
Biochimica et Biophysica Acta 1832 (2013) 911–921

Contents lists available at SciVerse ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbad is
Review

Fibrosis of two: Epithelial cell-fibroblast interactions in
pulmonary fibrosis☆

Norihiko Sakai, a,b, Andrew M. Tager a,b,c,⁎
a Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
b Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
c Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
Abbreviations: IPF, idiopathic pulmonary fibrosis;
TGF-β, transforming growth factor; CTGF, connective ti
hedgehog; PGE2, prostaglandin E2; ROS, reactive oxy
peroxide
☆ This article is part of a Special Issue entitled: Fibrosi
to human disease.
⁎ Corresponding author at: Center for Immunology

Massachusetts General Hospital, 149 13th Street, Room
USA. Tel.: +1 617 724 7368; fax: +1 617 726 5651.

E-mail address: amtager@partners.org (A.M. Tager).

0925-4439/$ – see front matter © 2013 Elsevier B.V. All
http://dx.doi.org/10.1016/j.bbadis.2013.03.001
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 12 December 2012
Received in revised form 3 March 2013
Accepted 4 March 2013
Available online 14 March 2013

Keywords:
Pulmonary fibrosis
Epithelial cells
Apoptosis
Fibroblasts
Myofibroblasts
Extracellular matrix
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of
fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function.
IPF is now thought to result from wound-healing processes that, although initiated to protect the host
from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant
or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evi-
dence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and re-
sultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast
differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they
synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby
creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly
make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropri-
ate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the
progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these
cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor,
sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. This article is part of a Special
Issue entitled: Fibrosis: Translation of basic research to human disease.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Fibrosis characterizes many chronic diseases that result in end-
stage organ failure, and consequently is a major cause of morbidity
and mortality. The pathogenesis of fibrosis in many of these diseases
is thought to involve aberrant or over-exuberant wound-healing pro-
cesses initiated to protect the host from injurious stimuli [1]. In re-
sponse to noxious stimuli of many different types, aberrant repair
processes can produce the common result of excessive deposition of ex-
tracellular matrix that disrupts normal tissue homeostasis. Repair pro-
cesses involve multiple cell types, including epithelial cells, fibroblasts,
AEC, alveolar epithelial cell;
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endothelial cells, pericytes and leukocytes, all of which potentially in-
teract with each other. Interactions between two cell types in particular,
alveolar epithelial cells and fibroblasts, appear to be central to the path-
ogenesis of idiopathic pulmonary fibrosis (IPF) [2].

IPF is characterized by progressive fibrosis, with excessive matrix
deposition leading to destruction of lung architecture and ultimately
fatal impairment of lung function. IPF has a heterogenous clinical
course, but the median survival after diagnosis is only 2.5–3.5 years
[2]. Althoughmuch of the pathogenesis of IPF remains to be elucidated,
fibroblasts and epithelial cells have emerged as principal players in this
disease, in particular myofibroblasts and type II alveolar epithelial cells.
Fibroblasts and myofibroblasts accumulate in IPF lungs in “fibroblastic
foci” that, as the predominant sites of excess matrix production, can
be thought of as the leading edge of active fibrosis [3]. Fibroblast activa-
tion and accumulation in IPF, however, appears to be fundamentally
driven by recurrent and/or non-resolving injury to the alveolar epithe-
lium, and therefore in another sense, the injured alveolar epithelium
can be thought of as the leading edge of active fibrosis. With fibroblasts
and alveolar epithelial cells being in close apposition in the lung, it is not
surprising that the interactions between these two key cellular players
contribute to the development of pulmonary fibrosis. Though other
cell types certainly make important contributions, we will focus on
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the “pas de deux” (steps of two), or perhaps more appropriate to IPF
pathogenesis, the “folie à deux” (madness of two) of epithelial cell-
fibroblast interactions as critical drivers of pulmonary fibrosis.Whereas
the source of the fibroblasts and myofibroblasts that accumulate in the
lung asfibrosis develops –whether these cells arise from resident fibro-
blasts, resident epithelial cells or circulating precursors – has been an
area of controversy, the pro-fibrotic effects of the interactions of fibro-
blasts andmyofibroblastswith resident lung epithelial cells has become
increasingly clear. We describe the role of several important mediators
in orchestrating the pro-fibrotic interactions of epithelial cells andfibro-
blasts in their “fibrosis of two”, including transforming growth factor-β,
connective tissue growth factor, sonic hedgehog, prostaglandin E2,
angiotensin II and reactive oxygen species (Fig. 1).

2. Epithelial cells: targeted cells in IPF

Accumulating evidence points toward recurrent and/or non-
resolving injury to the lung epithelium as the “prime mover” of pul-
monary fibrosis. Although the cause of this injury in IPF remains enig-
matic, the footprints of lung epithelial injury are manifest, both in the
form of (1) increased epithelial cell death, and (2) phenotypic alter-
ations of the surviving epithelial cells. Increased numbers of apoptotic
and necrotic cells have been observed in both the alveolar and bron-
chial epithelia of IPF patients [4–6]. Surviving epithelial cells in IPF
lungs demonstrate several altered phenotypes [7]. Cuboidal epithelial
cells representing type II alveolar epithelial cell (AEC) hyperplasia
and/or bronchiolar basal cell proliferation line thickened fibrotic
alveolar septa; single layers of flattened epithelial cells suggestive
of squamous metaplasia frequently are present overlying fibroblastic
foci; and single-layered columnar or pseudostratified columnar epithe-
lial cells often line the abnormally enlarged, restructured air spaces
of honeycomb lung. These morphological changes are associated
with modifications of epithelial cell expression of specific cytokeratins,
suggesting that in addition to their morphology, the differentiation
states and functions of epithelial cells are likely profoundly altered in
IPF. Of note, although IPF has been traditionally viewed as affecting
the parenchymal lung rather than the airways, a potentially central
role for the bronchial epithelium in addition to the alveolar epithelium
in IPF pathogenesis has been suggested by the recent association of a
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Fig. 1. Epithelial-fibroblast interactions drive the progression of idiopathic pulmonary fibro
apoptosis and their production and/or activation of pro-fibrotic mediators, including TGF-β
activation andmyofibroblast differentiation, resulting in the accumulationmyofibroblasts an
AEC injury and apoptosis, including ANGII and reactive oxygen species such as H2O2, creatin
gression of IPF. PGE2 normally mediates anti-fibrotic interactions between epithelial cells
responsiveness. Green arrows indicate pro-fibrotic epithelial cell-fibroblast interactions;
CTGF, connective tissue growth factor; Shh, sonic hedgehog; ANG II, angiotensin II; H2O2, h
genetic variant in mucin 5B (MUC5B) with both familial and sporadic
IPF [8].

The potential of epithelial injury in general to cause pulmonary
fibrosis has been demonstrated in several mouse models. Induction of
pulmonary epithelial cell death in mice, either by pulmonary delivery
of anti-Fas antibody [9,10] or transgenic overexpression of transforming
growth factor-β (TGF-β) [11], results in the development of fibrosis, as
does genetically targeting diptheria toxin-induced injury to alveolar
epithelial cells [12]. Additionally, inhibition of apoptosis attenuates
the fibrosis induced by bleomycin challenge, the most commonly used
mouse model of pulmonary fibrosis [13].

Finally, in addition to noxious stimuli in the external environment,
alterations in the internal environment of epithelial cells can also lead
to their death and promote pulmonary fibrosis. For example, the mu-
tations in the gene encoding surfactant protein C (SFTPC) that have
been associated with familial pulmonary fibrosis (familial interstitial
pneumonia) cause SFTPC misfolding, leading to protein accumula-
tion and endoplasmic reticulum (ER) stress [14–17]. Unresolved or
prolonged ER stress activates cellular apoptotic pathways, and the
resulting epithelial cell death may cause the pulmonary fibrosis
that affects these SFTPC mutation kindreds [18]. Thus epithelial cell
injury and death, albeit due to a variety of causes and through a va-
riety of mechanisms, appears to be a common initiating pathway to
fibrosis in the lung.

3. Epithelial cell-to-fibroblast interactions: how injured epithelial
cells activate fibroblasts

Areas of AEC apoptosis and foci of α-smooth muscle actin
(αSMA)-positive myofibroblasts co-localize in the lungs of IPF pa-
tients [6], making it plausible for these two cell types to directly influ-
ence each other as fibrosis develops. The ability of injured epithelial
cells to affect local fibroblast behavior in a paracrine fashion has
been demonstrated by in vitro co-culture experiments. In these ex-
periments, mechanical injury to epithelial cells induced the expres-
sion of α-SMA and type I and III collagen in co-cultured fibroblasts
by stimulating the activation of TGF-β in the extracellular matrix
[19]. In addition to TGF-β, a growing list of mediators has been
found to contribute to the ability of injured epithelial cells activate
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fibroblasts, including other cytokines/growth factors, such as connec-
tive tissue growth factor (CTGF);morphogens, such as sonic hedgehog
(Shh), and lipid mediators, such as prostaglandin E2 (PGE2) [20–24].
Many of these mediators, such as TGF-β, CTGF and Shh promote fibro-
blast activation, whereas others such as PGE2 are suppressive (Fig. 1).
In the sections that follow, TGF-β, CTGF, Shh and PGE2 are discussed as
important examples of mediators through which injured epithelial
cells regulate fibroblast activation, but are certainly not a complete
list of the molecules involved in epithelial cell-to-fibroblast interac-
tions in fibrosis.

3.1. Transforming growth factor-beta (TGF-β)

TGF-β is a member of the TGF-β super-family, which in addition to
TGF-β includes related cytokines such as bone morphogenic proteins,
activins and inhibins [25]. Mammals have three different forms of
TGF-β (TGF-β1, -β2, and -β3), each of which are widely expressed
throughout the body [26]. All three isoforms initiate their cellular ef-
fects using the same high-affinity cell surface receptors (TGF-β type I
and type II receptors) [27,28]. But despite their common receptor
usage, the isoforms have differing biological functions, as indicated
by the differing phenotypes of mice deficient for each. TGF-β1
null mice develop severe multi-focal inflammation and die within
3 weeks of birth [29,30], whereas TGF-β2 nullmice die in the perinatal
period due to cyanotic heart disease and pulmonary insufficiency [31],
and TGF-β3 null mice die of craniofacial defects, most notably cleft
palate [32]. Taken together, these phenotypes indicate that TGF-β sig-
naling is important for tissue growth and morphogenesis during em-
bryonic development, and for tissue homeostasis thereafter. When
tissue homeostasis is perturbed by injury, however, TGF-β acts as a
major pro-fibrotic cytokine, potently increasing fibroblast recruit-
ment, proliferation, differentiation into myofibroblasts and produc-
tion of extracellular matrix [33]. Delivery of this cytokine by itself
to the rodent lung through intratracheal transfer of active TGF-β1 in
an adenoviral vector is sufficient to induce pulmonary myofibroblast
accumulation and fibrosis [34,35]. Conversely, inhibiting TGF-β
with neutralizing antibodies or a type I receptor inhibitor suppresses
experimental pulmonary fibrosis [36,37]. Importantly, increased
endogenous expression of TGF-β is not by itself sufficient to increase
TGF-β function, because all three TGF-β isoforms are generated and
are present in tissues as inactive latent precursors. As discussed
below, epithelial cells have been shown to mediate the activation of
latent TGF-β in the lung, and consequently to play a critical role in
the presentation of active TGF-β to fibroblasts in the pathogenesis of
pulmonary fibrosis.

3.1.1. Activation of TGF-β by epithelial cell integrins
The three TGF-β isoforms are produced in the form of small latent

complexes (SLCs), in which the bioactive TGF-β peptides form non-
covalent associations with a latency-associated peptide (LAP) [26].
Further, SLCs are usually secreted in association with latent TGF-β
binding proteins (LTBPs) as large latent complexes (LLCs). LLCs are
sequestered in the extracellular matrix through the covalent binding
of LTBPs to extracellular matrix proteins, such as fibrillin and fibro-
nectin [26]. For TGF-β to exert biological effects, it must be activated
from these latent complexes. The changes in TGF-β's interactions
with its LAP required for TGF-β activity can be accomplished by either
non-proteolytic or proteolytic mechanisms that result in conforma-
tional changes or cleavage of the LAP respectively [26,38,39]. The
non-proteolytic activation of TGF-β by epithelial cells, and the presen-
tation of the active TGF-β produced to fibroblasts, appears to be an
epithelial cell-to-fibroblast interaction that is central to the develop-
ment of pulmonary fibrosis.

Epithelial cells induce activating conformational changes in latent
TGF-β complexes through their integrins. Integrins are cell adhesion
molecules and transmembrane receptors that link the cytoskeleton
to the extracellular matrix, and in addition to adhesion, regulate multi-
ple fundamental cell processes including cell migration, proliferation
and differentiation [40,41]. Integrins are composed of α and β subunits
(18 α and 8 β subunits) that heterodimerize to form 24 αβ combina-
tions [42]. Eight of these, including all five αν-containing integrins
(ανβ1, ανβ3, ανβ5, ανβ6 and ανβ8), are capable of binding ligands
with an arginine-glycine-aspartate (RGD) motif. The LAPs of both
TGF-β1 and TGF-β3 have RGD sequences, and these two TGF-β
isoforms can be activated in vitro by at least four of the αν-containing
integrins (ανβ3, ανβ5, ανβ6, ανβ8) [42].

Activation of latent TGF-β specifically by the ανβ6 integrin ap-
pears to centrally important in the development of pulmonary fibro-
sis. Genetic deletion of the β6 subunit, or antibody blockade of
ανβ6, suppress TGF-β signaling in the lung after injury, and protect
mice from the development of pulmonary fibrosis induced by
bleomycin or radiation [43–45]. Lung expression of ανβ6 appears to
be restricted to epithelial cells, underscoring the fundamental involve-
ment of epithelial cell-to-fibroblast interactions in the pro-fibrotic
behaviors induced in fibroblasts by TGF-β during the development
of pulmonary fibrosis. The ability of epithelial cell ανβ6 to mediate
latent TGF-β activation is dependent on epithelial cell cytoskeletal
function. The cytoplasmic tail of the β6 subunit binds to the actin
cytoskeleton, and disruption of this binding by mutation of the β6
cytoplasmic domain, or inhibition of actin polymerization with cyto-
chalasin D, abolish epithelial cell activation of latent TGF-β [43].

Consistent with the activation of this pathway in pulmonary fibro-
sis, markedly increased lung epithelial ανβ6 expression is present in
mouse lungs post-bleomycin challenge, and in human lungs with
usual interstitial pneumonia (UIP) pattern pulmonary fibrosis [45,46].
This increased ανβ6 expression may itself be driven by active TGF-β.
TGF-β induces the expression of the β6 subunit gene (itgb6) through
the transcription factor Ets1 [47,48], and this process is inhibited by
neutralizing β6 antibody [49]. ανβ6 integrin-mediated activation of
latent TGF-β may therefore be amplified in pulmonary fibrosis by a
feed-forward loop of increased TGF-β activation and increased ανβ6
expression.

3.1.2. Pro-fibrotic effects of TGF-β on fibroblasts
Once freed from its latent complexes by epithelial cell integrins,

active TGF-β interacts with its receptors expressed by fibroblasts to in-
duce multiple pro-fibrotic behaviors. Active TGF-β first binds to TGF-β
receptor type II (TBRII), which phosphorylates and heterodimerizes
with TGF-β receptor type I (TBRI) to form an active ligand–receptor
complex. This TGF-β–TBRII/I complex initiates pro-fibrotic responses
in fibroblasts through both canonical and non-canonical signaling
pathways. In the canonical TGF-β signaling pathway, activated TBRI
phosphorylates effector Smad proteins (Smad2 and Smad3), which
heterodimerize with Smad4 to form Smad2/4 or Smad3/4 complexes
[50]. These complexes translocate to the nucleus, where they bind
to Smad response elements located in the promoter regions of
pro-fibrotic genes such as type I collagen, fibronectin and αSMA [51].
Consistent with canonical TGF-β signaling having pro-fibrotic effects,
Smad3-deficient mice are protected from bleomycin-induced lung
fibrosis [52].

Both the c-Abelson tyrosine kinase (c-Abl) and mitogen-activated
protein kinases (MAPKs) have been implicated in non-canonical
TGF-β signaling. c-Abl is directly activated by TGF-β in fibroblasts,
and signals through Egr-1 [53]. The small molecule imatinib mesylate
potently inhibits c-Abl, as well as the platelet-derived growth factor
receptor tyrosine kinase. Imatinib was demonstrated to prevent the
development of bleomycin-induced lung fibrosis in mice [54], but a
recently completed randomized placebo-controlled clinical trial of
imatinib in IPF patients showed no benefit [55].

Mitogen-activated protein kinases (MAPKs) have also been shown
to be involved in non-canonical TGF-β signaling. The MAPK family of
serine-threonine protein kinases include extracellular signal–regulated
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kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38,whichmediate
a wide variety of cellular responses, including proliferation, differentia-
tion, and apoptosis [56,57]. In lung fibroblasts, TGF-β induction of
αSMA and collagen expression has been shown to be dependent on
ERK and p38 MAPK [56,57], and p38 MAPK activation by TGF-β has
been shown to contribute to fibroblast resistance to apoptosis through
the pro-survival phosphatidyl inositol 3-kinase (PI3K)/AKT pathway
[58].

3.2. Connective tissue growth factor (CTGF/CCN2)

CTGF is as amember of the CCN protein family, containing Cysteine
rich protein 61 (cyr61/CCN1), CTGF/CCN2, and Nephroblastoma
overexpressed gene (NOV/CCN3), as well as three WNT-1-inducible
signaling proteins (WISPs), WISP-1/CCN4, WISP-2/CCN5 and
WISP-3/CCN6. These proteins are characterized by an extraordinarily
high content of cysteine residues, with the position of 38 of these cys-
teines being conserved almost entirely across the six family members
[59,60]. CCN family proteins including CTGF contain four structural
modules: an insulin-like growth factor binding protein module (mod-
ule I), a von Willebrand factor type C module (module II), a
thrombospondin type I homology module (module III) and a
carboxy-terminal cysteine knot motif, heparin-bindingmodule (mod-
ule IV). These modules each have specific binding partners, including
insulin-like growth factor for module I, TGF-β for module II, specific
integrins (α4β1,α5β1,α6β1 andανβ3) and sulfated glycoconjugates
for module III, and heparin sulfate-containing proteoglycans (HSPGs)
such as syndecan 4 and perlecan for module IV [59–61].

3.2.1. Synthesis of CTGF by epithelial cells
CTGF is principally regulated at the level of transcription [62].

Its promoter region contains binding sites for multiple transcription
factors, including Smads, AP-1, Sp1, Ets-1, hypoxia-inducible factor
and serum response factor [62–66]. Stimuli able induce CTGF tran-
scription, dependent on the cell type, include TGF-β, thrombin,
lysophosphatidic acid, and mechanical stress [60,61]. Signaling path-
ways involved in the regulation of CTGF expression by these stimuli
include MAPK, protein kinase C, the small GTPase RhoA, and PI3K
[61,66–68]. Interestingly, most of the stimuli able to induce CTGF in-
duction have also been implicated in the pathogenesis of pulmonary
fibrosis [36,69–72]. CTGF was originally discovered as a ‘PDGF-related
mitogen’ in the medium of cultured human umbilical vein endothelial
cells [73], but has subsequently been shown to be expressed by other
cell types, including alveolar epithelial cells [21,73]. In lung tissues
obtained from IPF patients, CTGF mRNA and protein are both in-
creased, localizing predominantly to AECs and activated fibroblasts.
In contrast, CTGF-expressing AECs are sparse in the normal lung [21].

3.2.2. Pro-fibrotic effects of CTGF on fibroblasts
CTGF regulates multiple fibroblast behaviors that contribute to fi-

brosis, including fibroblast adhesion, migration, proliferation, differen-
tiation, matrix production and apoptosis [74]. CTGF can induce these
behaviors either by binding to fibroblast cell surface molecules directly,
or by acting as an “adapter” molecule that brings other mediators into
contact with their receptors on fibroblasts [74]. CTGF can directly affect
fibroblast behaviors by binding to integrins, HSPGs and the low density
lipoprotein receptor-related protein/β2-macroglobulin receptor (LRP)
[60,75–77]. For example, CTGF binding to fibroblast HSPGs induces
fibroblast adhesion and proliferation [77,78]. Specific CTGF binding to
the insulin-like growth factor-II (IGF-II)/mannose 6-phosphate (M6P)
receptor expressed on lung fibroblasts has also recently been shown
to induce fibroblast proliferation [79]. CTGF has also been shown to di-
rectly stimulate lung fibroblast expression of multiple proteins known
to be elevated in IPF, including type I collagen, the cytoskeletal proteins
vinculin, moesin and ezrin, and IQ motif containing GTPase activating
protein 1 (IQGAP1), a scaffold protein that regulates cell migration
and is elevated in lung fibroblasts isolated from scleroderma patients
with pulmonary fibrosis [80].

In its role as an adapter molecule [74], the cytokines and growth
factors that CTGF can “present” to their specific receptors on fibro-
blasts include TGF-β [81], epidermal growth factor, and insulin-like
growth factor-II [82]. This adapter function appears to be required
for at least some of the pro-fibrotic effects of TGF-β on fibroblasts.
Although CTGF-deficient fibroblasts show intact TGF-β-induced Smad
signaling, the ability of TGF-β to induce the expression of multiple
pro-fibrotic mRNAs and proteins, including αSMA and type I collagen,
is impaired in these cells [83].

Pro-fibrotic effects of CTGF have also been demonstrated in vivo.
Whereas BALB/c mice are resistant to bleomycin-induced pulmonary
fibrosis [84], transient overexpression of CTGF in the lungs of these
“fibrosis-resistant” mice by adenoviral gene transfer of CTGF enabled
bleomycin to induce pulmonary myofibroblast accumulation and fi-
brosis similar in extent to that produced in “fibrosis-prone” C57Bl/6
mice [85]. The pro-fibrotic effects of CTGF that is specifically
expressed by pulmonary epithelial cells were demonstrated in a
transgenic mouse model with doxycycline-inducible overexpression
of CTGF in respiratory epithelial cells directed by the clara cell secreto-
ry protein promoter. Overexpression of CTGF from postnatal days 1–14
resulted in increased αSMA expression, collagen deposition and dra-
matic thickening in the peribronchial/peribronchiolar and perivascular
regions of the lungs [86]. Cooperation between the pro-fibrotic effects
of TGF-β and CTGF has also been noted in vivo. Intraperitoneal
co-administration of CTGF and TGF-β2 induced multiorgan fibrosis in
the lungs, liver and kidneys, whereas administration of either cytokine
alone failed to elicit a fibrotic response [87]. Conversely, anti-CTGF an-
tibodies have been shown to mitigate the increases in αSMA and type I
collagen protein expression, as well as total collagen content, induced
in lung in the bleomycin model of pulmonary fibrosis [88,89].

3.3. Sonic hedgehog (Shh)

Some of the pathways that regulate embryological development
but are subsequently quiescent appear to re-emerge during repair
responses to tissue injury [90]. Consistent with re-activation of devel-
opmental pathways in response to injury, microarray analyses of IPF
gene expression revealed enriched expression of genes associated
with lung development, including Patched-1, a receptor in the hedge-
hog pathway [91]. The hedgehog (Hh) family in mammals consists of
sonic hedgehog (Shh), desert hedgehog (Dhh), and indian hedgehog
(Ihh), which play critical roles in embryonic development, tissue
patterning, and organogenesis [92,93]. Of these three mammalian
Hh homologues, Shh has been shown to be responsible for tissue
patterning in the lung, by regulating branching morphogenesis
[94–96]. During lung development, Shh is produced in the distal
epithelium and stimulates mesenchymal cell proliferation. Shh
overexpression in mice pre-natally results in lethally excessive accu-
mulation of lung interstitial mesenchyme [96], emphasizing that the
Shh pathway mediates important epithelial cell-to-mesenchymal
cell interactions during embryological lung development.

3.3.1. Epithelial cell synthesis of Shh
In both lung development and pulmonary fibrosis, epithelial cells

appear to be the major source of Shh. During embryological develop-
ment, low levels of ShhmRNA are present throughout the epithelium,
and high levels are present at the tips of the terminal buds that ulti-
mately form alveoli [23,97]. Several studies of lung tissues obtained
from IPF patients have demonstrated high Shh expression in reactive
AECs, as well as in the epithelial cells that line honeycomb cysts, com-
pared with little or no Shh expression in normal adult lung tissues
[98–100]. In contrast, another recent study found that most of the
components of the Shh system were expressed in normal adult alveo-
lar epithelium, but that this pathway was activated specifically in IPF
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tissue [101]. Of potential relevance to the re-expression or activation
of the Shh pathway in pulmonary fibrosis, both TGF-β and hydrogen
peroxise (H2O2) have been reported to modulate Shh production
by AECs [102,103]. Although short-term incubation with TGF-β has
been noted to suppress the secretion of Shh protein without signifi-
cantly changing Shh mRNA expression [102], chronic TGF-β exposure
dramatically increases expression of Shh both at the mRNA and
protein levels [103]. In contrast, H2O2 enhances the release of Shh
protein from epithelial cells without changing Shh mRNA expression,
suggesting that H2O2 induces release of pre-formed Shh from intra-
cellular stores [102].

3.3.2. Pro-fibrotic effects of Shh on fibroblasts
Shh signaling is transduced by 2 transmembrane proteins,

patched-1 (PTCH-1) and smoothened (SMO). PTCH-1 is an Shh-
binding receptor, which in the absence of Shh constitutively blocks
SMO activity. Shh binding to PTCH-1 activates SMO, and activated
SMO directs the biochemical processing and subsequent nuclear
translocation of the transcription factors glioma-associated oncogene
homolog (GLI)1, GLI2, and GLI3 Target genes regulated by these tran-
scription factors include PTCH-1 itself, as well as regulators of the
cell cycle, enabling the Shh pathway to regulate cell proliferation
[104–106]. One recent immunohistochemical analysis of Shh path-
way components in IPF reported fibroblast expression of PTCH-1,
SMO, and GLI1 in the lungs of IPF patients, whereas no staining was
detected in normal lungs [100]. PTCH-1 mRNA was also upregulated
in primary lung fibroblasts grown from IPF versus normal lung tissue,
and in fibroblasts assessed by laser capture microdissection in IPF
lung tissues versus lung tissues from patients with cryptogenic orga-
nizing pneumonia [100]. In vitro, recombinant SHH has recently been
shown to increase fibroblast proliferation and migration, to increase fi-
broblast expression of collagen and fibronectin but not αSMA, and to
protect fibroblasts from apoptosis [100]. Additionally, TGF-β1's ability
to drive and maintain myofibroblast differentiation was recently
demonstrated to require SMO/GLI pathway activity [101].

3.4. Prostaglandin E2 (PGE2)

The paucity of fibroblasts in normal alveolar septae compared
with the greater abundance of fibroblasts in the connective tissue sur-
rounding pulmonary bronchi, arteries, and veins led some investiga-
tors to hypothesize that under homeostatic conditions, alveolar
epithelial cells suppress fibroblast accumulation. Media conditioned
by AEC-fibroblast co-culture was in fact demonstrated to inhibit fi-
broblast proliferation, and this inhibition in subsequent studies was
determined to be attributable to PGE2 synthesized by AECs [24,107].
In contrast to the pro-fibrotic epithelial cell-to-fibroblast interactions
mediated by TGF-β, CTGF and Shh, PGE2 therefore carries anti-fibrotic
signals from epithelial cells to fibroblasts.

3.4.1. Epithelial cell synthesis of PGE2
AECs have a large capacity for synthesizing PGE2, the most abun-

dant arachidonic acid metabolite that these cells produce. Following
the liberation of arachidonic acid from membrane phospholipids,
the synthesis of prostanoids, including prostaglandins, thromboxane
and prostacyclin, is initiated by two cyclooxygenase (COX) enzymes,
COX-1 and COX-2. COX-1 is constitutively expressed in most cells
and tissues, whereas COX-2 is expressed when induced by inflamma-
tory or mitogenic stimuli [108]. The pulmonary epithelium represents
an exception to this usual pattern, in that AECs constitutively express
both COX isoforms [109]. Experiments using COX-2-deficient AECs
demonstrated that the PGE2 synthetic capacity of these cells is pre-
dominantly COX-2-dependent [24].

PGE2 synthesis is reduced in IPF, limiting the anti-fibrotic epithelial
cell-to-fibroblast interactions that are mediated by PGE2. PGE2 levels
in the epithelial lining fluid of individuals with IPF were found to be
50% lower than those in normal subjects [110]. AEC production of
PGE2may be suppressed by increased levels of plasminogen activation
inhibitor-1 (PAI-1) and CC chemokine ligand 2 (CCL2) in IPF lungs.
Plasmin has recently been shown to upregulate AEC PGE2 produc-
tion [111]. Plasmin upregulates AEC COX-2 expression, potentially
through its ability to proteolytically activate and release hepatocyte
growth factor (HGF) from these cells and/or the extracellular matrix.
In bronchial epithelial cells, HGF has been shown to increase COX-2
gene expression through an Akt-, MAPK-, and β-catenin-dependent
pathway [112]. PAI-1, which is markedly upregulated in fibrotic
lungs [113], prevents the generation of plasmin by inhibiting
urokinase-type plasminogen activator (uPA). By reducing the genera-
tion of plasmin, increased levels of PAI-1 could therefore reduce AEC
PGE2 synthesis in IPF. In support of this hypothesis, PAI-1-deficient
mice demonstrate increased lung production of PGE2, and are
protected from bleomycin-induced pulmonary fibrosis [111]. This
protection was abrogated by a selective inhibitor of the HGF receptor
c-Met, which reduced lung COX-2 and PGE2 levels. In contrast to its
upregulation by plasmin, AEC PGE2 synthesis is downregulated by
CCL2. CCL2 is present in increased amounts in the bronchoalveolar
lavage fluid of IPF patients [114], and may be induced in the AECs
themselves by thrombin activation of the major thrombin receptor,
proteinase-activated receptor-1 (PAR1) [115]. CCL2 and PAR1 are
co-expressed and co-upregulated on the activated epithelium in fi-
brotic areas in IPF, and thrombin potently induces CCL2 expression
in lung epithelial cells in vitro in a PAR1-dependent manner.

3.4.2. Anti-fibrotic effects of PGE2 on fibroblasts
PGE2 has been demonstrated to have multiple activities on fibro-

blasts that could suppress fibrosis, including inhibition of fibroblast
migration [116], proliferation [117,118], collagen synthesis [119],
and myofibroblast differentiation [120]. Of the 4 E prostanoid (EP)
receptors, designated EP1, EP2, EP3, and EP4 [120], these inhibitory
effects of PGE2 on fibroblasts are mediated by EP2 [120–122]. Lung
fibroblast EP2 expression, however, is downregulated in pulmonary
fibrosis. Diminished EP2 levels in fibroblasts isolated from mouse
lungs following bleomycin challenge reduced the ability of PGE2 to in-
hibit their proliferation and collagen secretion [121]. Fibroblasts iso-
lated from patients with IPF also exhibit decreased EP2 expression,
and are similarly refractory to the anti-fibrotic effects of PGE2 [123].
The diminished EP2 expression levels in fibroblasts from fibrotic
lungs are maintained by hypermethylation of the PGE receptor 2
gene (PTGER2) promoter [124]. Treatment of these fibroblasts with
DNA methylation inhibitors or DNA methyltransferase-specific siRNA
decreased PTGER2 methylation, increased EP2 mRNA and protein ex-
pression, and restored PGE2 responsiveness [124]. The anti-fibrotic
epithelial cell-to-fibroblast interactionsmediated by PGE2 therefore ap-
pear to be limited in IPF by decreased fibroblast EP2 expression as well
as by decreased AEC PGE2 synthesis. Whereas epithelial-to-fibroblast
interactions mediated by TGF-β, CTGF and Shh are attractive targets
for new IPF therapies to inhibit, restoring PGE2-mediated interactions,
by increasing AEC PGE2 production and fibroblast EP2 expression, rep-
resents an attractive therapeutic strategy for pulmonary fibrosis.

4. Fibroblast-to-epithelial cell interactions: how activated
fibroblasts injure epithelial cells

As noted above, recurrent and/or non-resolving injury to the lung
epithelium now appears to be the “prime mover” of pulmonary fibro-
sis. Increased numbers of apoptotic cells have been observed in the
alveolar and bronchial epithelia of IPF patients [4,5], and the specific
induction of epithelial injury and/or apoptosis has been shown to
be sufficient to cause pulmonary fibrosis in several mouse models
[9–12]. Although the initiating causes of epithelial injury in IPF remain
enigmatic, activated fibroblasts appear to be able to amplify the epi-
thelial apoptosis that results. As also noted above, the co-localization
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of αSMA-positive myofibroblast foci with areas of AEC apoptosis in
IPF lungs [6] makes the paracrine interaction of these two cell types
plausible in the development of fibrosis in vivo. The ability of activated
fibroblasts to affect epithelial cells in a paracrine fashion has been
demonstrated in vitro. In these experiments, media conditioned by
fibroblasts isolated from the lungs of IPF patients markedly induced
apoptosis of AECs in culture, whereas media conditioned by fibro-
blasts from control subjects did not [125]. Several mediators have
been found to be responsible for this ability of activated fibroblasts
to induce epithelial cell apoptosis, including angiotensin II and hydro-
gen peroxide (H2O2) (Fig. 1).

4.1. Angiotensin II

The renin–angiotensin system consists of renin, angiotensinogen
(AGT), angiotensin I (ANG I), angiotensin converting enzyme (ACE)
and angiotensin II (ANG II). The octapeptide ANG II is the primary ef-
fector molecule of this pathway, and is formed by enzymatic cleavage
of AGT to ANG I by the aspartyl protease renin, followed by the con-
version of ANG I to ANG II by ACE. Although best known for its role
in blood pressure regulation due to its ability to mediate vasocon-
striction, ANG II has been implicated in the pathogenesis of fibrotic
diseases affecting multiple organs, including the lung [126].

4.1.1. Fibroblast synthesis of ANG II
ANG II was determined to be the soluble factor responsible for

inducing AEC apoptosis in media conditioned by IPF lung fibroblasts
[127]. Lung tissue from IPF patients and bleomycin-challenged mice
demonstrate upregulation of AGT and ANG peptides specifically in
myofibroblasts [128,129]. In vitro, human lung fibroblasts have been
demonstrated to upregulate AGT expression in response to TGF-β,
through a mechanism involving activation of AGT transcription by
hypoxia-inducible factor-1α and Jun D [130]. Myofibroblasts, espe-
cially under hypoxic conditions, are consequently thought to be an
important source of ANG II production in the fibrosing lung.

4.1.2. Pro-fibrotic effects of angiotensin II on alveolar epithelial cells
The biological effects of ANG II are mediated through its two spe-

cific G protein-coupled seven transmembrane domain receptors, ANG
II type 1 receptor (AT1R) and ANG II type 2 receptor (AT2R) [126].
Although AECs express both AT1R and AT2R, experiments with AT1R-
and AT2R-selective antagonists indicate that AT1R mediates ANG
II-induced AEC apoptosis [131,132]. An AT1R-selective antagonist was
able to preventmouse AEC apoptosis and lung fibrosis in the bleomycin
model, as was an antisense oligonucleotide targeting AGT mRNA
and an ACE inhibitor [128,133,134]. AT1R-deficient mice similarly
demonstrated reduced AEC apoptosis and collagen accumulation in
the bleomycin model [134]. Further implicating the renin–angiotensin
system in IPF, a single-nucleotide polymorphism (SNP) in the promoter
region of the AGT gene that increases AGT transcription has been asso-
ciated with more rapid disease progression [135].

4.2. Reactive oxygen species (ROS)

Experiments co-culturing small airway epithelial cells with TGF-β-
stimulated fibroblasts isolated from IPF patients identified hydrogen
peroxide (H2O2) as another diffusible paracrine signal produced by ac-
tivatedmyofibroblasts that is able to induce epithelial cell death [136].
Production of ROS, such as H2O2, superoxide anions (∙O2

−) and hydrox-
yl radicals (∙OH), in excess of the capacity of cells and tissues to detox-
ify or scavenge them is referred to as “oxidative stress”, and has been
implicated in fibrotic diseases of multiple organs, including the
lung [137]. Multiple lines of evidence indicate the presence of
oxidative stress in IPF lungs. H2O2 concentrations are significantly
higher in the exhaled breath condensates of IPF patients than control
subjects, and correlate with disease severity [138]. Proteins in the
bronchoalveolar lavage fluid of IPF patients demonstrate elevated
levels of oxidative changes, such as oxidation of methionine residues
to methionine sulfoxide, and introduction of carbonyl groups into
other amino acid side-chains [139,140]. Additionally, epithelial cells in
the lungs of IPF patients demonstrate the presence of ROS-induced
DNA modifications [141].

4.2.1. Fibroblast synthesis of ROS
ROS are formed by the univalent reduction of oxygen, generally

mediated by several ROS-producing enzymes, such as mitochondrial
respiratory oxidases, xanthine oxidase, myeloperoxidase and NADPH
oxidases [137,142]. NADPH oxidases comprise a seven member fami-
ly, including NOX1, 2, 3, 4 and 5, Duox1 and 2. Both NOX1 and NOX2
generate superoxide anions, whereas NOX4 produces H2O2 [143].
Recent evidence has implicated NOX4 expressed by fibroblasts in the
development of lung fibrosis. TGF-β induces expression of this NOX
isoform in IPF lung fibroblasts in vitro. Further, the expression αSMA
and extracellular matrix proteins induced in lung fibroblasts by
TGF-β, as well as the proliferation of these cells induced by serum, re-
quire NOX4-dependent generation of H2O2 [144]. In IPF lung sections,
H2O2 localizes specifically to αSMA-expressing myofibroblasts [136],
and NOX4 similarly localizes to myofibroblastic foci [144]. A critically
important role for fibroblast NOX4, and the H2O2 it produces, in the
pathogenesis of pulmonary fibrosis was demonstrated in experiments
inwhich siRNA-mediated knockdown of NOX4 expression suppressed
fibrosis in vivo in both bleomycin- and FITC-induced mouse models of
pulmonary fibrosis [144].

4.2.2. Pro-fibrotic effects of ROS on alveolar epithelial cells
In cultures of confluent primary distal lung epithelial cells, exoge-

nous H2O2 inhibits monolayer closure after scratch wounding by
inducing epithelial cell apoptosis [145]. As noted above, co-culture
experiments demonstrated that endogenous generation of H2O2 by
TGF-β-stimulated IPF lung fibroblasts induces apoptosis of small air-
way epithelial cells in a paracrine manner [136]. In the bleomycin
mouse model of pulmonary fibrosis, alveolar epithelial apoptosis
induced in vivo by bleomycin injury was demonstrated to be NOX4-
dependent. The dramatic increase in apoptotic alveolar epithelial cells
observed in wild type mice at early time points post-bleomycin chal-
lenge was abrogated in NOX4-deficient mice, and the development of
fibrosis in these mice was markedly reduced at later time points
[146]. A pathogenic role for ROS in pulmonary fibrosis in vivo studies
has been further underscored by the amelioration of bleomycin-
induced fibrosis in mice administered the antioxidant superoxide
dismutase, and the exacerbation of bleomycin-induced pulmonary
fibrosis in mice genetically deficient for this enzyme [147,148].

5. Bidirectional epithelial cell-fibroblast interactions in
pulmonary fibrosis

Many importantmediators of pulmonary fibrosis may be produced
by both epithelial cells and fibroblasts, and may exert important ef-
fects on both cell types as well. Several of the signaling molecules
discussed above carry signals both from epithelial cells to fibroblasts
and from fibroblasts to epithelial cells, thus mediating bidirectional
epithelial cell-fibroblast interactions in pulmonary fibrosis.

5.1. TGF-β

As described above, TGF-β is activated during the development of
pulmonary fibrosis by epithelial cell integrins, and induces multiple
pro-fibrotic activities in fibroblasts, including their recruitment,
proliferation, myofibroblast differentiation and extracellular matrix
production [33]. In addition to mediating these pro-fibrotic effects
on fibroblasts, TGF-β delivers pro-fibrotic signals to the alveolar epi-
thelium. In contrast to its induction of resistance to apoptosis in
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lung fibroblasts, TGF-β promotes apoptosis of lung epithelial cells
in vitro [149,150]. A pathogenic role for TGF-β-induced epithelial cell
apoptosis is suggested by observations of mice with lung-specific
overexpression of active TGF-β. In these mice, a transient wave of
epithelial apoptosis precedes the development of lung fibrosis, and
blocking the TGF-β-induced epithelial apoptosis by administration of
a general or a 3/7-selective caspase inhibitor markedly ameliorated
the subsequent fibrosis. A pathogenic role for TGF-β-induced epithelial
cell apoptosis is further suggested by the protection from bleomycin-
induced fibrosis observed in mice with epithelial cell-specific deletion
of TGF-β type II receptor [151]. Lung fibroblasts produce TGF-β latent
complexes, and have been shown to be able to activate these complexes
themselves by theανβ5 integrins that they express [152]. TGF-β there-
fore could very plausibly mediate pro-fibrotic fibroblast-to-epithelial
cells interactions, in which TGF-β produced and activated by lung fibro-
blasts mediates epithelial cell apoptosis. TGF-β thus could be an impor-
tant mediator of bidirectional interactions between epithelial cells and
fibroblasts in pulmonary fibrosis.

5.2. ANG II

As noted above, ANG II produced by myofibroblasts induces apo-
ptosis in alveolar epithelial cells in a paracrine fashion. In addition
to mediating this pro-fibrotic effect of fibroblasts on epithelial cells,
ANG II may also carry pro-fibrotic signals from epithelial cells to fibro-
blasts. Apoptotic AECs have been shown to produce AGT and convert
it to ANG II both in vitro and in the lung [129,153]. Lung fibroblasts
express AT1R and AT2R, and ANG II-AT1R signaling induces multiple
pro-fibrotic activities in cells, including their proliferation, migration,
and extracellular matrix synthesis [129]. ANG II therefore could
also mediate pro-fibrotic effects of epithelial cells on fibroblasts, in
which case it would also be an important mediator of bidirectional
interactions between these two cell types in pulmonary fibrosis.

6. Other mediators of epithelial cell-fibroblast interactions in
pulmonary fibrosis

The signaling molecules discussed in this review are meant
to serve as important examples, rather than as a complete list, of me-
diators that direct epithelial cell-fibroblast interactions in lung fibro-
sis. Multiple other pathways that may contribute to the pro-fibrotic
interactions of these two cell types have been described. Additional
examples of important such signaling molecules include members
of the WNT pathway and of the found in inflammatory zone (FIZZ)/
resistin-like molecule (RELM) family. The WNT pathway was recently
demonstrated to deliver pro-fibrotic signals from epithelial cells to
fibroblasts in the development of lung fibrosis [154]. Expression of ca-
nonical (β-catenin-dependent) WNT signaling components and the
WNT pathway target molecule, WNT-1-inducible signaling protein-1
(WISP1, another member of the CCN family of matricellular proteins),
are strongly upregulated in type II AECs in both mice challenged with
bleomycin and humans with IPF [154]. Alveolar epithelial cell WISP1
can exert pro-fibrotic effects on lung fibroblasts: WISP1 stimulates fi-
broblast extracellular matrix synthesis and myofibroblast differentia-
tion in vitro, and its neutralization suppresses bleomycin-induced
lungfibrosis inmice in vivo [154]. FIZZ/RELM familymembers, including
FIZZ1/RELM-α and FIZZ2/RELM-β, similarly have been shown to be
expressed by pulmonary epithelial cells during the development of fi-
brosis, and to exert pro-fibrotic effects on fibroblasts. FIZZ1 is strongly
induced in mouse AECs following bleomycin challenge [155], and
induces fibroblast extracellular matrix production, myofibroblast
differentiation, and resistance to apoptosis [155–157]. FIZZ2 can also
be induced in lung epithelial cells, is highly expressed in the lungs of
bleomycin-challenged mice and IPF patients, and stimulates fibroblast
type I collagen synthesis and myofibroblast differentiation; genetic
deletion of FIZZ2 significantly attenuates pulmonary fibrosis in the
bleomycinmousemodel [158].We expect that the number of pathways
found to contribute to the pro-fibrotic interactions between epithelial
cells and fibroblasts will continue to grow as investigators continue to
unravel the complex pathogenesis of pulmonary fibrosis.

7. Epithelial cell-fibroblast interaction as a common theme in the
development of organ fibrosis

Epithelial cell-fibroblast (and mesothelial cell-fibroblast) interac-
tions may importantly contribute to the pathogenesis of fibrotic
diseases in multiple organs. These interactions may be particularly
relevant in organs in which fibroblasts and epithelial cells (or meso-
thelial cells) normally reside in close proximity, such as the lung, kid-
ney, liver and peritoneum.

Progressive and potentially lethal renal fibrosis occurs in diverse
kidney diseases. Renal fibrosis most often involves the accumulation
of fibroblasts and extracellular matrix in the tubular interstitium,
and atrophy of the tubular epithelium. The degree of renal fibrosis
correlates well with the prognosis of the renal diseases in which it is
found, independent of their etiologies [159]. Accumulating evidence in-
dicates that injured renal tubular epithelial cells activate and/or
upregulate mediators such as TGF-β and CTGF that deliver pro-fibrotic
signals to neighboring fibroblasts [160]. Apoptosis of renal tubular epi-
thelial cells contributes to the progression of renal fibrosis [161], and
both ANG II and ROS have been shown to induce apoptosis in these ep-
ithelial cells [162–164], as they do in alveolar epithelial cells in pulmo-
nary fibrosis.

Epithelial cell-fibroblast interactions analogous to those occurring
in IPF also appear to be important in the pathogenesis of hepatic and
biliary fibrosis [165–167]. Hepatocyte injury and death leading to he-
patic stellate cell activation in viral or toxin-induced hepatic fibrosis
is analogous in many ways to AEC injury activating myofibroblasts
in pulmonary fibrosis. In the case of biliary fibrosis, it is injury to
cholangiocytes that leads to the activation and/or upregulation of
mediators such TGF-β and CTGF that promote the activation and
recruitment of hepatic stellate cells and portal fibroblasts [165].
Moreover, ανβ6 integrin expression is upregulated by cholangiocytes
in mouse models of biliary fibrosis, and contributes to the ability of
these cells to activate latent TGF-β [168]. Biliary fibrosis produced in
mice in vivo by bile duct ligation was significantly reduced in β6
integrin-deficient mice, and by administration of a blocking antibody
to ανβ6 [169].

Peritoneal fibrosis is an important problem following acute perito-
neal injury, as in the development of adhesions post-abdominal sur-
gery, and following chronic peritoneal injury, as in the development
of peritoneal fibrosis post-chronic peritoneal dialysis [170,171]. In
the normal peritoneum, fibroblasts reside in a thin interstitial layer
adjacent to the mesothelial cell monolayer. In the case of peritoneal
dialysis-induced fibrosis, dialysis solutions that are hyperosmotic,
hyperglycemic and/or acidic chronically injure the mesothelial cell
layer, causing these cells to elaborate pro-fibrotic mediators including
CTGF that drives peritoneal fibroblast proliferation and matrix depo-
sition, resulting in progressive fibrotic expansion of the peritoneal
interstitium [170,172,173].

8. Concluding remarks

IPF remains a devastating disease that as yet is without effective
pharmacological therapy, despite intensive scientific and clinical in-
vestigation. Although the stimuli that initiate epithelial injury in IPF
have yet to be identified, substantial evidence supports the hypothe-
sis that progression of IPF is driven by a series of pro-fibrotic epithe-
lial cell-fibroblast interactions. In a “pas de deux”, or “folie à deux”, of
epithelial cells and fibroblasts, interactions between these two cell
types create a vicious cycle in which repetitive cycles of AEC injury
provoke the activation of fibroblasts, and these activated fibroblasts
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in turn induce further AEC injury. The mediators of these interactions
represent attractive therapeutic targets for treatment of pulmonary
fibrosis, as well as for fibrotic diseases of other organs such as the kid-
ney and liver where epithelial cell-fibroblast interactions appear to be
central to the pathogenesis of fibrosis. Several of the mediators of
these interactions discussed in this review are already being targeted
by drugs in various stages of evaluation for IPF and/or other fibrotic
diseases: TGF-β signaling is the target of the anti-ανβ6 integrin anti-
body STX-100 (Stromedix/Biogen Idec), the anti-TGF-β antibodies
GC-1008 (Genzyme) and LY2382770 (Lilly), and one of the targets of
pirfenidone (InterMune); CTGF is the target of the anti-CTGF antibody
FG-3019 (FibroGen); ROS are the target of N-acetylcysteine given to
augment lung anti-oxidant defense; and Ang II signaling is the target
of the angiotensin II receptor antagonist losartan [174,175]. An even
greater understanding of epithelial cell-fibroblast interactions in fibro-
sis will facilitate the development of additional strategies to therapeuti-
cally target the signaling molecules that mediate these interactions.
Given the complexities of these interactions, with multiple mediators
involved and at least some carrying bi-directional signals to and from
each cell type, a better mapping of the steps that epithelial cells and
fibroblasts take in their “fibrosis of two” will increase the likelihood of
success of the mounting efforts to develop effective new anti-fibrotic
therapies.
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