�ă and Ciarl-
etta (1999), we introduce first the so called ‘‘support’’ of the given
data in a fixed interval of time [0,T], that is the set of all points for
which at least one of the given data in [0,T] (boundary or initial
data or body loads) is nonzero. We assume that this set is bounded
and included in a bounded regular set. Then, we consider an appro-
priate time-weighted surface power function. Using its properties
we get the domain of influence and an exponential decay estimate
in terms of the distance from the support of the given data inside
the domain of influence. A uniqueness result is obtained. Finally,
Section 5 is concerned with the problem of a concentrated micro-
stretch body force that acts in an unbounded domain. Using the
properties of Laplace transform an approximate solution useful
for small times was obtained.

2. Basic formulation

We consider a body that at time t = 0 occupies the regular re-
gion B of Euclidean three-dimensional space whose boundary is
the regular surface @B. We refer the motion of the body to a fixed
system of rectangular Cartesian axes 0xk (k = 1,2,3). We shall em-
ploy the usual summation and differentiation conventions: Latin
subscripts are understood to range over integer (1,2,3), summa-
tion over repeated subscripts is implied, subscripts preceded by a
comma denote partial differentiation with respect to the corre-
sponding Cartesian coordinate, and a superposed dot denotes time
differentiation.

We consider the linear theory of microstretch magnetoelectro-
elasticity. The basic equations of the dynamic theory consist of the
following equations (see Eringen, 2004; Ies�an, 2006):

– the equations of motion
tji;j þ q0fi ¼ q0€ui;

mji;j þ �ijktjk þ q0li ¼ q0Iij €uj;

pk;k � rþ q0l ¼ q0|0 €u;

ð1Þ
– the Maxwell’s equations
�ijkEk;j ¼ �
1
c

_Bi; �ijkHk;j ¼
1
c

_Di; ð2Þ
– the constitutive equations
tij ¼ Aijrsers þ Bijrsjrs þ Dijuþ Fijkfk þ vð1Þijk Ek þ lð1Þijk Bk;

mij ¼ Brsijers þ Cijrsjrs þ Eijuþ Gijkfk þ vð2Þijk Ek þ lð2Þijk Bk;

r ¼ Dijeij þ Eijjij þ nuþ hkfk þ vð3Þk Ek þ lð3Þk Bk;

pk ¼ Fijkeij þ Gijkjij þ hkuþ Akjfj þ vð4Þkj Ej þ lð4Þkj Bj;

Dk ¼ �vð1Þijk eij � vð2Þijk jij � vð3Þk u� vð4Þjk fj þ vkjEj þ akjBj;

Hk ¼ �lð1Þijk eij � lð2Þijk jij � lð3Þk u� lð4Þjk fj þ ajkEj þ lkjBj;

ð3Þ
– and the geometrical equations
eij ¼ uj;i þ �jikuk; jij ¼ uj;i; fj ¼ u;j; ð4Þ
where tij is the stress tensor; fi is the body force; q is the reference
mass density; ui is the mechanical displacement vector; mij is the
couple stress tensor; �ijk is the alternating symbol; li is the body
couple; Iij is the microinertia tensor; ui is the microrotation vector;
pi is the microstretch stress vector; r is the microstress function; l
is the microstretch body force; |0 is the microstretch inertia; u is
the microstretch function; Ei is the electric field vector; Bi is the
magnetic induction; c is the speed of light; Hi is the magnetic field
intensity; Di is the dielectric displacement vector; eij, jij and f are
kinematic strain measures; and Aijrs,Bijrs, . . . ,lkj are constitutive
coefficients.

We assume the charge density to be absent and we do not con-
sider the Gauss’ laws Bi,i = 0 and Di,i = 0 since we regard these equa-
tions as consequences of (2) and initial conditions.

Now, let us note that in the formulation of the constitutive
equations it is often convenient to choose eij, jij, u, fi, Ei and Hi

as independent variables. Then, Eq. (3) are replaced by

tij ¼ aijrsers þ bijrsjrs þ dijuþ fijkfk þ kð1Þijk Ek þ mð1Þijk Hk;

mij ¼ brsijers þ cijrsjrs þ eijuþ gijkfk þ kð2Þijk Ek þ mð2Þijk Hk;

r ¼ dijeij þ eijjij þ muþ vkfk þ kð3Þk Ek þ mð3Þk Hk;

pk ¼ fijkeij þ gijkjij þ vkuþ akjfj þ kð4Þkj Ej þ mð4Þkj Hj;

Dk ¼ �kð1Þijk eij � kð2Þijk jij � kð3Þk u� kð4Þjk fj þ kkjEj þ bkjHj;

Bk ¼ �mð1Þijk eij � mð2Þijk jij � mð3Þk u� mð4Þjk fj þ bjkEj þ mkjHj;

ð5Þ

where aijrs,bijrs, . . . ,mkj are constitutive coefficients.
For the specific case of a microstretch piezoelectric medium (or

a microstretch piezomagnetic medium), the constitutive relations
can be expressed in (5) by deleting the coupling coefficient tensors
mð1Þijk ; mð2Þijk ; mð3Þk ; mð4Þkj and bij (or kð1Þijk ; kð2Þijk ; kð3Þk ; kð4Þkj and bij correspond-
ingly). Our result is proved for electromagnetic bodies (the consti-
tutive equation (5)) and clearly, in view of the hypotheses
presented in the next Section, it also holds for piezoelectric and
piezomagnetic mediums.

We suppose the constitutive coefficients and the inertia tensor
satisfy the symmetry relations

aijrs ¼ arsij; cijrs ¼ crsij; aij ¼ aji; kij ¼ kji; mij ¼ mji; Iij ¼ Iji:

ð6Þ

The components of the surface traction, the components of the
surface moment and the surface microforce defined at every regu-
lar point of a boundary surface are given by

ti ¼ tjinj; mi ¼ mjinj; s ¼ pjnj; ð7Þ

where nj are the components of the outward unit normal vector to
the boundary surface of a region.

To the system of field equations we adjoin the following bound-
ary conditions
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ui ¼ ~ui on S1 � ½0;1Þ; tjinj ¼ ~ti on S2 � ½0;1Þ;
ui ¼ ~ui on S3 � ½0;1Þ; mjinj ¼ ~mi on S4 � ½0;1Þ;
u ¼ ~u on S5 � ½0;1Þ; pjnj ¼ ~p on S6 � ½0;1Þ;
�ijkEjnk ¼ eEi on S7 � ½0;1Þ; �ijkHjnk ¼ eHi on S8 � ½0;1Þ;

ð8Þ

where ~ui; ~ti; ~ui; ~mi; ~u; ~p; eEi; eHi are prescribed functions and
SA ðA ¼ 1;2; . . . 8Þ are subsets of @B such that @B ¼ S1 [ S2 ¼
S3 [ S4 ¼ S5 [ S6 ¼ S7 [ S8; S1 \ S2 ¼ S3 \ S4 ¼ S5 \ S6 ¼ S7 \ S8 ¼ ;.
Moreover, we adjoin the following initial conditions

uiðx;0Þ ¼ u0
i ðxÞ; _uiðx; 0Þ ¼ v0

i ðxÞ; uiðx;0Þ ¼ u0
i ðxÞ;

_uiðx;0Þ ¼ h0
i ðxÞ;

uðx;0Þ ¼ u0ðxÞ; _uðx;0Þ ¼ h0ðxÞ; Diðx; 0Þ ¼ D0
i ðxÞ;

Biðx;0Þ ¼ B0
i ðxÞ; x 2 B;

ð9Þ

where u0
i ; v0

i ; u0
i ; h0

i ; u0; h0; D0
i and B0

i are prescribed fields, satis-
fying D0

i;i ¼ 0 and B0
i;i ¼ 0.

By an external data system we mean the ordered array

J ¼ fi; li; l; ~ui;~ti; ~ui; ~mi; ~u; ~p; eEi; eHi; u0
i ;v

0
i ;u

0
i ; h

0
i ;u

0; h0;D0
i ;B

0
i

n o
:

We denote by ðPÞ the initial-boundary value problem defined
by the field equations (1), (2), (4), (5), the boundary conditions
(8) and the initial conditions (9).

Let M and N be nonnegative integers. We say that h is of class
CM,N on B � ½0;1Þ if h is continuous on B � ½0;1Þ, and the functions

@m

@xi@xj � � � @xr

@nh
@tn

� �
m 2 f0;1; . . . ;Mg; n 2 f0;1; . . . ;Ng;

mþ n 6 maxfM;Ng

exist and are continuous on B � ½0;1Þ. We denote CM,M by CM.
By an admissible process we mean the ordered array

P ¼ ui;ui;u; Ei;Hi; eij;jij; fi; tij;mij;r;pi;Di;Bi
� �

with the properties (a) ui, ui, u are of class C1,2 on B � ½0;1Þ; (b) Bi,
Di 2 C1 on B � ½0;1Þ; (c) Ei, Hi, tij, mij, pi are of class C1,0 on
B � ½0;1Þ; d) eij, jij, fi, r 2 C0 on B � ½0;1Þ.

A solution of the initial boundary value problem ðPÞ corre-
sponding to external data system J is an admissible process P that
satisfies the field equations (1), (2), (4), (5) on B � ½0;1Þ, the
boundary conditions (8) and the initial conditions (9).

Given an admissible process P, then we associate with the
strain measures U = {eij,jij,u,fi} and the electromagnetic fields
N = {Ei,Hi} the following quadratic forms:

2WðUÞ ¼ aijrseijers þ cijrsjijjrs þ mu2 þ aijfifj þ 2bijrseijjrs þ 2dijeiju
þ 2f ijkeijfk þ 2eijjijuþ 2gijkjijfk þ 2vifiu ð10Þ

and

2EðNÞ ¼ kijEiEj þ 2bijEiHj þ mijHiHj: ð11Þ
3. Hypotheses and preliminary results

In this paper we shall use the hypotheses:
(a) q0 and |0 are strictly positive fields on B, that is

q0ðxÞP �q0 > 0; �q0 ¼ const:

|0ðxÞP �|0 > 0; �|0 ¼ const:;
ð12Þ

(b) the microinertia tensor Iij is positive definite, that is

ImXiXi 6 IijXiXj 6 IMXiXi; 8 Xi 2 R; ð13Þ

where Im(x) > 0 and IM(x) > 0 are the smallest and the largest eigen-
values of Iij(x);
(c) there exist gm(x) > 0, gM(x) > 0 such that

gm XijXij þ ImYijYij þw2 þ |0ZiZi
� �

6 2WðSÞ
6 gM XijXij þ ImYijYij þw2 þ |0ZiZi

� �
; ð14Þ

for all S = {Xij,Yij,w,Zi}, where the arbitrary quantities Xij, Yij, w, Zi

have the same dimensions as the strain measures eij, jij, u, fi,
respectively;

(d) there exist km(x) > 0, mm(x) > 0, kM(x) > 0, mM(x) > 0 such that

kmXiXi þ mmYiYi 6 2EðMÞ 6 kmXiXi þ mmYiYi; ð15Þ

where M = {Xi,Yi} and Xi, Yi are arbitrary quantities having the same
dimensions as the electromagnetic fields Ei and Hi.

Given the processes P and P�, then for the strain measures
U = {eij,jij,u,fi} and U� ¼ fe�ij;j�ij;u�; f

�
i g, respectively, we introduce

the following bilinear form:

2FðU;U�Þ¼aijrseije�rsþcijrsjijj�rsþmuu�þaijfif
�
j

þbijrsðeijj�rsþe�ijjrsÞþdijðeiju�þe�ijuÞþ fijkðeijf
�
kþe�ijfkÞ

þeijðjiju�þj�ijuÞþgijkðjijf
�
kþj�ijfkÞþviðfiu�þf�i uÞ: ð16Þ

Obviously, in view of (6) it results that Fð�; �Þ is symmetric. More-
over, on using the hypothesis (c), it follows the Cauchy–Schwartz’s
inequality:

FðU;U�Þ 6 WðUÞ½ �1=2 WðU�Þ½ �1=2
; 8 U;U�: ð17Þ

Now, let us denote by k̂ðUÞM ; m̂ðUÞM ; U ¼ 1;2;3;4, the largest eigen-
values of the symmetric and positive semidefinite tensors

k̂ð1Þkl ¼ kð1Þijk kð1Þijl ; k̂ð2Þkl ¼
1
Im kð2Þijk kð2Þijl ; k̂ð3Þkl ¼ kð3Þk kð3Þl ; k̂ð4Þkl ¼

1
|0

kð4Þjk kð4Þjl ;

m̂ð1Þkl ¼ mð1Þijk mð1Þijl ; m̂ð2Þkl ¼
1
Im mð2Þijk mð2Þijl ; m̂ð3Þkl ¼ mð3Þk mð3Þl ; m̂ð4Þkl ¼

1
|0

mð4Þjk mð4Þjl ;

ð18Þ

respectively. Moreover, for later convenience, let us introduce the
notations

k̂0
M ¼

ffiffiffiffiffiffiffi
k̂ð1ÞM

q
þ

ffiffiffiffiffiffiffi
k̂ð2ÞM

q
þ

ffiffiffiffiffiffiffi
k̂ð3ÞM

q
þ

ffiffiffiffiffiffiffi
k̂ð4ÞM

q� �2

;

m̂0
M ¼

ffiffiffiffiffiffiffiffi
m̂ð1ÞM

q
þ

ffiffiffiffiffiffiffiffi
m̂ð2ÞM

q
þ

ffiffiffiffiffiffiffiffi
m̂ð3ÞM

q
þ

ffiffiffiffiffiffiffiffi
m̂ð4ÞM

q� �2

ð19Þ

and

�gm ¼min
x2B
fgmðxÞg > 0; �gM ¼max

x2B
fgMðxÞg <1;

�km ¼min
x2B
fkmðxÞg > 0; �kM ¼max

x2B
fkMðxÞg <1;

�mm ¼min
x2B
fmmðxÞg > 0; �mM ¼max

x2B
fmMðxÞg <1;

k̂0
M ¼max

x2B
fk̂0

MðxÞg <1; m̂0
M ¼max

x2B
fm̂0

MðxÞg <1:

ð20Þ
Lemma 1. Let P be an admissible process satisfying the constitutive
equation (5) . Suppose the hypotheses (a), (b) and (c) are fulfilled.
Then, the following inequality holds true

tijtij þ
1
Im mijmij þ r2 þ 1

|0
pipi 6 2ð1þ #1 þ #2ÞgMWðUÞ

þ 2þ 1
#1

� �
k̂0

MEiEi

þ 2þ 1
#2

� �
m̂0

MHiHi; ð21Þ

whereWðUÞ is given by (10), k̂0
M ; m̂0

M are defined in (19) and #1, #2 are
positive constants.
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Proof. From (5) and (16) we obtain

tijtij þ
1
Im mijmij þ r2 þ 1

|0
pipi ¼ 2FðU;KÞ þ kð1Þijk Ektij

þ 1
Im kð2Þijk Ekmij þ kð3Þk Ekr

þ 1
|0

kð4Þjk Ekpj þ mð1Þijk Hktij

þ 1
Im mð2Þijk Hkmij þ mð3Þk Hkr

þ 1
|0

mð4Þjk Hkpj; ð22Þ

where U = {eij,jij,u,fi} and K ¼ ftij;
mij

Im ;r; pi
|0
g.

On using (17) and (18), from (22) we deduce

tijtij þ
1
Im mijmij þ r2 þ 1

|0
pipi 6 2WðUÞ½ �

1
2 2WðKÞ½ �

1
2

þ k̂ð1Þkl EkEl

	 
1
2

tijtij
� �1

2

þ 1
Im k̂ð2Þkl EkEl

� �1
2 1

Im mijmij

� �1
2

þ k̂ð3Þkl EkEl

	 
1
2 r2
� �1

2

þ 1
|0

k̂ð4Þkl EkEl

� �1
2 1
|0

pipi

� �1
2

þ m̂ð1Þkl HkHl

	 
1
2

tijtij
� �1

2

þ 1
Im m̂ð2Þkl HkHl

� �1
2 1

Im mijmij

� �1
2

þ m̂ð3Þkl HkHl

	 
1
2 r2� �1

2

þ 1
|0

m̂ð4Þkl HkHl

� �1
2 1
|0

pipi

� �1
2

:

ð23Þ

Moreover, taking into account the relations (14) and (19) we obtain

tijtij þ
1
Im mijmij þ r2 þ 1

|0
pipi

6 2gMWðUÞ
� �1=2 þ k̂0

MEiEi

	 
1=2
þ m̂0

MHiHi
� �1=2

 �2

: ð24Þ

By means of the arithmetic–geometric mean inequality, from (24)
we get the inequality (21) and the proof is complete. h
Lemma 2. Let P be an admissible process satisfying the constitutive
equation (5) . Suppose the hypotheses (a), (b) and (c) are fulfilled.
Then, the following inequalities hold true

titi þ
1
Im mimi þ

1
|0

s2
6 2ð1þ #1 þ #2ÞgMWðUÞ

þ 2þ 1
#1

� �
k̂0

MEiEi þ 2þ 1
#2

� �
m̂0

MHiHi ð25Þ

and

�ijkHkEinj 6
1
2

#3HiHi þ
2
#3

EiEi

� �
; ð26Þ

where ti, mi, s are defined by (7) and #1, #2, #3 are arbitrary positive
constants.
Proof. The inequality (25) follows from (7), (21) and the inequality

MijMkjaiak 6 MijMij; ð27Þ
which holds for any tensor Mij and any vector ai with aiai = 1.
Regarding the second inequality, let us note that the arithme-

tic–geometric mean inequality leads to

�ijkHkEinj 6
1
2

#3HiHi þ
1
#3
�ijkEinj�mnkEmnn

� �
; #3 > 0: ð28Þ

Thus, applying (27) with Mij = �mijEm, ai = ni and by using the iden-
tity �ijk�mjk = 2dim, where dim is the Kronecker delta, we deduce
(26) and the proof is complete. h
4. Spatial behavior

In this section we prove the main theorem of the paper. First,
we introduce the so called ‘‘support’’ of the external given data
and we establish some properties of an appropriate time–weighted
surface power function associated with the solution at issue. Then,
we obtain the domain of influence in the sense described by Chirit�ă
and Ciarletta (1999) and we establish an estimate suggesting expo-
nential decay of activity inside the domain of influence.

Let us fix a time T 2 [0,1). Given a solution P ¼ fui;ui;u; Ei;Hi;

eij;jij; fi; tij;mij;r;pi;Di;Big corresponding to the external data sys-
tem J ¼ ffi; li; l; ~ui;~ti; ~ui; ~mi; ~u; ~p; eEi; eHi; u0

i ;v0
i ; u0

i ; h
0
i ;u0; h0;D0

i ;B
0
i g,

we introduce the set bXT of all points x 2 B such that:

(i) if x 2 B then
uiðx;0Þ– 0 or _uiðx;0Þ– 0 or uiðx;0Þ– 0 or
_uiðx;0Þ– 0 or uðx;0Þ– 0 or _uðx;0Þ – 0 or

Diðx;0Þ– 0 or Biðx;0Þ – 0
ð29Þ
or
fiðx; sÞ– 0 or liðx; sÞ – 0 or lðx; sÞ – 0 for some
s 2 ½0; T�; ð30Þ
(ii) if x 2 @B then
tiðx; sÞ _uiðx; sÞ – 0 or miðx; sÞ _uiðx; sÞ – 0 or
sðx; sÞ _uðx; sÞ– 0 or �ijkEiðx; sÞHkðx; sÞnj – 0 for some
s 2 ½0; T�:

ð31Þ
Roughly speaking, bXT represents the support of the external gi-
ven data on the time interval [0,T]. If the region B is unbounded,
then we shall assume that bXT is a bounded region.

We consider next a nonempty set bXH

T of B such thatbXT � bXH

T � B and

(1) if bXT \ B – ;, we choose bXH

T to be the smallest regular region
in B that includes bXT ; in particular, we set bXH

T ¼ bXT if bXT

happens to be a regular region;

(2) if ;– bX � @B, we choose bXH to be the smallest regular sub-
T T

surface of @B that includes bXT ; in particular, we set bXH

T ¼ bXT

if bXT is a regular subsurface of @B;
(3) if bXT is empty, then we choose bXH

T to be an arbitrary regular
subsurface of @B.

On this basis we introduce the set Xr, r P 0 by

Xr ¼ x 2 B; bXH

T \ Rðx; rÞ– ;
n o

; ð32Þ

where R(x,r) is the open ball with radius r and center x. We shall
use the notation BðrÞ for the part of B contained in B nXr and we
set Bðr1; r2Þ ¼ Bðr2Þ n Bðr1Þ; r1 > r2. Moreover, we shall denote by
Sr the subsurface of @BðrÞ contained into inside of B and whose out-
ward unit normal vector is forwarded to the exterior of Xr.
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We note that for a bounded body r ranges over [0,L], where

L ¼max min ½ðxi � yiÞðxi � yiÞ�
1=2 : y 2 bXH

T

n o
: x 2 B

n o
: ð33Þ

We associate with the solution P the following time–weighted
surface power function

Qðr; tÞ ¼ �
Z t

0

Z
Sr

e�cz tiðzÞ _uiðzÞ þmiðzÞ _uiðzÞ þ sðzÞ _uðzÞ½

þ�ijkcHkðzÞEiðzÞnj
�

dadz; r P 0; t 2 ½0; T�; ð34Þ
where c is a prescribed positive parameter.

Lemma 3. Let P ¼ ui;ui;u; Ei;Hi; eij;jij; fi; tij;mij;r;pi;Di;Bi
� �

be a
solution of the problem ðPÞ and let bXT be the bounded support of the
external data on the interval [0,T]. Then, Q(r, t) is a continuous
differentiable function on r P 0, t 2 [0,T] and

@

@t
Qðr; tÞ ¼ �

Z
Sr

e�ct tiðtÞ _uiðtÞ þmiðtÞ _uiðtÞ þ sðtÞ _uðtÞ½

þ�ijkcHkðtÞEiðtÞnj
�

da; ð35Þ

@

@r
Qðr;tÞ¼�1

2

Z
Sr

e�ct q0 _uiðtÞ _uiðtÞþIij _uiðtÞ _ujðtÞþ|0 _u2ðtÞ
� ��

þ2WðUðtÞÞþ2EðNðtÞÞ�da�c
2

Z t

0

Z
Sr

e�cz q0 _uiðzÞ _uiðzÞð½

þIij _uiðzÞ _ujðzÞþ|0 _u2ðzÞ
�
þ2WðUðzÞÞþ2EðNðzÞÞ

�
dadz; ð36Þ

where WðUÞ and EðNÞ are given by (10) and (11) . Moreover, if the
hypotheses (a), (b), (c) and (d) are fulfilled, then at any fixed t 2
[0,T], Q(r, t) is a nonincreasing function with respect to r.
Proof. In view of (7), the definition of bXT and the divergence the-
orem we get

Qðr1; tÞ � Qðr2; tÞ ¼ �
Z t

0

Z
@Bðr1 ;r2Þ

e�cz tiðzÞ _uiðzÞ þmiðzÞ _uiðzÞ½

þsðzÞ _uðzÞ þ �ijkcHkðzÞEiðzÞnj
�

dadz ¼ �
Z t

0

Z
Bðr1 ;r2Þ

e�cz

� tjiðzÞ _ui;jðzÞ þ tji;jðzÞ _uiðzÞ þmjiðzÞ _ui;jðzÞ
�

þmji;jðzÞ _uiðzÞ
þpkðzÞ _u;kðzÞ þ pk;kðzÞ _uðzÞ þ �ijkcHk;jðzÞEiðzÞ
þ�ijkcEi;jðzÞHkðzÞ

�
dv dz 0 6 r2 6 r1: ð37Þ

Further, on using the basic equations (1), (2) and (4) we obtain

Qðr1; tÞ � Qðr2; tÞ ¼ �
Z t

0

Z
Bðr1 ;r2Þ

e�cz q0€uiðzÞ _uiðzÞ þ q0Iij €ujðzÞ _uiðzÞ
�

þ q0|0 €uðzÞ _uðzÞ þ tijðzÞ _eijðzÞ þmijðzÞ _jijðzÞ þ rðzÞ _uðzÞ

þpkðzÞ _fkðzÞ þ _DiðzÞEiðzÞ þ _BiðzÞHiðzÞ
i

dv dz: ð38Þ

Using the relations (5), (6), (10) and (11) we have

tijðzÞ _eijðzÞ þmijðzÞ _jijðzÞ þ rðzÞ _uðzÞ þ pkðzÞ _fkðzÞ þ _DiðzÞEiðzÞ

þ _BiðzÞHiðzÞ ¼
@

@z
WðUðzÞÞ þ EðNðzÞÞ½ �: ð39Þ

If we substitute (39) in (38) then by means of an integration by
parts and the definition of bXT we get the identity

Qðr1; tÞ � Qðr2; tÞ ¼ �
1
2

Z
Bðr1 ;r2Þ

e�ct q0 _uiðtÞ _uiðtÞ þ Iij _uiðtÞ _ujðtÞ
��

þ|0 _u2ðtÞ
�
þ 2WðUðtÞÞ þ 2EðNðtÞÞ

�
dv

� c
2

Z t

0

Z
Bðr1 ;r2Þ

e�cz q0 _uiðzÞ _uiðzÞ þ Iij _uiðzÞ _ujðzÞ þ |0 _u2ðzÞ
� ��

þ2WðUðzÞÞ þ 2EðNðzÞÞ�dv dz; 0 6 r2 6 r1: ð40Þ
The identities (35) and (36) follow from (34) and (40). Finally, from
(12)–(15) and (36) we find that Q(r, t) is a nonincreasing function
with respect to r. The proof is complete. h
Lemma 4. Assume that the hypotheses (a), (b), (c) and (d) are ful-
filled. Let P be solution of the problem ðPÞ and let bXT be the bounded
support of the external data system J on the interval [0,T]. Then for
any r P 0 and t 2 [0,T], Q(r, t) satisfies the following differential
inequalities

1
C
@

@t
Qðr; tÞ

���� ����þ @

@r
Qðr; tÞ 6 0; ð41Þ

c
C jQðr; tÞj þ

@

@r
Qðr; tÞ 6 0; ð42Þ

where

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2#Þ�gM

�q0

s
ð43Þ

and # is the positive root of the algebraic equation

#3 � 1
�gM

k̂0
M

�km
þ m̂0

M

�mm

 !
þ c2 �q0

�km�mm�gM
� 1

2

" #
#2 � 1

2�gM

k̂0
M

�km
þ m̂0

M

�mm

 !"

� k̂0
M m̂0

M

�km�mmð�gMÞ2

#
#þ k̂0

Mm̂0
M

2�km�mmð�gMÞ2
¼ 0: ð44Þ
Proof. Let us prove the inequality (41). Using the Schwarz’s
inequality, the arithmetic–geometric mean inequality, (20), (25)
and (26), from (35) we obtain
@

@t
Qðr; tÞ

���� ����6 Z
Sr

e�ct #4

2�q0
tiðtÞtiðtÞþ

1
Im miðtÞmiðtÞþ

1
|0

s2ðtÞ
� �

þ q0

2#4
_uiðtÞ _uiðtÞþ Iij _uiðtÞ _ujðtÞþ |0 _u2ðtÞ
� �

þj�ijkcHkðtÞEiðtÞnjj
�

da

6

Z
Sr

e�ct 1
#4

q0

2
_uiðtÞ _uiðtÞþ

q0

2
Iij _uiðtÞ _ujðtÞþ

q0

2
|0 _u2ðtÞ

h i
þ#4ð1þ#1þ#2Þ�gM

�q0
WðUðtÞÞ

þ 1
�km

#4

�q0
2þ 1

#1

� �
k̂0

M þ
2c
#3

� �
kmEiðtÞEiðtÞ

2

þ 1
�mm

#4

�q0
2þ 1

#2

� �
m̂0

M þ c#3

� �
mmHiðtÞHiðtÞ

2

�
da; ð45Þ

for all r P 0, t 2 [0,T], #1 > 0, #2 > 0, #3 > 0, #4 > 0. We equate the
coefficients of the various energetic terms in the integral of (45),
namely we set

1
#4
¼ #4ð1þ #1 þ #2Þ�gM

�q0
¼ 1

�km

#4

�q0
2þ 1

#1

� �
k̂0

M þ
2c
#3

� �
¼ 1

�mm

#4

�q0
2þ 1

#2

� �
m̂0

M þ c#3

� �
: ð46Þ

Thus, choosing

#1 ¼ #; #2 ¼ #; #3 ¼
C

c#�gM
�mm �gM#� m̂0

M

	 

; #4 ¼

1
C ð47Þ

where C is given by (43) and # is the algebraic root of Eq. (44), from
(15), (36) and (45) we obtain (41). The inequality (42) is obtained in
a very similar manner. The proof is complete. h
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Lemma 5. Let P be solution of the problem ðPÞ and let bXT be the
bounded support of the external data system J on the interval [0,T].
If (a), (b), (c), (d) are satisfied, then for any r P 0 and t 2 [0,T], the
corresponding time–weighted surface power function may be written
in the form

Qðr;tÞ¼1
2

Z
BðrÞ

e�ct q0 _uiðtÞ _uiðtÞþ Iij _uiðtÞ _ujðtÞþ |0 _u2ðtÞ
� ��

þ2WðUðtÞÞþ2EðNðtÞÞ�dvþc
2

Z t

0

Z
BðrÞ

e�cz q0 _uiðzÞ _uiðzÞð½

þIij _uiðzÞ _ujðzÞþ |0 _u2ðzÞ
�
þ2WðUðzÞÞþ2EðNðzÞÞ

�
dv dz: ð48Þ

Therefore Q(r, t) is an acceptable measure of the solution P, in the sense
that it is positive for all P – 0 in BðrÞ � ½0; T� and it vanishes only when
ui = 0, ui = 0, u = 0, Ei = 0, Hi = 0, eij = 0, jij = 0, fi = 0, tij = 0, mij = 0,
r = 0, pi = 0, Di = 0, Bi = 0 in BðrÞ � ½0; T�.
Proof. Let us prove first that Q(r, t) is a nonnegative function on
r P 0, t 2 [0,T]. If B is bounded then r ranges on [0,L], where L is
defined by (33). Then, the relation (34) together with the definition
of bXT yield
QðL; tÞ ¼ 0; 8 t 2 ½0; T�: ð49Þ
Since Q(r,t) is a nonincreasing function with respect to r, from (49)
we get that Q(r, t) P 0, for all r 2 [0,L] and t 2 [0,T].

Let us now consider the case of an unbounded body, namely r
ranges on [0,1). We note that (41) is equivalent to the following
first order differential inequalities

1
C
@

@t
Qðr; tÞ þ @

@r
Qðr; tÞ 6 0 ð50Þ

and

�1
C
@

@t
Qðr; tÞ þ @

@r
Qðr; tÞ 6 0: ð51Þ

Let us fix tw 2 [0,T] and let us consider rH P CtH. Putting
t ¼ tH þ ½ðr � rHÞ=C� in (50), we get

d
dr

Q r; tH þ r � rH

C

� �� �
6 0: ð52Þ

Since 0 6 r ¼ rH � CtH
6 rH, from (52) we obtain

QðrH; tHÞ 6 QðrH � CtH;0Þ: ð53Þ

Similarly, setting t ¼ tH � ½ðr � rHÞ=C� in (51), we deduce

d
dr

Q r; tH � r � rH

C

� �� �
6 0: ð54Þ

so that

QðrH þ CtH;0Þ 6 QðrH; tHÞ: ð55Þ

Making rw to tend to infinity in the inequalities (53) and (55) and
taking into account that QðrH � CtH; 0Þ ¼ QðrH þ CtH; 0Þ ¼ 0, we get

Qð1; tHÞ ¼ lim
r!1

Qðr; tHÞ ¼ 0; 8 tH 2 ½0; T�: ð56Þ

Thus, it follows that Q(r, t) is a nonnegative function on r 2 [0,1),
t 2 [0,T].

The relation (48) is obtained from (40), (49) and (56). Clearly, if
Q(r, t) = 0, then (48) yields _ui ¼0; _ui¼0; u¼0; eij¼0; jij¼0; fi ¼0;
Ei¼0 and Hi = 0 in BðrÞ� ½0;T�. By (5) and the definition of bXT we
obtain P¼0 in BðrÞ� ½0;T� and the proof is complete. h
Theorem 1 (Spatial behavior). Assume that (a), (b), (c) and (d) are
satisfied. Let P ¼ fui;ui;u; Ei;Hi; eij;jij; fi; tij;mij;r;pi;Di; Big be a
solution of the problem ðPÞ. Let bXT be the bounded support of the exter-
nal data onthe interval [0,T] and let Q(r, t) be the time weighted surface
power measure associated with P. Then for each fixed t 2 [0,T], the spa-
tial behavior of P outside the bounded support bXT is controlled by the
followings:
(i) For r P Ct we have
uiðx;tÞ¼0; uiðx;tÞ¼0; uðx;tÞ¼0; Eiðx;tÞ¼0;
Hiðx;tÞ¼0; eijðx;tÞ¼0; jijðx;tÞ¼0; fiðx;tÞ¼0;
tijðx;tÞ¼0; mijðx;tÞ¼0; rðx;tÞ¼0; piðx;tÞ¼0;
Diðx;tÞ¼0; Biðx;tÞ¼0;

ð57Þ
(ii) For 0 6 r 6 Ct we have
Qðr; tÞ 6 Qð0; tÞ exp � c
C r

	 

: ð58Þ
Proof. Let us consider the case (i). If we consider t 2 [0,T] and set
r ¼ Ct in (50), then we deduce

d
dt

QðCt; tÞ½ � 6 0; ð59Þ

so that, we obtain

QðCt; tÞ 6 Qð0;0Þ ¼ 0; t 2 ½0; T�: ð60Þ

Since Q(r, t) is a nonincreasing function with respect to r, from (60)
we deduce

Qðr; tÞ ¼ 0; t 2 ½0; T�; r P Ct: ð61Þ

From (61) and Lemma 5 we conclude that (57) holds true.
We consider now the second part. We note that the inequality

(42) may be written in the form
@

@r
exp

c
C r
	 


Qðr; tÞ
h i

6 0; t 2 ½0; T�; 0 6 r 6 Ct: ð62Þ

The relation (62) leads to (58) and the proof is complete. h

A direct consequence of this theorem is the following result,
holding both for bounded and unbounded bodies:

Theorem 2 (Uniqueness). In the hypotheses (a), (b), (c) and (d) the
problem ðPÞ has at most one solution.
Remark 1. Theorem 1 is obtained for a sufficiently general domain
that may be particularized for various bounded or unbounded
regions. For example, B could be a right cylinder, finite or semi-
infinite, subject to homogeneous initial and boundary data except
for that prescribed on a base. In this case, Theorem 1 describes the
spatial behavior of solution with respect to distance from the
loaded end of the cylinder. Another example is provided by a
thick-walled spherical shell, whose inner surface is subject to a
given loading while the other external data are homogeneous. The-
orem 1 provides a characterization of the spatial behavior in terms
of the distance from the inner boundary of the shell. A third exam-
ple is the three dimensional Euclidean space subject to homoge-
neous initial data and vanishing body loads except a bounded
region on which acts nonzero prescribed body forces. In fact, the
next Section studies a problem of this latter type.
5. The effect of a concentrated microstretch body force

In this section, we study the effect of a concentrated micro-
stretch body force, acting in an unbounded microstretch piezoelec-
tric medium. We consider an isotropic and homogeneous
microstretch piezoelectric body. Thus, the constitutive equation
(5) reduce to (see Eringen, 2004; Ies�an, 2006)

tij ¼ kerrdij þ ðlþ kÞeij þ leji þ k0udij;

mij ¼ ajrrdij þ bjji þ cjij þ b0�ijkfk þ k1�ijkEk;

r ¼ k0err þ n0u;
pi ¼ a0fi þ b0�rsijrs þ k2Ei;

Dk ¼ �k1�jikjij � k2fk þ kHEk;

Bk ¼ mHHk;

ð63Þ



C. Gales� / International Journal of Solids and Structures 48 (2011) 2755–2763 2761
where k, l, k, k0, a, b, c, b0, k1, n0, a0, k2, kw, mw are constitutive coef-
ficients. The positiveness conditions (14) and (15) imply that

ð3kþ 2lþ kÞn0 > 3k2
0; 2lþ k > 0; k > 0;

3aþ bþ c > 0; cþ b > 0; c� b > 0;

n0 > 0; a0 > 0; kH > 0; mH > 0:

ð64Þ

It follows from (1), (2), (4) and (63) that the field equations of
the theory of homogeneous and isotropic bodies can be expressed
as

ðlþ kÞDui þ ðkþ lÞuj;ji þ k�ijkuk;j þ k0u;i þ q0fi ¼ q0€ui;

cDui þ ðaþ bÞuj;ji þ k�ijkuk;j � 2kui þ k1�ijkEk;j þ q0li ¼ q0I €ui;

ða0D� n0Þuþ k2Ei;i � k0uj;j þ q0l ¼ q0|0 €u;

�ijkEk;j ¼ �
1
c

_Bi;

�ijkBk;j ¼
mH

c
�k1�ijk _uj;k � k2 _u;i þ kH _Ei

	 

;

ð65Þ

where D is the Laplacian.
We consider a body occupying the entire three-dimensional

Euclidian space and assume that the body loads have the form

fi ¼ 0; li ¼ 0; q0l ¼ gðr; tÞ; ð66Þ

where r = jx � yj, y is a fixed point and g is a prescribed function. We
consider the initial conditions

uiðx;0Þ ¼ 0; _uiðx;0Þ ¼ 0; uiðx; 0Þ ¼ 0; _uiðx;0Þ ¼ 0;

uðx;0Þ ¼ 0; _uðx;0Þ ¼ 0; Eiðx;0Þ ¼ 0; Biðx;0Þ ¼ 0; x 2 R3;

ð67Þ

and the following conditions at infinity

ui ! 0; ui;j ! 0; ui ! 0; ui;j ! 0;

u! 0; u;i ! 0; Ei ! 0; Bi ! 0 for r !1:
ð68Þ

We seek the solution in the form

ui ¼ U;i; ui ¼ 0; u ¼ !ðr; tÞ; Ei ¼ �w;i; Bi ¼ 0; ð69Þ

where U, ! and w are unknown functions that depend only on the
variables r and t.

Clearly, the field equation (65) are satisfied if the functions U, !
and w satisfy the equations

ðkþ 2lÞDU þ k0! ¼ q0
€U;

ða0D� n0Þ!� k2Dw� k0DU þ g ¼ q0|0
€!;

k2!þ kHw ¼ 0:

ð70Þ

Introducing the notations

c2
1 ¼

kþ 2l
q0

; c2
2 ¼

a0 þ
k2

2
kH

q0|0
; b� ¼ n0

a0 þ
k2

2
kH

;

a�1 ¼
k0

kþ 2l ; a�2 ¼
k0

a0 þ
k2

2
kH

; c� ¼ k2

kH
;

ð71Þ

then Eq. (70) may be written in the form

D� 1
c2

1

@2

@t2

 !
U þ a�1! ¼ 0;

D� b� � 1
c2

2

@2

@t2

 !
!� a�2DU ¼ � 1

q0|0c2
2

g

ð72Þ

and

w ¼ �c�!: ð73Þ
Let us define the operator X by

X ¼ D� 1
c2

1

@2

@t2

 !
D� b� � 1

c2
2

@2

@t2

 !
þ a�1a

�
2D: ð74Þ

Then it is easy to verify that if we take

U ¼ �a�1h; ! ¼ D� 1
c2

1

@2

@t2

 !
h; ð75Þ

where the function h satisfies the equation

Xh ¼ � 1
q0|0c2

2

g; ð76Þ

then U and ! satisfy (72). The initial conditions for the function h
are

@qh
@tq ðx;0Þ ¼ 0; q ¼ 0;1;2;3; x 2 R3: ð77Þ

These conditions imply the initial conditions (67).
If we denote by �f the Laplace transform with respect to t of the

function f, that is

�f ðx;pÞ ¼ L½f ðx; tÞ� ¼
Z 1

0
f ðx; tÞ expð�ptÞdt; ð78Þ

then from (75) and (76) we find that

U ¼ �a�1�h; ! ¼ D� p2

c2
1

� �
�h; ð79Þ

where �h satisfies the equation

D� p2

c2
1

� �
D� b� � p2

c2
2

� �
þ a�1a

�
2D

� �
�h ¼ � 1

q0|0c2
2

�g: ð80Þ

This equation may be written in the form

ðD� k2
1ÞðD� k2

2Þ�h ¼ �
1

q0|0c2
2

�g; ð81Þ

where

k2
1;2 ¼

1
2

C1p2 þ b� � a�1a
�
2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

2p4 þ 2 ðb� � a�1a�2ÞC1 �
2b�

c2
1

� �
p2 þ ðb� � a�1a�2Þ

2

s )
ð82Þ

and the constants C1, C2 are defined by

C1 ¼
1
c2

2

þ 1
c2

1

; C2 ¼
1
c2

2

� 1
c2

1

: ð83Þ

It is easy to verify that if the coupling coefficient k0 is vanishing (or
equivalently a�1 ¼ 0; a�2 ¼ 0), then we have k1 ¼ p

c1
and k2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b� þ p2

c2
2

r
.

Let us suppose that the functions �h1 and �h2 satisfy the equations

ðD� k2
1Þ�h1 ¼ �

1
q0|0c2

2

�g; ðD� k2
2Þ�h2 ¼ �

1
q0|0c2

2

�g: ð84Þ

Then, it is easy to find that the solution of Eq. (81) can be written in
the form

�h ¼ 1

k2
1 � k2

2

ð�h1 � �h2Þ: ð85Þ

Let us consider that the microstretch body force g has the form

g ¼ g�dðx� yÞHðtÞ; ð86Þ

where g⁄ is a given constant, d(�) is the Dirac delta and H is the
Heaviside unit step function, i.e. H(t) = 0 for t 6 0 and H(t) = 1 for
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t > 0. By using the conditions at infinity, from (84) and (86) we
obtain

�h1 ¼
C0

rp
expð�k1rÞ; �h2 ¼

C0

rp
expð�k2rÞ; ð87Þ

where

C0 ¼
g�

4pq0|0c2
2

: ð88Þ

Thus, the function �h has the form

�h ¼ C0

rpðk2
1 � k2

2Þ
expð�k1rÞ � expð�k2rÞ½ �; ð89Þ

and from (69), (73) and (79) we deduce the Laplace transform of the
unknowns functions ui, u, Ei, namely

�ui ¼
a�1C0xi

r2pðk2
1 � k2

2Þ
k1 þ

1
r

� �
expð�k1rÞ � k2 þ

1
r

� �
expð�k2rÞ

� �
;

�u ¼ C0

c2
1pðk2

1 � k2
2Þ

c2
1k2

1 � p2

r
expð�k1rÞ � c2

1k2
2 � p2

r
expð�k2rÞ

" #
;

Ei ¼ �
c�C0xi

r2c2
1pðk2

1 � k2
2Þ
ðc2

1k2
1 � p2Þ k1 þ

1
r

� �
expð�k1rÞ � ðc2

1k2
2

�
� p2Þ

k2 þ
1
r

� �
expð�k2rÞ

�
: ð90Þ

The calculation of the inverse transforms is very complicated
and the exact solution of the problem defined by (65)–(68) and
(86) is difficult to find. However, following similar arguments as
those used in thermoelasticity (see Hetnarski, 1961, 1964; Ies�an
and Scalia, 1996) we present an approximate solution which gives
a reliable description for small times. Thus, according to the initial
value theorem (see for example: Schiff, 1999, p. 88), if �f is the La-
place transform of the function f, then we have

lim
t!0

f ðtÞ ¼ lim
p!1

p�f ðpÞ

and so for large values of p correspond small values of t. This fact
allows the inversion of Laplace transforms for small times. Suppos-
ing that c1 – c2, then by developing in power series with respect to
1
p, we can write

k1 ¼
1
c1

pþ A1

2
1
p
þ O

1
p3

� �
; k2 ¼

1
c2

pþ A2

2
1
p
þ O

1
p3

� �
;

k1

pðk2
1 � k2

2Þ
¼ � 1

c1C2

1
p2 þ O

1
p4

� �
;

k2

pðk2
1 � k2

2Þ
¼ � 1

c2C2

1
p2 þ O

1
p4

� �
;

c2
1k2

1 � p2

pðk2
1 � k2

2Þ
¼ O

1
p3

� �
;

c2
1k2

2 � p2

pðk2
1 � k2

2Þ
¼ �c2

1
1
p
þ O

1
p3

� �
;

ðc2
1k2

1 � p2Þk1

pðk2
1 � k2

2Þ
¼ � A1

C2

1
p2 þ O

1
p4

� �
;

ðc2
1k2

2 � p2Þk2

pðk2
1 � k2

2Þ
¼ � c2

1

c2
�K

1
p2 þ O

1
p4

� �
;

ð91Þ

where

A1 ¼
a�1a�2
c1C2

; A2 ¼ b�c2 �
a�1a�2
c2C2

;

K ¼ c2
1c2

2
b� þ a�1a

�
2

C2
1

C2
2

� 2
c4

2C
2
2

 !" #
: ð92Þ
Moreover, from (91) we have

expð�k1rÞ	 exp �pr
c1

� �
exp �A1r

2p

� �
	 exp �pr

c1

� �
1�A1r

2p
þA2

1r2

8p2

" #
;

expð�k2rÞ	 exp �pr
c2

� �
exp �A2r

2p

� �
	 exp �pr

c2

� �
1�A2r

2p
þA2

2r2

8p2

" #
:

ð93Þ

If we use the relations
L�1½expð�pxÞ� ¼ dðt�xÞ;
L�1½p�1 expð�pxÞ� ¼Hðt�xÞ; L�1½p�2 expð�pxÞ� ¼ ðt�xÞHðt�xÞ;

ð94Þ
then from (90), (91) and (93) we find

ui¼
a�1C0xi

C2r2

1
c2

t� r
c2

� �
H t� r

c2

� �
� 1

c1
t� r

c1

� �
H t� r

c1

� �� �
;

u¼C0

r
H t� r

c2

� �
�A2r

2
t� r

c2

� �
H t� r

c2

� �� �
;

Ei¼�
c�C0xi

r2

1
c2

d t� r
c2

� �
þ 1

r
�A2r

2c2

� �
H t� r

c2

� �
þ K

c2
1

�A2

2
þA2

2r2

8c2

 !"

� t� r
c2

� �
H t� r

c2

� �
� A1

c2
1C2

t� r
c1

� �
H t� r

c1

� ��
:

ð95Þ
6. Concluding remarks

(i) Derived by Eringen (2004), the electromagnetic theory of
microstretch elasticity provides the mathematical apparatus
needed to describe the interaction between electromagnetic
fields and mechanical deformations of porous bodies such as
bones, ceramics, solids with microcracks and synthetic
materials with microreinforcements. In this paper we for-
mulated the initial boundary value problem for the linear
electromagnetic theory of microstretch elasticity and we
studied the problem of spatial behavior of solutions. We
got the domain of influence and an exponential decay esti-
mate inside the domain of influence. A direct consequence
is the uniqueness of solutions. Our result completes the
study given previously by Quintanilla (2008) for quasi-static
piezoelectricity.

(ii) In our investigation we considered the charge density to be
absent and moreover, in order to be consistent with the law
of conservation of charge, we assumed that there is no elec-
tric current Ji. However, the result continuous to hold if we
change the Ampère’s equation (2)2 with
�ijkHk;j ¼
1
c

_Di þ
1
c

Ji ð96Þ
and consider that the electric current satisfies the dissipation
inequality (see Eringen, 2004, the relation (5.5))
JiEi P 0: ð97Þ
The presence of the electric current Ji in (96) results in the relation
(36) which becomes
@

@r
Qðr; tÞ ¼ �1

2

Z
Sr

e�ct q0 _uiðtÞ _uiðtÞ þ Iij _uiðtÞ _ujðtÞ þ |0 _u2ðtÞ
� ��

þ2WðUðtÞÞ þ 2EðNðtÞÞ�da

� c
2

Z t

0

Z
Sr

e�cz q0 _uiðzÞ _uiðzÞ þ Iij _uiðzÞ _ujðzÞ
��

þ|0 _u2ðzÞ
�
þ 2WðUðzÞÞ þ 2EðNðzÞÞ

þ2
c

JiðzÞEiðzÞ
�

dadz: ð98Þ
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Clearly, in view of the (97) the first order differential inequalities
(41) and (42) remain valid and thus, the domain of influence and
the estimate inside the domain of influence are obtained.

(iii) In order to verify and validate our result, in Section 5 we
studied the problem of a concentrated microstretch body
force acting in a microstretch piezoelectric body that occupy
the entire three-dimensional Euclidean space. To solve the
problem, we adopted a semi-inverse method and we utilized
the properties of Laplace transform. Since the calculation of
inverse Laplace transforms is very complicated, we pre-
sented an approximate solution useful for small times.
Although we cannot apply directly the Theorem 1, since in
Section 5 the problem is formulated in the weak sense and
the Theorem 1 deals with classical solutions, it is clear from
(95) that even in this case we have a domain of influence.
The solution being expressed in terms of the Heaviside and
Dirac delta functions of t � r

c1
and t � r

c2
, it follows that the

whole activity vanishes for r P tmax{c1,c2}.
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