
PVS Embedding of cCSP Semantic Models

and Their Relationship

Shamim H Ripon1

Department of Computing Science, University of Glasgow, Glasgow, Scotland

Michael J Butler2

School of Electronics and Computer Science, University of Southampton, Southampton, UK

Abstract

This paper demonstrates an embedding of the semantic models of the cCSP process algebra in the general
purpose theorem prover PVS. cCSP is a language designed to model long-running business transactions
with constructs for orchestration of compensations. The cCSP process algebra terms are defined in PVS by
using mutually recursive datatype. The trace and the operational semantics of the algebra are embedded
in PVS. We show how these semantic embeddings are used to define and prove a relationship between the
semantic models by using the powerful induction mechanism of PVS.

Keywords: Compensating CSP, semantic models, embedding, induction, PVS.

1 Introduction

Compensating CSP (cCSP) [5] is a language designed to model long-running busi-

ness transactions within the framework of standard CSP process algebra [13]. Busi-

ness transactions typically involve multiple partners coordinating and interacting

with each other. Compensation is defined in [11] as an action taken to recover from

error in business transactions, particularly, in long-running transactions. cCSP pro-

vides constructs for orchestration of compensations to model business transactions.

A formal semantics offers a complete, and rigorous definition of a language.

Operational and denotational semantics are two well-known methods of assigning

meaning to languages and both semantics are useful for a full description of a

language. Traces are one of the ways to define denotational semantics. A trace

1 Email: shamim@dcs.gla.ac.uk
2 Email: mjb@ecs.soton.ac.uk

Electronic Notes in Theoretical Computer Science 250 (2009) 103–118

1571-0661 Crown Copyright © 2009 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.08.020
Open access under CC BY-NC-ND license.

mailto:shamim@dcs.gla.ac.uk
mailto:mjb@ecs.soton.ac.uk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

gives the global picture of the behaviour of a system. The trace semantics of cCSP

is defined in [5]. Operational semantics describes the behaviour of programs in

terms of the transitions between program states, or configurations. The operational

semantics of cCSP is defined in [6] by using labelled transition systems [17]. Both

semantics have valuable applications and a key question is “How are they related?”.

A relationship between the semantic models has been defined, and proved, where the

proofs have been carried out completely by hand [20]. In this paper, we investigate

how a theorem prover can support the mechanical verification of those hand proofs.

Proof by hand is a difficult and tedious task to manage a large number of steps.

Subtle mistakes, or omissions can easily occur at any stage of such proofs. A

tool that allows mechanising the semantic models, and supports mechanically prov-

ing the relationship between the semantic models can overcome the problems in

the hand proofs. An interactive and automatic theorem prover that successfully

mechanise our proofs, demonstrates the correctness of our proofs, and a feasible

mechanisation allows us to follow the same mechanical proof technique to apply to

larger proofs. To address our problem, presently, there are several systems, such as,

PVS [14], HOL [10], Isabelle [16], and Coq [3], having a rich specification language

and automated support for decision procedures, and proof strategies to their logic.

PVS is an automated framework for specification and verification. PVS supports

high-order logic, allows abstract datatypes to model process terms, and has a strong

support for induction mechanism. PVS supports interactive proof checking, where

the user applies proof commands to simplify the goal to be proved, until it can

be proved automatically by its decision procedure. Several research, such as [4,8,9],

have been carried out in order to mechanise process algebras by using PVS, where an

ACP-style process algebra [2] has been mechanised in [4], and the trace semantics

of standard CSP has been mechanised in [8,9]. The cCSP semantic models are

closely related to that of standard CSP, and given the positive experience described

in [8,9], we have decided to use PVS in our experiments. Most of the existing works

in PVS are aimed at concrete applications, and very few of them are focused in the

theoretical issues, especially, process algebra terms and semantic models. To the

best of our knowledge, it is the first attempt to mechanise both the operational,

and the trace models of an algebra as well as their relationship in PVS.

After giving a brief overview of the cCSP language, we outline the definitions of

the traces, and the operational semantics. We briefly describe how a relationship is

defined between the two semantic models, and how they are proved by hand. We

then describe the embedding of cCSP in PVS. The process algebra terms are defined

by using a mutually recursive datatype. The traces are defined by following the

original semantic definitions. A recursive definition is given to define the operational

semantics that plays a vital role in the proofs. We define several supporting lemmas

and mechanise them to prove the relationship between the semantic models. The

lemmas are proved by applying induction and the proof steps follow similar level of

granularity as in the hand proofs.

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118104

2 Compensating CSP

The introduction of the cCSP language was inspired by the combination of two

ideas: transaction processing features, and process algebra. Like standard CSP,

processes in cCSP are modelled in terms of the atomic events they can engage in.

The language provides operators that support sequencing, choice, parallel compo-

sition of processes. In order to support failed transaction, compensation operators

are introduced. The processes are categorised into standard, and compensable pro-

cesses. A standard process does not have any compensation, but compensation is

part of a compensable process that is used to compensate a failed transaction. We

use notations, such as, P ,Q , .. to identify standard processes, and PP ,QQ , .. to

identify compensable processes. A subset of the original cCSP is considered in this

paper, which includes most of the operators. The cCSP syntax, considered in this

paper, is summarised in Fig. 1.

Standard Processes: Compensable Processes:

P ,Q ::= A (atomic event) PP ,QQ ::= P ÷ Q (compensation pair)
| P ;Q (sequential composition) | PP ;QQ

| P � Q (choice) | PP � QQ

| P ‖ Q (parallel composition) | PP ‖ QQ

| SKIP (normal termination) | SKIPP

| THROW (throw an interrupt) | THROWW

| YIELD (yield to an interrupt) | YIELDD

| P � Q (interrupt handler)
| [PP] (transaction block)

Fig. 1. cCSP syntax

The basic unit of the standard processes is an atomic event (A). The other op-

erators are the sequential (P ; Q), and the parallel composition (P ‖ Q), the choice

operator (P � Q), the interrupt handler (P � Q), the empty process SKIP , raising

an interrupt THROW , and yielding an interrupt YIELD . A process that is ready to

terminate is also willing to yield to an interrupt. In a parallel composition, throwing

an interrupt by one process synchronises with yielding in another process. Yield

points are inserted in a process through YIELD . For example, (P ; YIELD ; Q),

is willing to yield to an interrupt in between the execution of P , and Q . The basic

way of constructing a compensable process is through a compensation pair (P÷Q),

which is constructed from two standard processes, where P is called the forward

behaviour that executes during normal execution, and Q is called the associated

compensation that is designed to compensate the effect of P when needed. The

sequential composition of compensable processes is defined in such a way that the

compensations of the completed tasks will be accumulated in reverse to the order

of their original composition, whereas compensations from the compensable parallel

processes will be placed in parallel. In this paper, we define only the asynchronous

composition of processes, where processes interleave with each other during normal

execution, and synchronise during termination. By enclosing a compensable process

PP inside a transaction block [PP], we get a complete transaction and the trans-

action block itself is a standard process. Successful completion of PP represents

successful completion of the block. But, when the forward behaviour of PP throws

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118 105

an interrupt, the compensations are executed inside the block, and the interrupt is

not observable from outside of the block. SKIPP ,THROWW , and YIELDD are

the compensable counterpart of the corresponding standard processes and they are

defined as follows:

SKIPP = SKIP ÷ SKIP , YIELDD = YIELD ÷ SKIP

THROWW = THROW ÷ SKIP

2.1 Trace Semantics

A trace records the history of behaviour of a process up to some point. In the cCSP

trace model, only completed traces are considered for which a process terminates.

This simplifies many definitions since the nature of a trace is indicated by its final

symbol. A trace is defined as a sequence of events (non-terminal) followed by a

terminal event, written as s〈ω〉, where s ∈ Σ∗, where Σ is the alphabet of non-

terminal events, and ω ∈ Ω, where Ω is the set of terminal events (Ω = {�, !, ?}).

So, a trace can be s〈�〉 (successful termination), or s〈 ! 〉 (terminates throwing an

interrupt), or s〈?〉 (yield to an interrupt). Processes denote non-empty sets of

such traces. For traces s and t , we write s.t as their concatenation. Operators

are first defined on traces and then lifted to sets of traces to define processes. A

compensable process has forward and compensation behaviour, and is modelled

as a pair of traces of the form (s〈ω〉, s ′〈ω′〉), where s〈ω〉 represents the forward

behaviour, and s ′〈ω′〉 represents the compensation. For processes P and PP , we

write T (P), and T (PP) respectively, to denote their traces. The trace semantics

of some cCSP operators are outlined in Fig. 2 (refer to [5] for details). If ω and

ω′ are terminal events from distinct parallel processes, the joint terminal event of

their parallel execution is denoted by ω & ω′ (Fig. 2). The synchronisation operator

is defined to be commutative and case analysis shows that it is associative.

Atomic Action: T (A) = {〈A, �〉},A ∈ Σ

Sequential Composition: p〈�〉 ; q = p.q, and p〈ω〉 ; q = p〈ω〉, where ω �= �

T (P ; Q) = {p ; q | p ∈ T (P) ∧ q ∈ T (Q)}

Parallel Composition:

ω ! ! ! ? ? �

p〈ω〉‖q〈ω′〉 = {r〈ω&ω′〉 | r ∈ (p ||| q)} where ω′ ! ? � ?��

T (P‖Q) = {r | r ∈ (p ‖ q) ∧ p ∈ T (P) ∧ q ∈ T (Q)} ω&ω′ ! ! ! ? ? �

Compensation Pair: p〈�〉 ÷ q = (p〈�〉, q) and p〈ω〉 ÷ q = (p〈ω〉, 〈�〉) where ω �= �

T (P ÷ Q) = {p ÷ q | p ∈ T (P) ∧ q ∈ T (Q)}

Transaction Block: [p〈!〉, p′] = p.p′ and [p〈�〉, p′] = p〈�〉

T ([PP]) = {[p, p′] | (p, p′) ∈ T (PP)}

Fig. 2. A part of cCSP trace semantics

If PP contains only yielding behaviour then [PP] would be empty. The following

healthiness conditions ensure that [PP] is non-empty by declaring that all processes

P and PP consist of some terminating, or interrupting behaviour:

– p〈�〉 ∈ T (P) or p〈 ! 〉 ∈ T (P), for some p

– (p〈�〉, p′) ∈ T (PP) or (p〈 ! 〉, p′) ∈ T (PP), for some p, p′

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118106

2.2 Operational Semantics

The operational semantics defines the transitions of process terms from one state to

another. Transition rules are defined for both standard and compensable processes.

For each process term, there are two types of transition rules: normal transition (by

a normal event), and terminal transition (by a terminal event). A normal transition

takes a process term from one state to its another state, and a terminal transition

causes the termination of a process term. The language terms are extended with

a null process (0) to denote the termination of a standard process. For example,

a normal event a makes the transition of process terms P and PP , to their re-

spective another state P ′ and PP ′, whereas a terminal event ω makes the standard

process terminate to a null process, and terminates the forward behaviour of the

compensable process leaving its compensation:

P
a

−→ P ′ (P ′ is a standard process) PP
a

−→ PP ′ (PP ′ is a compensable process)

P
ω

−→ 0 PP
ω

−→ P (P is the compensation)

Assuming a ∈ Σ, and ω ∈ Ω, the transition rules for some cCSP operators are

summarised in Fig. 3. For a detailed discussion please refer to [6].

Atomic action: A
A

−→ SKIP (A ∈ Σ)

Sequential composition:
P

a
−→ P ′

(P ; Q)
a

−→ (P ′ ; Q)

P
�
−→ 0 ∧ Q

α

−→ Q ′

(P ; Q)
α

−→ Q ′

(α ∈ Σ ∪ Ω)
P

ω

−→ 0

(P ; Q)
ω

−→ 0
(ω �= �)

Parallel composition:
P

a
−→ P ′

(P ‖ Q)
a

−→ (P ′ ‖ Q)

Q
a

−→ Q ′

(P ‖ Q)
a

−→ (P ‖ Q ′)

P
ω1
−→ 0 ∧ Q

ω2
−→ 0

(P ‖ Q)
ω1&ω2
−→ 0

(ω1, ω2 ∈ Ω)

Compensation Pair:
P

a
−→ P ′

(P ÷ Q)
a

−→ (P ′ ÷ Q)

P
�
−→ 0

(P ÷ Q)
�
−→ Q

P
ω

−→ 0

(P ÷ Q)
ω

−→ SKIP
(ω �= �)

Transaction Block:
PP

a
−→ PP ′

[PP]
a

−→ [PP ′]

PP
�
−→ P

[PP]
�
−→ 0

PP
!

−→ P ∧ P
α

−→ P ′

[PP]
α

−→ P ′

(α ∈ Σ ∪ Ω)

Fig. 3. A part of cCSP operational semantics

Note that there is no transition rule for a yield (?) in a transition block, because

a transaction block does not yield to an interrupt from outside. Yield by a sub-

process of PP will synchronise with the interrupt thrown by some other sub-process,

resulting the ! event, making yield within PP non-observable.

3 Relationship Between the Semantic Models

We have adopted a systematic approach to derive a relationship between the se-

mantic models. First, traces are extracted (derived trace) from the transition rules

of the operational semantics. Then, a correspondence is established between the

extracted traces with the originally defined traces.

The operational semantics leads to the lifted transition relation labelled by se-

quences of events. This is defined recursively. For a standard process P :

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118 107

P
〈ω〉
−→ Q = P

ω
−→ Q

P
〈a〉t
−→ Q = ∃P ′ · P

a
−→ P ′ ∧ P ′ t

−→ Q

For a standard process P , the derived trace, DT (P), is defined as follows:

Definition 3.1 For a standard trace t , t ∈ DT (P) = P
t

−→ 0

The derived trace t consists of a sequence of events followed by a terminal event.

For a compensable process PP , and its pair of traces t and t ′, we define that,

PP
(t ,t ′)
−→ 0 = ∃R · PP

t
−→ R ∧ R

t ′
−→ 0 (R is the attached compensation)

The derived traces of a compensable process is then defined as follows:

Definition 3.2 For traces t and t ′, (t , t ′) ∈ DT (PP) = PP
(t ,t ′)
−→ 0

We state the following theorem to show that the derived traces correspond to

the originally defined traces:

Theorem 3.3 For a standard process P, where P �= 0, DT (P) = T (P).

For a compensable process PP, where PP �= 0, DT (PP) = T (PP).

The theorem can be proved by using structural induction over process terms.

We outline here how we define some lemmas that support the proof of the structural

cases.

Traces are extracted for each term of the language and show their correspondence

with the original trace semantics. For standard processes, P and Q , for all the

operators, we show that,

t ∈ DT (P ⊗ Q) = t ∈ T (P ⊗ Q) (1)

For each such operator ⊗, the proof is performed by induction over traces, and it

is carried out by assuming that, DT (P) = T (P), and DT (Q) = T (Q). Similarly,

for compensable processes, PP and QQ , we show that,

(t , t ′) ∈ DT (PP ⊗ QQ) = (t , t ′) ∈ T (PP ⊗ QQ) (2)

Consider the sequential composition of processes P and Q . By using (1), the

relationship between the semantic models is derived by showing that,

t ∈ DT (P ; Q) = t ∈ T (P ; Q)

From Def. 3.1, we get the derived traces of the sequential composition,

t ∈ DT (P ; Q) = (P ; Q)
t

−→ 0

We also expand the definition of trace semantics as follows:

t ∈ T (P ;Q)

= ∃ p, q · t = (p ; q) ∧ p ∈ T (P) ∧ q ∈ T (Q) [Trace definition]

= ∃ p, q · t = (p ; q) ∧ p ∈ DT (P) ∧ q ∈ DT (Q) [Induction assumption]

= ∃ p, q · t = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0 [Derived trace definition]

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118108

Finally, from the above definitions of traces, the following lemma is formulated for

the sequential composition of standard processes:

Lemma 3.4 (P ; Q)
t

−→ 0 = ∃ p, q · t = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

The lemma is proved by applying induction over the trace t , where t = 〈ω〉 is

considered as the base case, and t = 〈a〉t is considered as the inductive case. In

order to support the inductive proof, two supporting equations are derived from

the transition rules, based on the types of events by which the transition rules are

defined:

(P ; Q)
ω

−→ 0 = P
�
−→ 0 ∧ Q

ω
−→ 0 ∨ P

ω
−→ 0 ∧ ω �= � (3)

(P ; Q)
a

−→ R = ∃P ′ · P
a

−→ P ′ ∧ R = (P ′ ; Q) ∨ P
�
−→ 0 ∧ Q

a
−→ R (4)

Following similar steps, the lemma for the parallel composition is defined as follows:

Lemma 3.5 (P ‖ Q)
t

−→ 0 = ∃ p, q · t ∈ (p ‖ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

For compensable processes, it is only required to derive traces for the forward

behaviour, and reuse the derived traces from the standard processes for the com-

pensations. For example, the lemma for the lifted forward behaviour of the parallel

composition of compensable processes is defined as follows:

Lemma 3.6 (PP ‖ QQ)
t

−→ R =

∃P ,Q , p, q · t ∈ (p ‖ q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖ Q)

Both the compensation pair, and the transaction block have special behaviour.

The compensable behaviour of a compensation pair (P ÷ Q), is defined by the

standard behaviour of P , and Q . On the other hand, the standard behaviour of

a transaction block [PP], is defined by the behaviour of the compensable process

PP . Lemmas for these two operators are defined as follows:

Lemma 3.7 (P ÷Q)
(t ,t ′)
−→ 0 = ∃ p, q · (t , t ′) = (p ÷ q) ∧ P

p
−→ 0 ∧ Q

q
−→ 0

Lemma 3.8 [PP]
t

−→ 0 = ∃ p, p′ · t = [p, p′] ∧ PP
p,p′

−→ 0

In this section, we have only outlined how the lemmas are defined, and how they

can be proved. A detailed discussion of the hand proofs of all the lemmas can be

found in [19,20].

4 PVS Mechanisation

A way to combine the strength of general purpose theorem provers with formal

notations is the semantic embedding of the formal notations within the logic of

the verification systems. An embedding is a semantic encoding of one specification

language into another, especially, to reuse the existing tools of the target language.

There are two main variants of semantic embedding: deep and shallow embed-

ding [18]. In a deep embedding, the language and the semantics of the method

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118 109

are fully formalised as an object in the logic of the specification language. On the

other hand, in a shallow embedding, there is a syntactic translation of the objects of

the method into semantically equivalent objects of the verification system. Shallow

embedding concentrates on the semantic embedding of the guest logic into the host

logic, and it is easy to set up. For our purpose, we use shallow embedding to define

cCSP in PVS.

4.1 cCSP Syntax

First, we define the process terms to define the cCSP syntax. Separate syntax

is used to define the standard, and the compensable processes. As PVS supports

overloading, same notations can be used for the operational and the trace semantics.

Fig. 4 summarises the PVS definition of cCSP syntax.

Standard Compensable

PVS PVS
cCSP (Operational) (Trace) cCSP (Operational) (Trace)

A act(a) act(a)

SKIP Skip SKIP SKIPP Skipp SKIPP

THROW Throw THROW THROWW Throww THROWW

YIELD Yield YIELD YIELDD Yieldd YIELDD

P � Q choice(P,Q) choice(P,Q) PP � QQ cchoice(PP,QQ) cchoice(PP,QQ)

P ; Q seq(P,Q) seq(P,Q) PP ; QQ cseq(PP,QQ) cseq(PP,QQ)

P ‖ Q para(P,Q) parallel(P,Q) PP ‖ QQ cpara(PP,QQ) parallel(PP,QQ)

P � Q P |> Q intr(P,Q) P ÷ Q cpair(P,Q) cpair(P,Q)

[PP] blk(PP) block(PP)

Fig. 4. cCSP syntax in PVS

4.2 Events, Traces and Processes

There are two types of events defined in cCSP: observable (normal), and termi-

nal. These two types are defined in PVS, and three terminal events are defined as

constants of terminal type as follows:

normal : TYPE

terminal: TYPE+

skip, yield, throw : terminal

The keyword TYPE+ indicates that terminal is a non-empty type, that allows to

define constants of that type.

The traces of cCSP are defined in PVS by following the original trace definition,

as a pair consisting of a list of normal event, and a terminal event. The definition

ensures that traces are non-empty (at least there is a terminal event when the list

is empty). Compensable traces are defined as pair of standard traces. Processes are

defined as a set of traces.

trace : TYPE = [list[normal],terminal]

comp_trace : TYPE = [trace, trace]

process : TYPE = setof[trace]

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118110

comp_process : TYPE = setof[comp_trace]

4.3 Process Algebra Terms

Proofs about properties of a process algebra often use induction on the structure of

the algebra, which is no exception in our case. PVS has a datatype called abstract

datatype, for which PVS generated an induction scheme, and it is convenient to

model process algebra terms as an abstract datatype. PVS provides mechanism to

define abstract datatype of certain class, which includes all of the tree-like recur-

sive data structure that are freely generated by a number of constructor operators

(detailed discussion in [15]).

cCSP has standard, and compensable process terms and importantly, these pro-

cess terms are mutually dependant on each other. We have already mentioned the

mutual dependency of the compensation pair, and the transaction block. Hence, to

model cCSP process terms we need a support to define mutually recursive datatype;

but, mutually recursive datatype is not directly admissible by PVS. However, PVS

has an extended support of sub-datatype [15,21], where it is possible to define two

mutually recursive datatypes as a single datatype. A sub-datatype collects together

groups of constructors of a datatype that form one part of a mutually recursive

datatype definition. Taking this facility, the cCSP process algebra terms with two

sub-datatypes are defined in Fig. 5.

pa_terms : DATATYPE WITH SUBTYPES stand, comp

BEGIN

Skip : skip? : stand

Throw : throw? : stand

Yield : yield? : stand

act(a:normal) : act? : stand

choice(P: stand, Q: stand) : choice? : stand

seq(P:stand, Q:stand) : seq? : stand

para(P:stand, Q:stand) : para? : stand

|>(P: stand, Q: stand) : inthnd? : stand

nul : nul? : stand

cseq(PP : comp, QQ : comp) : c_seq? : comp

cpara(PP : comp, QQ :comp) : c_para? : comp

cchoice(PP : comp, QQ : comp) : c_choice? : comp

cpair(P: stand, Q : stand) : cpair? : comp

blk(PP : comp) : blk? : stand

END pa_terms

Fig. 5. Process algebra terms in PVS

We define a single datatype pa_terms that consists of two sub-datatypes: ‘stand’

for standard processes, and ‘comp’ for compensable processes. We can now define

process terms of types ‘stand’ and ‘comp’. We define the additional process term

‘nul’ to denote the null (0) process that has been used in the definitions of the

operational semantics. The compensable basic processes can be defined by using

the already defined datatype.

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118 111

5 Mechanising the Trace Semantics

The trace semantics are defined in PVS in the same way as they are originally

defined. Operators are first defined at the trace level, and then lift to the sets

of traces to define the processes. The same approach is taken for both standard,

and compensable processes. Within the limited scope in this paper, we outline the

trace definitions of only a few operators. Other operators are defined by following

a similar approach.

For standard traces p and q , their sequential composition (p ; q), is defined in

such a way that if p ends with a �, the trace q will be augmented to the observable

behaviour of the trace p, and � will be hidden from the environment. When p ends

with a terminal event other than �, q is discarded. This definition is then lifted

to define the sequential composition of standard processes. The PVS definition is

given as follows:

seq(p,q : trace) : trace =

if PROJ_2(p) = tick THEN

(append(PROJ_1(p),PROJ_1(q)), PROJ_2(q))

ELSE p ENDIF

seq(P,Q:process):process = {t:trace|EXISTS (p:(P),q:(Q)):t=seq(p,q)}

PROJ_i represents the ith 3 element of a tuple. The parallel composition of processes

is defined as the interleaving of the observable events followed by the synchronisation

of the terminal events. The interleaving of observable events is defined as follows:

interleave(t1,t2,t:list[normal]): RECURSIVE bool =

CASES t OF

null: null?(t1) AND null?(t2),

cons(x,y): (cons?(t1) AND car(t1)= x AND interleave(cdr(t1),t2,y))

OR (cons?(t2) AND car(t2)= x AND interleave(t1,cdr(t2),y))

ENDCASES MEASURE length(t)

interleave(t1,t2,t) holds when t is a valid interleaving of t1 and t2. PVS allows

a restrictive form of recursive definition. Mutual recursion is not allowed, and the

function must be total. In order to ensure this, a MEASURE function is required, which

is defined to show that the definition terminates by generating an obligation that

MEASURE decreases with each call. MEASURE can range over nat (natural number),

or ordinals. Following the definition of interleaving, the synchronisation of terminal

event is defined as follows:

parallel(w:terminal)(w1,w2:terminal): bool =

IF w = throw THEN w1 = throw AND w2 = throw

OR w1 = throw AND w2 = yield OR w1 = throw AND w2 = tick

OR w1 = yield AND w2 = throw OR w1 = tick AND w2 = throw

ELSIF w = yield THEN w1 = yield AND w2 = yield

OR w1 = yield AND w2 = tick OR w1 = tick AND w2 = yield

3 the ith element of a tuple t can also be presented as t‘i.

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118112

ELSE w1 = tick AND w2 = tick

ENDIF

Finally, the parallel composition of traces is defined by combining the interleav-

ing of list of events, and the synchronisation of the terminal events as follows:

parallel(r:trace)(p,q: trace): bool =

interleave(proj_1(p),proj_1(q),proj_1(r))

AND parallel(proj_2(r))(proj_2(p),proj_2(q))

parallel(P,Q: process): process =

{t:trace | EXISTS (p:(P),q:(Q)): parallel(t)(p,q)}

Compensable processes are defined by following similar approach. For compens-

able processes, we need the additional definition for the compensations, and they are

same as that of standard processes. The order of installation of the compensations

depend on the operators. For example, compensations from the sequential compo-

sition are installed in reverse to their original order, whereas they are installed in

parallel for the parallel composition. We also define here the trace semantics for

both the compensation pair, and the transaction block as follows:

pair(p,q:trace): comp_trace =

IF p‘2 = tick THEN (p,q) ELSE (p,(null,tick)) ENDIF

pair(P,Q:process): comp_process =

{tt: comp_trace | EXISTS (p:(P),q:(Q)): tt = pair(p,q)}

block(pp:comp_trace) : trace =

IF (pp‘1)‘2 = throw THEN (append((pp‘1)‘1,(pp‘2)‘1),(pp‘2)‘2)

ELSE pp‘1 ENDIF

block(PP:comp_process): process =

{ t: trace | EXISTS (pp:(PP)): t = block(pp) }

6 Mechanising the Operational Semantics

The operational semantics is defined by using labelled transition systems of the form

P
e

−→ P ′, where the event e makes the transition of the process term from state P

to P ′. Two types of transitions are defined: normal, and terminal. Both transition

rules are defined by using a recursive boolean definition that determines whether

there is a transition from one state to another state. The definitions are given by

using the derived equations from the transition rules, which are used in the proofs of

the lemmas for the process terms (e.g., equation (3) and (4) are used for sequential

composition). The transition rules of some process terms depend on the transition

rules of both standard and compensable processes. To define these rules, we need

to combine the transition rules for both standard and compensable processes. For

normal transitions, this can be done easily. But, care has to be taken for terminal

transitions because the terminal transitions of the standard, and the compensable

processes are different. We have defined the ‘nul’ as a standard process, which has

allowed to combine the terminal transitions of both process terms. The terminal

transitions of a few process terms are shown in Fig. 6.

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118 113

wtrans(w: terminal)(P:pa_terms,P1:stand): RECURSIVE bool =

CASES P OF

..

seq(Q,R) : wtrans(tick)(Q,nul) AND wtrans(w)(R,nul)

OR w /= tick AND wtrans(w)(Q,nul),

para(Q,R) : EXISTS (w1,w2:terminal): wtrans(w1)(Q,nul)

AND wtrans(w2)(R,nul) AND parallel(w)(w1,w2),

cseq(QQ,RR) : EXISTS (Q,R : stand):

wtrans(tick)(QQ,Q) AND wtrans(w)(RR,R) AND P1 = seq(R,Q)

OR wtrans(w)(QQ,P1) AND w /= tick,

cpara(QQ,RR): EXISTS (w1,w2:terminal, Q,R:stand):

wtrans(w1)(QQ,Q) AND wtrans(w2)(RR,R) AND

parallel(w)(w1,w2) AND P1 = para(Q,R),

cpair(Q,R) : wtrans(tick)(Q,nul) AND P1 = R

OR wtrans(w)(Q,nul) AND w /= tick AND P1 = Skip,

blk(QQ) : (EXISTS (Q:stand): wtrans(throw)(QQ,Q) AND wtrans(w)(Q,nul))

OR (EXISTS (Q:stand): w = tick AND wtrans(w)(QQ,Q)),

..

ENDCASES

MEASURE P BY <<

Fig. 6. Terminal transitions in PVS

The normal transitions for both standard and compensable processes are also

defined together. A part of the definition is given in Fig. 7. The MEASURE keyword

ntrans(a:normal)(Pa: pa_terms, Pa1: pa_terms): RECURSIVE bool =

CASES Pa OF

..

seq(Q,R) : EXISTS (Q1:stand): ntrans(a)(Q,Q1) AND Pa1 = seq(Q1,R)

OR wtrans(tick)(Q,nul) AND ntrans(a)(R,Pa1),

para(Q,R) : EXISTS (Q1:stand): ntrans(a)(Q,Q1) AND Pa1 = para(Q1,R)

OR EXISTS (R1:stand): ntrans(a)(R,R1) AND Pa1 = para(Q,R1),

cseq(QQ,RR) : EXISTS (QQ1:comp): ntrans(a)(QQ,QQ1) AND Pa1 = cseq(QQ1,RR)

OR EXISTS (RR1:comp, Q:stand): wtrans (tick)(QQ,Q) AND

ntrans(a)(RR,RR1) AND Pa1 = ax(RR1,Q),

cpara(QQ,RR): EXISTS (QQ1:comp): ntrans(a)(QQ,QQ1) AND Pa1 = para(QQ1,RR)

OR EXISTS (RR1:comp): ntrans(a)(RR,RR1) AND Pa1 = para(QQ,RR1),

cpair(Q,R) : EXISTS (Q1:stand): ntrans(a)(Q,Q1) AND Pa1 = cpair(Q1,R),

blk(QQ) : EXISTS (QQ1:comp): ntrans(a)(QQ,QQ1) AND Pa1 = blk(QQ1)

OR EXISTS (Q:stand): wtrans(throw)(QQ,Q) AND ntrans(a)(Q,Pa1),

..

ENDCASES

MEASURE Pa BY <<

Fig. 7. Normal transitions in PVS

introduces the measure that is used to prove the well-foundedness of the recursion,

and thus termination of the function.

7 Mechanising the Semantic Relationship

Following the same steps as in the hand proofs, first a definition is given for the

derived traces. A derived trace is defined as a transition of a process term by a

trace, which consists of a transition by a sequence of observable events followed by

a terminal transition. The terminal transitions are already defined. The transition

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118114

by a sequence of observable events is defined by using the ‘ntrans’ recursively over

a list of normal events as follows:

trans_list(s:lits[normal])(P,P1:stand) : RECURSIVE bool =

CASES s OF

null : P = P1,

cons(h,tail):EXISTS(Q:stand):ntrans(h)(P,Q) AND trans_list(tail)(Q,P1)

ENDCASES MEASURE length(s)

The transition of a standard process term by a trace leads it to a null (0) process,

and it is defined in PVS as follows:

trans_trace(t:trace)(P,N:stand) : bool =

EXISTS (Q:stand):trans_list(t‘1)(P,Q) AND wtrans(t‘2)(Q,N) AND N = nul

A compensable process has both forward, and compensation behaviour. The

compensation behaviour is same as that of a standard process. We mentioned

earlier that it is only required to derive traces for the forward behaviour. Following

the same steps as shown earlier, the derived traces for compensable processes are

defined as follows:

ftrans_trace(t:trace)(PP:comp,P:stand) : bool =

EXISTS (QQ:comp): ctrans_list(t‘1)(PP,QQ) AND wtrans(t‘2)(QQ,P)

ctrans_trace(tt:comp_trace)(PP:comp, N:stand) : bool =

EXISTS (P:stand): ftrans_trace(tt‘1)(PP,P)

AND trans_trace(tt‘2)(P,N) AND N = nul

Here, ftrans_trace is the derived trace for the forward behaviour, and ctrans_list

is the compensable counterpart of trans_list.

By using the definitions of derived trace, we can now define the lemmas for the

operators shown in Sec. 3. Lemma 3.4 and 3.5 are defined as follows:

s,s1,s2 : VAR list[normal]

w,w1,w2 : VAR terminal

seq_lemma : LEMMA

trans_trace((s,w))(seq(P,Q),nul) =

EXISTS (s1,w1,s2,w2) : (s,w) = seq((s1,w1),(s2,w2)) AND

trans_trace((s1,w1))(P,nul) AND trans_trace((s2,w2))(Q,nul)

para_lema : LEMMA trans_trace((s,w))(para(P,Q),nul) =

EXISTS (s1,w1,s2,w2): parallel((s,w))((s1,w1),(s2,w2)) AND

trans_trace((s1,w1))(P,nul) AND trans_trace((s2,w2))(Q,nul)

In the lemmas, traces are defined explicitly as pairs that make it convenient to apply

induction. Induction is applied over s (induct "s"), where in the base case, s is

empty (i.e., t = 〈ω〉), and in the inductive case, it is a list constructed by adding an

element to s (i.e., t = 〈a〉t). The lemmas for the other operators are defined, and

proved in a similar way.

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118 115

For compensable processes, lemmas are defined only for the forward behaviour.

For example, Lemma 3.6 is defined in PVS as follows:

cpara_lemma : LEMMA

ftrans_trace((s,w))(cpara(PP,QQ),R) = EXISTS (P,Q,s1,s2,w1,w2) :

parallel((s,w))((s1,w1),(s2,w2)) AND ftrans_trace((s1,w1))(PP,P)

AND ftrans_trace((s2,w2))(QQ,Q) AND R = para(P,Q)

The lemmas for the compensation pair, and the transaction block are crucial

in our definitions, because they require mutual recursion of both standard, and

compensable processes. The proof of the Lemma 3.7 involves the proof of stan-

dard processes, and the proof of the Lemma 3.8 involves the proof of compensable

processes. These two lemmas are defined as follows:

pair_lema : LEMMA

ctrans_trace((s,w),(s3,w3))(cpair(P,Q),nul) =

EXISTS (s1,w1,s2,w2) : ((s,w),(s3,w3)) = pair((s1,w1),(s2,w2)) AND

trans_trace((s1,w1))(P,nul) AND trans_trace((s2,w2))(Q,nul)

block_lema : LEMMA

trans_trace((s,w))(blk(PP),nul) =

EXISTS (s1,w1,s2,w2):(s,w) = block((s1,w1),(s2,w2)) AND

ctrans_trace((s1,w1),(s2,w2))(PP,nul)

The inductive proofs of these two lemmas require a combined transition relation of

both standard, and compensable processes, and we get the required support from

the definitions of wtrans, and ntrans, where the transitions of both standard, and

compensable processes are defined together. The proofs also require some additional

rules that are derived from both traces, and transition rules. For brevity, we omit

the definitions of lemmas of the other process terms. However, they can be defined

by following the style presented in this paper. The detailed PVS proof steps and

the proof trees of the lemmas can be found in [19].

8 Conclusions and Future Work

We have outlined an approach to mechanise the cCSP semantic models, and proved

their relationship by using the automated theorem prover PVS. We have embedded

the semantic models in PVS by using its existing logics and theories. We have

defined the operators in terms of their semantic models, and laws of these operators

can be proved from these semantic definitions, which helped to avoid the approach

of directly encoding the laws as axioms, because it would introduce inconsistencies

in the logic. The inductive proofs have followed similar steps as the steps in the

hand proofs, and it has given us confidence in our language definitions. The general

philosophy behind the works in [1,7,12], and ours is similar, where the work is

aimed at providing an environment, where proofs about the algebra can be done

in a similar level of granularity as in the hand proofs. Although defining process

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118116

algebras in PVS is not new, our novel contribution is that we have not only defined

the syntax, and the two semantic models, but also proved a relationship between

the semantic models.

It is easy to be imprecise about recursion, and typing of the rules in the informal

proofs (by hand). The mechanisation has forced us to be strict about datatypes,

and recursion. This helped us to define the theorems, and the lemmas in a sys-

tematic way as well as to prove all the lemmas by following a similar fashion. The

mechanisation has helped us identifying some lemmas, which were not explored in

the hand proofs. The mechanisation also deepen our understanding of the semantic

models for both standard and compensable processes.

We have avoided describing the semantics, and the mechanisation of synchronous

composition of processes (P ‖X Q). A separate description is needed for its defini-

tions. We need to extend both the trace, and the operational semantics as well as

the process algebra terms to define synchronisation. In synchronous composition,

processes synchronise over a set of events (X), and interleave over other events. As

processes synchronise over both normal, and terminal events, the existing style of

separating the synchronisation of the terminal events from normal that of normal

events is not applicable. Synchronising processes may fail to synchronise, and it can

lead to deadlock. In such situation, instead of getting a complete behaviour, we can

get only a partial behaviour from the composition. To denote it, additional terminal

notation is required (e.g., ⊥). It is also required to update the trace properties to

reflect these changes. The definitions, and proofs of the semantic relationship be-

come relatively complex, and a mechanical verification is essential to handle it. By

extending the existing mechanisation, we can mechanise the semantic relationship

for the synchronisation. More details can be found in [19].

We have taken a subset of the original cCSP language in our experiment. It is

our future plan to extend the current experiments to include the other operators,

and define the semantic relationship for them. We are also investigating to model

business transactions in order to experiment the expressiveness of the language, and

to improve the language features.

Acknowledgement

Thanks to the referees for suggesting improvements in the presentation of the paper.

References

[1] Archer, M. and C. L. Heitmeyer, Human-style Theorem Proving Using PVS, in: E. L. Gunter and A. P.
Felty, editors, Theorem Proving in Higher Order Logics, 10th International Conference, TPHOLs’97,
LNCS 1275, 1997, pp. 33–48.

[2] Baeten, J. C. M. and W. P. Weijland, “Process Algebra,” Number 18 in Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, 1990.

[3] Barras, B., S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez, H. Herbelin, G. Huet,
C. Munoz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Saibi and B. Werner, The Coq proof assistant
reference manual : Version 6.1, Technical Report 0203, INRIA (1997).

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118 117

[4] Basten, T. and J. Hooman, Process Algebra in PVS, in: R. Cleaveland, editor, TACAS’99, LNCS 1579

(1999), pp. 270–284.

[5] Butler, M., T. Hoare and C. Ferreira, A trace semactics for long-running transaction, in: A. Abdallah,
C. Jones and J. Sanders, editors, Proceedings of 25 Years of CSP, LNCS 3525 (2004).

[6] Butler, M. and S. Ripon, Executable semantics for compensating CSP, in: M. Bravetti, L. Kloul and
G. Zavattaro, editors, WS-FM 2005, LNCS 3670 (2005), pp. 243–256.

[7] Camilleri, A. J., Mechanizing CSP trace theory in High Order Logic, IEEE Transactions on Software
Engineering 16 (1990), pp. 993–1004.

[8] Dutertre, B. and S. Schneider, Using a PVS embedding of CSP to verify authentication protocols, in:
E. L. Gunter and A. P. Felty, editors, Theorem Proving in Higher Order Logics, 10th International
Conference, TPHOLs’97, LNCS 1275 (1997), pp. 121–136.

[9] Evans, N. and S. A. Schneider, Verifying security protocols with PVS: widening the rank function
approach, Journal of Logic and Algebraic Programming 64 (2005), pp. 253–284.

[10] Gordon, M. and T. Melham, “Introduction to HOL: A Theorem Proving Environment for Higher Order
Logic,” Cambridge University Press, 1993.

[11] Gray, J. and A. Reuter, “Transaction Processing : Concepts and Techniques,” Morgan Kaufmann
Publishers, 1993.

[12] Groenboom, R., C. Hendriks, I. Polak, J. Terlouw and J. T. Udding, Algebraic Proof Assistants in
HOL, in: MPC ’95: Mathematics of Program Construction, LNCS 947 (1995), pp. 304–321.

[13] Hoare, C., “Communicating Sequential Process,” Prentice Hall, 1985.

[14] Owre, S., J. Rushby and N. Shankar, PVS: A Prototype Verification System, in: D. Kapur, editor, 11th
International Conference on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence
607 (1992), pp. 748–752.

[15] Owre, S. and N. Shanker, Abstract datatypes in PVS, Technical Report SRI-CSL-93-9R, Computer
Science Laboratory, SRI International, Menlo Park, CA (1993), extensively revised June 1997.

[16] Paulson, L., “Isabelle: A Generic Theorem Prover,” LNCS 828, Springer-Verlag, 1994.

[17] Plotkin, G. D., A structural approach to operational semantics., Technical Report DAIMI FN-19,
Aarhus University, Computer Science Department (1981).

[18] R. Boulton, A. Gordon, M.J.C. Gordon, J. Herbert and J. van Tassel, Experience with embedding
hardware description languages in HOL, in: Proc. of the International Conference on Theorem Provers
in Circuit Design: Theory, Practice and Experience (1993), pp. 129–156.

[19] Ripon, S., “Extending and Relating Semantic Models of Compensating CSP,” Ph.D. thesis, University
of Southampton (2008).

[20] Ripon, S. and M. Butler, Relating Semantic Models of Compensating CSP, Technical report, School of
Electronics and Computer Science, University of Southampton (2006).

[21] Shankar, N. and S. Owre, Principles and Pragmatics of Subtyping in PVS., in: D. Bert, C. Choppy
and P. D. Mosses, editors, Recent Trends in Algebraic Development Techniques, 14th International
Workshop, WADT ’99, LNCS 1827 (1999), pp. 37–52.

S.H. Ripon, M.J. Butler / Electronic Notes in Theoretical Computer Science 250 (2009) 103–118118

	Introduction
	Compensating CSP
	Trace Semantics
	Operational Semantics

	Relationship Between the Semantic Models
	PVS Mechanisation
	cCSP Syntax
	Events, Traces and Processes
	Process Algebra Terms

	Mechanising the Trace Semantics
	Mechanising the Operational Semantics
	Mechanising the Semantic Relationship
	Conclusions and Future Work
	References

