Hadamard products with power functions and multipliers of Hardy spaces

Thomas H. MacGregora and Michael P. Sternerb,*

a Indian Point Farm, Pemaquid, ME 04558, USA
b University of Montevallo, Montevallo, AL 35115, USA

Received 13 May 2002
Submitted by J.H. Shapiro

Abstract

We consider Hadamard products of power functions $P(z) = (1 - z)^{-b}$ with functions analytic in the open unit disk in the complex plane, and an integral representation is obtained when $0 < \Re b < 2$. Let $\mu_n = \int_{\Delta} \zeta^n d\mu(\zeta)$ where μ is a complex-valued measure on the closed unit disk $\bar{\Delta}$. Such sequences are shown to be multipliers of H^p for $1 \leq p \leq \infty$. Moreover, if the support of μ is contained in a finite set of Stolz angles with vertices on the unit circle, we prove that $\{\mu_n\}$ is a multiplier of H^p for every $p > 0$. When the support of μ is $[0, 1]$ we get the multiplier sequence $\int_0^1 t^n d\mu(t)$, which provides more concrete applications. We show that if the sequences $\{\mu_n\}$ and $\{\nu_n\}$ are related by an asymptotic expansion

$$\lim_{n \to \infty} \frac{\nu_n}{\mu_n} = \sum_{k=0}^{\infty} \frac{A_k}{n^k}$$

and μ_n is a multiplier of H^p into H^q, then so is ν_n. We ask whether $\{(n + 1)^{\beta}\}$ is a multiplier of H^p when β is a nonzero real number. It is clear that the question has an affirmative answer when $p = 2$. The answer is shown to be negative when $p = \infty$.

© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Hardy spaces; Multipliers; Hadamard product; Convolution

* Corresponding author.
E-mail addresses: pemaquid@lincoln.midcoast.com (T.H. MacGregor), sternerm@montevallo.edu (M.P. Sterner).
1. Introduction

Let $\Delta = \{ z \in \mathbb{C} : |z| < 1 \}$. If f and g are functions which are analytic in Δ and have the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$, then the Hadamard product of f and g is defined by

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n$$

for $z \in \Delta$.

We consider the Hadamard product of functions with the power function $P(z) = \frac{1}{(1 - z)^b}$, (2)

where $b \in \mathbb{C}$. Throughout powers and logarithms are the principal branches. Theorem 1 asserts that

$$(f * P)(z) = f(z) - \frac{1}{\pi} \sin(\pi b) \int_{0}^{1} \frac{f(z) - f(tz)}{t^{b/(1 - t)^b}} dt$$

(3)

for $0 < \text{Re} \, b < 2$. The derivation of (3) depends on transforming a certain contour integral on $\partial \Delta$ to an integral on $[0, 1]$. Equation (3) relates to a formula about hypergeometric functions.

Let \mathcal{F} and \mathcal{G} denote two families of functions analytic in Δ. A sequence $\{ \mu_n \}_{n=0}^{\infty}$ is called a multiplier of \mathcal{F} into \mathcal{G} provided that $g \in G$ whenever $f \in F$, where $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} \mu_n a_n z^n$. When $G = F$, $\{ \mu_n \}$ is called a multiplier of \mathcal{F}.

Our interest is in the Hardy spaces H^p and sequences given by the moments $\mu_n = \int_{\Delta} \zeta^n d\mu(\zeta)$, where μ is a complex-valued measure on $\bar{\Delta}$. Such sequences are shown to be multipliers of H^p for $1 \leq p < \infty$. If the support of μ is contained in a finite set of Stolz angles with vertices on $\partial \Delta$, then $\{ \mu_n \}$ is a multiplier of H^p for all $p > 0$. The key fact used to prove this result is the maximal theorem of Hardy and Littlewood. When the support of μ is $[0, 1]$ we get the multiplier sequence $\int_{0}^{1} t^n d\mu(t)$, which provides more concrete applications.

There is an extensive literature on multipliers between various families of analytic functions. Multipliers and Hardy spaces are discussed in [2, pp. 99–106] and references to the related literature are given in [2, p. 107].

We show that if the sequences $\{ \mu_n \}$ and $\{ \nu_n \}$ are related by an asymptotic expansion

$$\frac{\nu_n}{\mu_n} \approx \sum_{k=0}^{\infty} \frac{A_k}{n^k} (n \to \infty)$$

(4)

and μ_n is a multiplier of H^p into H^q, then so is ν_n. Also, the question is asked whether $\{(n+1)^\beta \}$ is a multiplier of H^p when β is a nonzero real number. It is easy to see that this question has an affirmative answer when $p = 2$. We show that the answer is negative when $p = \infty$. The argument depends upon using (3) with $b = 1 + i\beta$ and $f(z) = (1 - z)^{i\beta}$. It follows that if β is a nonzero real number, then the sequence $\{(n+1)^i\beta \}$ is not the moment sequence of a complex-valued measure on $\bar{\Delta}$.

2. Hadamard products with power functions

Theorem 1. Suppose that the function \(f : \Delta \to \mathbb{C} \) is analytic. Let \(P(z) = 1/(1-z)^b \), where \(b \in \mathbb{C} \), and let \(g = f * P \). If \(0 < \text{Re} b < 2 \) then

\[
g(z) = f(z) - \frac{1}{\pi} \sin(\pi b) \int_0^1 \frac{f(z) - f(tz)}{t^{1-b}(1-t)^b} \, dt \tag{5}
\]

for \(z \in \Delta \).

Proof. Let \(\alpha = \text{Re} \, b \) and \(\beta = \text{Im} \, b \). Since \(g(0) = f(0) \), (5) holds when \(z = 0 \). Henceforth assume that \(z \neq 0 \) and write \(z = \rho e^{i\phi} \), where \(0 < \rho < 1 \) and \(0 \leq \phi < 2\pi \). For \(0 \leq t < 1 \) let \(L(t) \) denote the closed line segment from \(tz \) to \(z \). Then \(f(z) - f(tz) = \int_{L(t)} f'(w) \, dw \) and thus \(|f(z) - f(tz)| \leq \sup_{|w| \leq \rho} |f'(w)|(1-t) \). Hence

\[
\left| \frac{f(z) - f(tz)}{t^{1-b}(1-t)^b} \right| \leq \sup_{|w| \leq \rho} |f'(w)| t^{\alpha-1} (1-t)^{1-\alpha}.
\]

The assumption \(0 < \alpha < 2 \) implies that \(\int_0^1 t^{\alpha-1} (1-t)^{1-\alpha} \, dt \) exists. Therefore the integral in (5) exists.

To prove (5), first assume that \(f \) is analytic in \(\bar{\Delta} \). Then

\[
g(z) = \frac{1}{2\pi i} \int_{|w|=1} \frac{f(e^{i\theta})P(z e^{-i\theta})}{w} \, d\theta,
\]

which can be written

\[
g(z) = \frac{1}{2\pi i} \int_{|w|=1} F(w) \, dw, \tag{6}
\]

where

\[
F(w) = \frac{f(w)}{w(1-z/w)^b}. \tag{7}
\]

The function \(w \mapsto (1-z/w)^b \) is analytic and nonzero in \(\mathbb{C} \setminus L(0) \) and hence \(F \) is analytic in \(\bar{\Delta} \setminus L(0) \). Therefore \(\int_{|w|=1} F(w) \, dw = \int_{C} F(w) \, dw \) for any closed curve \(C \) in \(\bar{\Delta} \setminus L(0) \) which is homologous to \(\partial \Delta \). In particular, we may let \(C = C_1 + C_2 + C_3 + C_4 \), where \(C_1 \) and \(C_3 \) are arcs of circles and \(C_2 \) and \(C_4 \) are line segments described in Fig. 1. We require that \(0 < \delta < \min\{1-\rho, \rho\}, 0 < \epsilon < \rho - \delta, C_2 \) and \(C_4 \) are parallel to \(L(0) \), and both \(C_2 \) and \(C_4 \) have the distance \(\eta \) from \(L(0) \), where \(0 < \eta < \min\{\epsilon, \delta\} \).

We note that \(F \) extends continuously at each interior point of \(L(0) \) with respect to approach from each side of \(L(0) \). By letting \(\eta \to 0 \) we see that \(\int_{C_1} F(w) \, dw \to \int_{\Gamma_1} F(w) \, dw \) and \(\int_{C_3} F(w) \, dw \to \int_{\Gamma_3} F(w) \, dw \), where \(\Gamma_1 \) is the circle \(w = \varepsilon e^{i\phi}, \phi \leq \theta \leq \phi + 2\pi \), and \(\Gamma_3 \) is the circle \(w = z + \delta e^{i\phi}, \phi - \pi \leq \theta \leq \phi + \pi \). Also, as \(\eta \to 0 \), \(\int_{C_2} F(w) \, dw \)}
and $\int_{C_4} F(w) \, dw$ tend to integrals along certain line segments on $L(0)$, which we denote by Γ_2 and Γ_4, respectively. Thus (6) yields

$$g(z) = \frac{1}{2\pi i} \sum_{k=1}^{4} I_k,$$ \hspace{1cm} (8)

where

$$I_k = \int_{C_k} F(w) \, dw.$$ \hspace{1cm} (9)

If $w \in \Gamma_1$ then

$$|(1-z/w)^b| = |1-z/w|^a \exp\left(-\beta \arg(1-z/w)\right) \geq \frac{(\rho - \epsilon)^a}{\epsilon^a} \exp(-|\beta|\pi).$$

Hence

$$|I_1| \leq 2\pi \exp(-|\beta|\pi) \frac{\epsilon^a}{(\rho - \epsilon)^a} \sup_{w \in \Gamma_1} |f(w)|.$$

Since $\alpha > 0$ this implies that

$$\lim_{\epsilon \to 0^+} I_1 = 0.$$ \hspace{1cm} (10)

By using appropriate limits of the power function on Γ_2 and Γ_4 we find I_2 and I_4 which yields

$$I_2 + I_4 = [e^{\theta \pi i} - e^{-\theta \pi i}] \int_{\epsilon}^{\rho - \delta} \frac{f(r e^{i\varphi})}{r^{1-b}(\rho - r)^b} \, dr.$$ \hspace{1cm} (11)

For $0 < r < \rho$ let $G(r) = f(r e^{i\varphi})/(r^{1-b}(\rho - r)^b)$. Then G is integrable on $[0, \rho - \delta]$ and thus

$$\lim_{\epsilon \to 0^+} \int_{\epsilon}^{\rho - \delta} G(r) \, dr = \int_{0}^{\rho - \delta} G(r) \, dr.$$ \hspace{1cm} (12)

Therefore (8), (10), and (11) imply that

$$g(z) = \frac{1}{\pi} \sin(\pi b) \int_{0}^{\rho - \delta} \frac{f(r e^{i\varphi})}{r^{1-b}(\rho - r)^b} \, dr + \frac{1}{2\pi i} I_3.$$ \hspace{1cm} (12)
By setting $\psi = \varphi - \theta$ and $s = \rho/\delta$ we obtain

$$I_3 = i \int_{-\pi}^{\pi} f \left(z + \frac{z}{s} e^{-i\psi} \right) (1 + se^{i\psi})^{b-1} d\psi. \quad (13)$$

For $-\pi \leq \psi \leq \pi$ and large positive s we have

$$|\left(1 + se^{i\psi} \right)^{b-1} - (se^{i\psi})^{b-1}| \leq |(se^{i\psi})^{b-1}| (2/s)|b - 1| \leq \frac{2e^{\beta|\pi|}|b - 1|}{s^{2-\alpha}}.$$

Hence (13) yields

$$\left| I_3 - i \int_{-\pi}^{\pi} f \left(z + \frac{z}{s} e^{-i\psi} \right) (se^{i\psi})^{b-1} d\psi \right| \leq 4\pi \sup_{w \in \Gamma} |f(w)| \left[\frac{e^{\beta|\pi|}|b - 1|}{s^{2-\alpha}} \right].$$

By letting $s \to \infty$ and noting that $\alpha < 2$, we get

$$\lim_{\delta \to 0^+} \left[I_3 + 2i \int_{-\pi}^{\pi} f(z + \delta e^{i(\varphi - \psi)}) \left(\frac{\rho e^{i\varphi}}{\delta} \right)^{b-1} d\psi - f(z) \right] = 0. \quad (14)$$

For small positive δ,

$$\left| \int_{-\pi}^{\pi} f(z + \delta e^{i(\varphi - \psi)}) \left(\frac{\rho e^{i\varphi}}{\delta} \right)^{b-1} d\psi - f(z) \right|$$

is bounded above by $4\pi |f'(z)| e^{\beta|\pi|} \rho^{\alpha-1} \delta^{2-\alpha}$, and this last expression tends to 0 as $\delta \to 0^+$. Also

$$\int_{-\pi}^{\pi} \left(\frac{\rho e^{i\varphi}}{\delta} \right)^{b-1} d\psi = \frac{2}{b-1} \left(\frac{\rho}{\delta} \right)^{b-1} \sin(\pi(b - 1)).$$

and thus (14) implies that

$$\lim_{\delta \to 0^+} \left[I_3 + 2i \int_{-\pi}^{\pi} f(z) \left(\frac{\rho e^{i\varphi}}{\delta} \right)^{b-1} \sin(\pi(b - 1)) d\psi \right] = 0. \quad (15)$$

Equations (12) and (15) yield

$$g(z) = \lim_{\delta \to 0^+} \left[\frac{1}{\pi} \sin(\pi b) \int_{0}^{\rho-\delta} \frac{f(r e^{i\varphi})}{r^{1-b}(\rho - r)^b} dr - \frac{1}{\pi} \left(\frac{\rho}{\delta} \right)^{b-1} \sin(\pi(b - 1)) f(z) \right]. \quad (16)$$

In particular, when $f \equiv 1$ (16) becomes

$$1 = \lim_{\delta \to 0^+} \left[\frac{1}{\pi} \sin(\pi b) \int_{0}^{\rho-\delta} \frac{dr}{r^{1-b}(\rho - r)^b} - \frac{1}{\pi} \left(\frac{\rho}{\delta} \right)^{b-1} \sin(\pi(b - 1)) \right]. \quad (17)$$
Using (17) we can rewrite (16) as
\[
g(z) = f(z) + \frac{1}{\pi} \sin(\pi b) \lim_{\delta \to 0^+} \int_0^{\rho - \delta} \frac{f(re^{i\theta}) - f(z)}{r^{1-b}(\rho - r)^b} \, dr.
\]
With the change of variable \(t = r/\rho \), this becomes
\[
g(z) = f(z) - \frac{1}{\pi} \sin(\pi b) \lim_{\delta \to 0^+} \int_0^{1-\delta/\rho} \frac{f(z) - f(tz)}{t^{1-b}(1-t)^b} \, dt.
\]
(18)

Since the integral
\[
\int_0^1 \frac{f(z) - f(tz)}{t^{1-b}(1-t)^b} \, dt
\]
exists, letting \(\delta \to 0^+ \) in (18) we obtain (5). This completes the proof for \(f \) analytic in \(\bar{\Delta} \).

Now suppose that \(f \) is analytic in \(\Delta \). For \(0 < r < 1 \) let \(f_r(z) = f(rz) \). Then \((f_r * P)(z) = g(rz) \). If we apply (5) to \(f_r \) we obtain
\[
g(rz) = f(rz) - \frac{1}{\pi} \sin(\pi b) \int_0^{1-\delta/\rho} \frac{f(z) - f(tz)}{t^{1-b}(1-t)^b} \, dt.
\]
(19)

A simple argument using the Lebesgue dominated convergence theorem allows us to let \(r \to 1^- \) in (19), which yields (5). ✷

Equation (5) relates to a formula about the hypergeometric function \(F(a, b, c; z) \) when \(a = 1 \) and \(c = 2 \). By definition,
\[
F(1, b, 2; z) = 1 + \sum_{n=1}^{\infty} \frac{b(b+1) \cdots (b+n-1)}{(n+1)!} z^n
\]
(20)

for \(z \in \Delta \). If \(0 < \Re b < 2 \), then [5, p. 159]
\[
F(1, b, 2; z) = \frac{1}{\Gamma(b) \Gamma(2-b)} \int_0^1 \frac{t^{b-1}(1-t)^{1-b}}{1-tz} \, dt,
\]
(21)

where \(\Gamma \) denotes the Gamma function.

If we let \(f(z) = 1/(1-z) \) then \(f * P = P \), and (5) implies that
\[
\int_0^1 \frac{t^{b-1}(1-t)^{1-b}}{1-tz} \, dt = \frac{\pi}{\sin(\pi b)} \left[\frac{1}{z} \left(1 - \frac{1}{(1-z)^{b-1}} \right) \right]
\]
(22)

for \(z \in \Delta \) and \(0 < \Re b < 2 \). By expressing the right side of (22) as a power series and using the relation \(\Gamma(b) \Gamma(2-b) = (1-b)\pi/\sin(\pi b) \), we find that (22) and (21) are equivalent. In other words, the special case of (5) where \(f(z) = 1/(1-z) \) gives a formula equivalent to (21). Also, beginning with (21) it is possible to provide another derivation of (5).
3. Multipliers of Hardy spaces

Theorem 2. Suppose that μ is a complex-valued measure on $\tilde{\Delta}$, and for each nonnegative integer n let

$$\mu_n = \int_{\tilde{\Delta}} \zeta^n d\mu(\zeta).$$

(23)

Then $\{\mu_n\}$ is a multiplier of H^p for $1 \leq p \leq \infty$.

Proof. Suppose that f is analytic in Δ and let $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Suppose $\{\mu_n\}$ is defined by (23) and let $g(z) = \sum_{n=0}^{\infty} \mu_n a_n z^n$ for $z \in \Delta$. Since $\{\mu_n\}$ is bounded, g is analytic in Δ.

We have

$$g(z) = \sum_{n=0}^{\infty} \left(\int_{\tilde{\Delta}} \zeta^n d\mu(\zeta) \right) a_n z^n = \int_{\tilde{\Delta}} \left(\sum_{n=0}^{\infty} a_n \zeta^n z^n \right) d\mu(\zeta),$$

that is,

$$g(z) = \int_{\tilde{\Delta}} f(\zeta z) d\mu(\zeta)$$

(24)

for $z \in \Delta$. If f is bounded then (24) implies $|g(z)| \leq \|f\|_{H^\infty} \|\mu\| < \infty$. Hence g is bounded. This proves the theorem in the case $p = \infty$.

Now suppose that $1 \leq p < \infty$ and $f \in H^p$. The continuous form of Minkowski’s inequality applied to (24) gives

$$\left[\frac{1}{2\pi} \int_{-\pi}^{\pi} |g(re^{i\theta})|^p d\theta \right]^{1/p} \leq \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(\zeta r e^{i\theta})|^p d\theta \right]^{1/p} d|\mu|(\zeta)$$

(25)

for $0 < r < 1$. Periodicity implies that

$$\int_{-\pi}^{\pi} |f(\zeta r e^{i\theta})|^p d\theta = \int_{-\pi}^{\pi} |f(|\zeta| r e^{i\theta})|^p d\theta \leq 2\pi \|f\|_{H^p}^p.$$

Hence (25) yields

$$\left[\frac{1}{2\pi} \int_{-\pi}^{\pi} |g(re^{i\theta})|^p d\theta \right]^{1/p} \leq \|f\|_{H^p} \|\mu\| < \infty.$$

Thus $g \in H^p$. Therefore $\{\mu_n\}$ is a multiplier of H^p. \square

Theorem 3. Suppose that μ is a complex-valued measure on $\tilde{\Delta}$ with support Λ, and that Λ contains at most a finite number of points on $\partial\Delta$ and they can only be approached nontangentially by points in Λ. Then sequence (23) is a multiplier of H^p for $0 < p \leq \infty$.
Proof. Let \(g \) be defined as in the proof of Theorem 2. If \(\Lambda \cap \partial \Delta = \emptyset \) it follows from (24) that \(g \) is analytic in \(\Delta \). Hence \(g \in H^\infty \).

Now suppose that \(\Lambda \cap \partial \Delta \neq \emptyset \). For \(\sigma = 1, 0 < \gamma < \pi \), and \(0 < r < 1 \), let \(S(\sigma, \gamma, r) = \{ w = re^{i\theta}: r \leq \rho \leq 1 \text{ and } |\arg(w - \sigma)| \leq \gamma/2 \} \). There exist a positive integer \(k \), points \(\sigma_j (j = 1, 2, \ldots, k) \) on \(\partial \Delta \), and \(0 < r_0 < 1 \) such that \(\Lambda \subseteq \{ z: |z| < r_0 \} \bigcup_{j=1}^{k} S(\sigma_j, \gamma_j, r_0) \) for suitable \(\gamma_j \). By letting \(\gamma = \max\{\gamma_j: 1 \leq j \leq k\} \) and choosing \(r_0 \) larger if necessary, we may assume that \(\gamma_j = \gamma \) and that the sets \(S_j = S(\sigma_j, \gamma_j, r_0) \) are pairwise disjoint. Suppose that \(0 < p < \infty \) and \(f \in H^p \). From (24) we can write

\[
g = g_1 + g_2. \tag{26}
\]

where

\[
g_1(z) = \int_{|\zeta| \leq r_0} f(\zeta z) d\mu(\zeta) \tag{27}
\]

and

\[
g_2(z) = \sum_{j=1}^{k} \int_{S_j} f(\zeta z) d\mu(\zeta) \tag{28}
\]

for \(z \in \Delta \). Then \(g_1 \) is analytic in \(\Delta \) and hence \(g_1 \in H^\infty \). Also,

\[
|g_2(z)| \leq \left\{ \sum_{j=1}^{k} \sup_{\zeta \in S_j} |f(\zeta z)| \right\} \|\mu\|. \tag{29}
\]

There is a constant \(A > 0 \) depending only on \(p \) and \(k \) such that \((c_1 + c_2 + \cdots + c_k)^p \leq A(c_1^p + c_2^p + \cdots + c_k^p)\) for \(c_j \geq 0 (j = 1, 2, \ldots, k) \). Hence (29) implies that

\[
\int_{-\pi}^{\pi} |g_2(re^{i\theta})|^p d\theta \leq A\|\mu\|^p \sum_{j=1}^{k} \int_{-\pi}^{\pi} \left[\sup_{\zeta \in S_j} |f(\zeta re^{i\theta})| \right]^p d\theta \tag{30}
\]

for \(0 < r < 1 \). Let \(F(\theta) = \sup_{w \in S(e^{i\theta}, \gamma)} |f(w)| \) for \(-\pi \leq \theta \leq \pi \). Then (30) and periodicity yield

\[
\int_{-\pi}^{\pi} |g_2(re^{i\theta})|^p d\theta \leq Ak\|\mu\|^p \int_{-\pi}^{\pi} F^p(\theta) d\theta. \tag{31}
\]

The Hardy–Littlewood maximal theorem [3, p. 114] asserts that \(F \in L^p([-\pi, \pi]) \) and there is a constant \(B > 0 \) depending only on \(p \) such that

\[
\left[\frac{1}{2\pi} \int_{-\pi}^{\pi} F^p(\theta) d\theta \right]^{1/p} \leq B\|f\|_{H^p}.
\]

Hence (31) implies that
\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} |g_2(re^{i\theta})|^p d\theta \leq Ak\|\mu\|^p B^p \|f\|^p \|_{H^p} < \infty.
\]

Therefore \(g_2 \in H^p \).

Since \(g_1 \in H^\infty \) and \(g_2 \in H^p \), (26) yields \(g \in H^p \). Therefore \(\{\mu_n\} \) is a multiplier of \(H^p \). \(\Box \)

Corollary 1. If \(\mu \) is a complex-valued measure on \([0, 1] \) and \(\mu_n = \int_0^1 t^n d\mu(t) \), then \(\{\mu_n\}_{n=0}^\infty \) is a multiplier of \(H^p \) for \(0 < p \leq \infty \).

Suppose that \(0 < \Re b < 2 \) and let \(\mu_0 = 1 \) and \(\mu_n = b(b + 1) \ldots (b + n - 1)/(n + 1)! \) for \(n = 1, 2, \ldots \). From (20) and (21) we see that \(\mu_n = \int_0^1 t^n d\mu(t) \), where

\[
d\mu(t) = \frac{t^{b-1}(1-t)^{1-b}}{\Gamma(b) \Gamma(2-b)} dt.
\]

Corollary 1 implies that \(\{\mu_n\} \) is a multiplier of \(H^p \). In the case \(b = 1 \) this shows that \(\{1/(n + 1)\} \) is a multiplier of \(H^p \) and hence so is \(\{1/(n + 1)^k\} \) for each positive integer \(k \). Actually, the sequences \(\{1/(n + 1)^k\} \) are multipliers of \(H^p \) into \(H^q \) for suitable \(q > p \), but that information is not needed in the next theorem. Direct applications of Corollary 1 become interesting when \(d\mu(t) = F(t) dt \), \(F \in L^1([0, 1]) \), and \(F \) has a singularity at \(t = 1 \) which is stronger than the singularity given by \(t \mapsto 1/(1-t)^c \), where \(\Re c < 1 \). For example, when \(F(t) = (1-t)^{-1}(\log 2/(1-t))^{-b} \) and \(\Re b > 1 \), a multiplier of \(H^p \) is obtained which is asymptotic to \(A[\log(n+2)]^{1-b} \) as \(n \to \infty \), where \(A \) is a constant.

Theorem 4. Suppose that \(\{a_n\} \) and \(\{b_n\} \) are sequences such that \(a_n \neq 0 \) for any \(n \), and \(b_n/a_n \) has an asymptotic expansion

\[
\frac{b_n}{a_n} \approx \sum_{k=0}^{\infty} \frac{A_k}{n^k} \quad (n \to \infty).
\]

(a) If \(\sum_{n=0}^{\infty} a_n z^n \) defines a function in \(H^p \) then so does \(\sum_{n=0}^{\infty} b_n z^n \).

(b) If \(\{a_n\} \) is a multiplier of \(H^p \) into \(H^q \) then so is \(\{b_n\} \).

Proof. Let \(0 < p \leq \infty \) and assume that \(f \in H^p \), where \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) for \(z \in \Delta \). There is a positive constant \(A \) such that for each nonnegative integer \(n \),

\[
|a_n| \leq A(n+1)^{1/p-1}
\]

when \(0 < p < 1 \) and

\[
|a_n| \leq A
\]

when \(1 \leq p \leq \infty \) [2, p. 98]. If \(0 < p < 1 \) let \(m \) denote the smallest positive integer such that \(m > 1/p \) and if \(1 \leq p \leq \infty \) let \(m = 2 \). The expansion (32) implies an expansion

\[
\frac{b_n}{a_n} \approx \sum_{k=0}^{\infty} \frac{B_k}{(n+1)^k} \quad (n \to \infty).
\]
Hence there is a positive constant B such that
\[
\frac{b_n}{a_n} = \sum_{k=0}^{m-1} \frac{B_k}{(n+1)^k} + R_{m,n}
\]
(36)
and
\[
|R_{m,n}| \leq \frac{B}{(n+1)^m}
\]
(37)
for $n = 0, 1, 2, \ldots$. Let $g(z) = \sum_{n=0}^{\infty} b_n z^n$. Since f is analytic in Δ, and (35) implies that $|b_n| \leq C|a_n|$ for some positive constant C, g is also analytic in Δ. We have
\[
g = g_1 + g_2,
\]
(38)
where
\[
g_1(z) = \sum_{k=0}^{m-1} B_k \left(\sum_{n=0}^{\infty} \frac{a_n}{(n+1)^k} z^n \right)
\]
(39)
and
\[
g_2(z) = \sum_{n=0}^{\infty} a_n R_{m,n} z^n
\]
(40)
Since $\{1/(n+1)^k\}$ is a multiplier of H^p, the function defined by $\sum_{n=0}^{\infty} a_n z^n/(n+1)^k$ belongs to H^p for $k = 0, 1, 2, \ldots, m - 1$. Therefore $g_1 \in H^p$. If $0 < p < 1$ then (40), (33), and (37) yield $|g_2(z)| \leq AB \sum_{n=0}^{\infty} (n+1)^{-1/p-m-1}$. The last sum is finite because $1/p - m$. Hence g_2 is bounded. If $1 \leq p \leq \infty$ then (40), (34), and (37) yield $|g_2(z)| \leq AB \sum_{n=0}^{\infty} (n+1)^{-2} < \infty$. Again, g_2 is bounded. From $g_1 \in H^p$, $g_2 \in H^\infty$, and (38) we conclude that $g \in H^p$. This proves part (a) of the theorem.

To show part (b), assume that $\{a_n\}$ is a multiplier of H^p into H^q. Suppose that $f \in H^p$ and let $f(z) = \sum_{n=0}^{\infty} c_n z^n$. Choose positive numbers ϵ_n so that $\epsilon_n \neq \epsilon_n$ for any n, $\sum_{n=0}^{\infty} \epsilon_n < \infty$, and $\sum_{n=0}^{\infty} \epsilon_n |b_n| < \infty$. Let $\tilde{c}_n = c_n + \epsilon_n$ and let $f(z) = \sum_{n=0}^{\infty} \tilde{c}_n z^n$. Since $f \in H^p$ and $\sum_{n=0}^{\infty} \tilde{c}_n < \infty$ we have $f \in H^p$. Because $\{a_n\}$ is a multiplier of H^p into H^q, this implies that $\sum_{n=0}^{\infty} a_n \tilde{c}_n z^n$ defines a function in H^q. Note that $\tilde{c}_n \neq 0$ and $b_n \tilde{c}_n/(a_n \tilde{c}_n) = b_n/a_n$. Hence (32) shows that $b_n \tilde{c}_n/(a_n \tilde{c}_n)$ has such an asymptotic expansion. Applying the result in part (a) we find that $\sum_{n=0}^{\infty} b_n \tilde{c}_n z^n$ defines a function in H^q. Since $\sum_{n=0}^{\infty} b_n \tilde{c}_n z^n = \sum_{n=0}^{\infty} b_n c_n z^n + \sum_{n=0}^{\infty} b_n \epsilon_n z^n$ and $\sum_{n=0}^{\infty} |b_n| \epsilon_n < \infty$, this implies that $\sum_{n=0}^{\infty} b_n c_n z^n$ defines a function in H^q. Therefore $\{b_n\}$ is a multiplier of H^p into H^q. \[\square\]

4. Two conjectures

The following result was proved by Hardy and Littlewood in [4].

Theorem 5. If $p > 0$ and $0 < \alpha < 1/p$ then the sequence $\{\Gamma(n+1)/\Gamma(n+1+\alpha)\}$ is a multiplier of H^p into H^q, where $q = p/(1-\alpha p)$.
The asymptotic expansion of the Gamma function

\[\Gamma(z) \approx e^{-z} z^z \sqrt{\frac{2\pi}{z}} \sum_{k=0}^{\infty} A_k \frac{1}{z^k} \quad (z \to \infty), \]

where \(|\arg z| \leq \gamma < \pi\) yields the asymptotic expansion

\[\frac{1}{(n+1)\alpha} \frac{\Gamma(n+1+\alpha)}{\Gamma(n+1)} \approx \sum_{k=0}^{\infty} B_k \frac{1}{n^k} \quad (n \to \infty). \]

Hence (b) in Theorem 4 implies that the assertion in Theorem 5 holds when \(\{\Gamma(n+1)/\Gamma(n+1+\alpha)\}\) is replaced by the simpler sequence \(\{1/(n+1)^\alpha\}\).

Since \(\Gamma(z+1) = z\Gamma(z)\), we find that

\[\left(\frac{n+\gamma}{n}\right) = \frac{\Gamma(\gamma+n+1)}{\Gamma(\gamma+1)\Gamma(n+1)} \]

when \(\gamma\) is not a negative integer, and hence the asymptotic expansion of \(\Gamma\) yields an expansion

\[\frac{1}{(n+1)^\gamma} \left(\frac{n+\gamma}{n}\right) \approx \sum_{k=0}^{\infty} C_k \frac{1}{n^k} \quad (n \to \infty). \]

Suppose that \(0 < \Re b < 2\) and \(\{\mu_n\}\) is the sequence discussed after Corollary 1. Then

\[\mu_n = \frac{1}{n+1} \left(\frac{n+b-1}{n}\right) \]

and we obtain the expansion

\[\frac{1}{(n+1)^{2-b}} \cdot \frac{1}{\mu_n} \approx \sum_{k=0}^{\infty} D_k \frac{1}{n^k} \quad (n \to \infty). \]

Therefore \(\{1/(n+1)^{2-b}\}\) is a multiplier of \(H^p\). In other words, \(\{1/(n+1)^c\}\) is a multiplier of \(H^p\) if \(0 < \Re c < 2\). It is easy to see that this result implies that \(\{1/(n+1)^c\}\) is a multiplier of \(H^p\) for all \(c\), where \(\Re c > 0\). A consequence of this is that the assertions in Theorem 4 hold more generally, where (32) is replaced by the expansion

\[\frac{b_n}{a_n} \approx \sum_{k=0}^{\infty} \frac{A_k}{n^k} \quad (n \to \infty) \]

and \(\{c_k\}\) is any sequence of complex numbers such that \(\Re c_k > 0\) and \(\Re c_k \to \infty\) as \(k \to \infty\).

We ask whether \(\{1/(n+1)^c\}\) is a multiplier of \(H^p\) when \(\Re c = 0\). This question can be formulated as follows.

Conjecture 1. If \(\beta\) is a nonzero real number then \(\{(n+1)^\beta\}\) is a multiplier of \(H^p\) for \(0 < p < \infty\).
Conjecture 1 holds in the case $p = 2$ because the sequence $\{(n + 1)^{i\beta}\}$ is bounded and a function $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H^2$ if and only if $\sum_{n=0}^{\infty} |a_n|^2 < \infty$. In Section 5 we show that the assertion in Conjecture 1 is false when $p = \infty$.

Conjecture 2. If $p > 0$ and $0 < \alpha < 1/p$ then the sequence $\{1/(n + 1)^{i\beta}\}$ is a multiplier of H^p into H^q, where $q = p/(1-\alpha p)$ and $\alpha = \Re b$.

Conjecture 2 represents a generalization of Theorem 5 for complex values of α. Clearly, Conjecture 1 implies Conjecture 2. Conjecture 2 holds if $0 < p \leq 2$ and $1/p - 1/2 < \alpha < 1/p$ as a consequence of Theorem 5 and the fact that Conjecture 1 holds when $p = 2$. This also is implied by results of Duren in [1], where it is determined exactly when the assumption $\mu_n = O(n^{-\alpha})$ implies that μ_n is a multiplier of H^p into H^q and $q = p/(1-\alpha p)$. It can be shown that the assertion of Conjecture 2 holds if $q = p/(1-\alpha p)$ is replaced by $q < p/(1-\alpha p)$.

5. A counterexample in the case $p = \infty$

Theorem 6. If β is a nonzero real number then $\{(n + 1)^{i\beta}\}$ is not a multiplier of H^∞.

Proof. Suppose that β is a nonzero real number and $f \in H^\infty$. Let $P(z) = 1/(1 - z)^{1+i\beta}$ for $z \in \Delta$ and let $g = f* P$. We rewrite (5) as

$$g(z) = \frac{1}{\pi} \sin(\pi \beta) h(z) + \left[f(z) + \frac{1}{\pi} \sin(\pi \beta) \ell(z) \right], \quad (41)$$

where

$$h(z) = \int_0^1 \frac{f(z) - f(tz)}{(1-t)^{1+i\beta}} dt, \quad k(z) = \int_0^1 \frac{f(z) - f(tz)}{(1-t)^{i\beta}} \left(\frac{t}{1-t} \right)^{i\beta} dt, \quad (42)$$

and $\ell = k - h$. Since $|(1-t)^{-i\beta}| = 1$ and there is a constant $A > 0$ such that $|t^{i\beta} - 1| \leq A(1-t)$ for $0 < t < 1$, we see that $|\ell(z)| \leq 2A \|f\|_{H^\infty}$ for $|z| < 1$. Hence $\ell \in H^\infty$ and (41) shows that $g \in H^\infty$ if and only if $h \in H^\infty$.

Let $f(z) = (1 - z)^{i\beta}$ for $z \in \Delta$. Then $|f(z)| < \exp(|\beta|\pi/2)$ for $|z| < 1$ and hence $f \in H^\infty$. We will show that with this choice of f, the function h defined by (42) is unbounded and hence so is g. Let $\gamma = |\beta|$ and for each nonnegative integer n let

$$y_n = 1 - \exp\left(-\frac{n2\pi}{\gamma} \right). \quad (43)$$

Then $0 \leq y_n < 1$, so $\{y_n\}$ is increasing, and $y_n \to 1$. Note that $f(y_n) = 1$ for all n. Let the sequence $\{u_n\}^\infty_{n=0}$ be defined by

$$u_n = \frac{1}{2} \log u_n = \frac{n2\pi}{\gamma}. \quad (44)$$

Then $u_n > 0$, so $\{u_n\}$ is increasing, and $u_n \to \infty$.

The change of variable $x = \log 1/(1 - t)$ used in (42) yields
\[
h(z) = \int_0^\infty [f(z) - f((1 - e^{-x})z)]e^{i\beta x} \, dx.
\] (45)

Hence $h(y_n) = \int_0^\infty [1 - f((1 - e^{-x})y_n)]e^{i\beta x} \, dx$. This can be expressed as
\[
h(y_n) = I_n + J_n + K_n,
\] (46)
where
\[
I_n = \int_0^{u_n} [f(1 - e^{-x}) - f((1 - e^{-x})y_n)]e^{i\beta x} \, dx,
\] (47)
\[
J_n = \int_0^{u_n} [1 - f(1 - e^{-x})]e^{i\beta x} \, dx,
\] (48)
and
\[
K_n = \int_{u_n}^\infty [1 - f((1 - e^{-x})y_n)]e^{i\beta x} \, dx.
\] (49)

Suppose that $0 \leq x \leq u_n$. Then (44) yields $(e^x - 1)e^{-n2\pi/\gamma} \leq e^u - e^{-n2\pi/\gamma} = 1/\sqrt{u_n}$. For w sufficiently small, $|1 - (1 + w)^{i\beta}| \leq 2\gamma |w|$. Hence, from (43) and the fact that $u_n \to \infty$ we obtain
\[
|f(1 - e^{-x}) - f((1 - e^{-x})y_n)| = |1 - [1 + e^{-n2\pi/\gamma (e^x - 1)]^{i\beta}}| \leq 2\gamma e^{-n2\pi/\gamma}
\]
for n sufficiently large. Thus $|I_n| \leq \int_0^{u_n} 2\gamma e^{-n2\pi/\gamma} \, dx \leq 2\gamma e^{u_n - n2\pi/\gamma}$. Therefore
\[
|I_n| \leq \frac{2\gamma}{\sqrt{u_n}}
\]
(50)
for all large n. Since $|1 - f(1 - e^{-x})]e^{i\beta x} = e^{i\beta x} - 1$,
\[
J_n = \frac{e^{i\beta u_n}}{i\beta} - \frac{1}{i\beta} = u_n.
\]

Therefore
\[
|J_n| \geq u_n - \frac{2\gamma}{\sqrt{u_n}}.
\]
(51)

Note that $|f'(z)| \leq B/(1 - |z|)$ for some positive constant B, and hence
\[
|f(z_2) - f(z_1)| \leq \frac{B|z_2 - z_1|}{1 - r},
\]
(52)
where $r = \max(|z_1|, |z_2|)$, and $z_1, z_2 \in \Delta$. From (49), $f(y_n) = 1$, and (52) we obtain
\[
|K_n| \leq \int_{u_n}^\infty \frac{B}{1 - y_n} |y_n - (1 - e^{-x})y_n| \, dx \leq \frac{B}{1 - y_n} \int_{u_n}^\infty e^{-x} \, dx = \frac{Be^{-u_n}}{1 - y_n}.
\]
Hence (43) and (44) yield
\[|K_n| \leq B \sqrt{u_n}. \]

Equations (46), (50), (51), and (53) and the fact that \(u_n \to \infty \) imply that \(|h(y_n)| \to \infty \). Therefore \(h \) is unbounded. This completes the proof that \(g \) is unbounded.

Because \(g \) is unbounded, the sequence of Taylor coefficients of \(P \) is not a multiplier of \(H^\infty \). If \(P(z) = \sum_{n=0}^{\infty} p_n z^n \) then \(p_n = \binom{n+i\beta}{n} \), and hence from earlier remarks about the gamma function we find that there is an asymptotic expansion
\[\frac{p_n}{(n+1)^{i\beta}} \approx \sum_{k=0}^{\infty} \frac{A_k}{n^k} \text{ as } n \to \infty. \]

Since \(\{p_n\} \) is not a multiplier of \(H^\infty \), Theorem 4 implies that \(\{(n+1)^{i\beta}\} \) is not a multiplier of \(H^\infty \).

A consequence of Theorems 2 and 6 is the following assertion: If \(\beta \) is a nonzero real number, then there is no complex-valued measure \(\mu \) on \(\Delta \) such that \(\int_{\Delta} \zeta^n d\mu(\zeta) = (n+1)^{i\beta} \) for \(n = 0, 1, 2, \ldots \). This is also a consequence of the fact that if \(f(z) = \int_{\Delta} (1/(1-\zeta z)) d\mu(\zeta) \) for \(z \in \Delta \) and \(\mu \) is a complex-valued measure on \(\Delta \), then the curve \(w = (1-t)f(t) \), \(0 \leq t < 1 \), is rectifiable.

References