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SUMMARY

In several sensory pathways, input stimuli project
to sparsely active downstream populations that
have more neurons than incoming axons. Here, we
address the computational benefits of expansion
and sparseness for clustered inputs, where different
clusters represent behaviorally distinct stimuli and
intracluster variability represents sensory or neu-
ronal noise. Through analytical calculations and
numerical simulations, we show that expansion
implemented by feed-forward random synaptic
weights amplifies variability in the incoming stimuli,
and this noise enhancement increases with sparse-
ness of the expanded representation. In addition,
the low dimensionality of the input layer generates
overlaps between the induced representations of
different stimuli, limiting the benefit of expansion.
Highly sparse expansive representations obtained
through synapses that encode the clustered struc-
ture of the input reduce both intrastimulus variability
and the excess overlaps between stimuli, enhancing
the ability of downstream neurons to perform classi-
fication and recognition tasks. Implications for olfac-
tory, cerebellar, and visual processing are discussed.

INTRODUCTION

Sensory processing in the brain is implemented through a

sequence of representations. Often, transformations from a pri-

mary representation to a secondary representation are charac-

terized as expansive, indicating that the number of neurons

in the secondary representation is much larger than that in the

primary one. This expansion in the dimensionality is often

accompanied by a change in the firing activity levels from a

dense pattern in the primary area to a sparse representation

downstream, in which only a few neurons respond to any given

stimulus, and each stimulus activates only a small fraction of

the population.

The rodent olfactory bulb projects to the piriform cortex (Mom-

baerts et al., 1996), which hosts millions of pyramidal neurons,

roughly three orders of magnitude more than the number of

glomeruli in the bulb. While the response of the neurons in the
Ne
olfactory bulb to odorant stimuli is quite dense (Vincis et al.,

2012), only about 10% of the neurons in the piriform cortex

show an evoked response to each odorant (Stettler and Axel,

2009; Poo and Isaacson, 2009). In the fly olfactory system, the

antenna lobe consisting of 50 glomeruli projects to the mush-

room body containing about 2,500 Kenyon cells. In response

to an odorant stimulus, 59% of the projection neurons and only

6% of the Kenyon cells fire (Turner et al., 2008). In cat visual cor-

tex, there is an approximate 25:1 expansion ratio between the

number of axons leaving V1 and the axons that enter this area

from lateral geniculate nucleus (LGN), but only 5%–10% of V1

neurons respond to any natural scene stimulus (Olshausen and

Field, 2004). Similar ratios have been observed in the somato-

sensory system (Brecht and Sakmann, 2002), the auditory sys-

tem (DeWeese et al., 2003), and the electrosensory system of

electric fish (Chacron et al., 2011).

The ubiquity of this phenomenon suggests that sparse and

expansive transformations entail a fundamental computational

advantage for sensory processing. Indeed, one of the early brain

theories in modern time, theMarr-Albus theory of the cerebellum

(Marr, 1969, Albus, 1971), explained expansion in this system by

the well-known relation between the maximum number of classi-

fications of generic inputs implementable by a simplified neuron

model, the perceptron, and the number of its input afferents

(Cover, 1965). These early theories also propose that sparseness

of the activity patterns of the cerebellar granule cell layer im-

proves their separability. Models of associativememory in recur-

rent networks also show that sparseness increases memory

capacity (Cortes and Vapnik, 1995; Tsodyks and Feigelman,

1988). However, a careful analysis reveals that, for large random

patterns, capacity is improved by sparseness of their class

membership but is unaffected by sparseness of the inputs to

the classifier (Gardner, 1988; Gütig and Sompolinsky, 2006). Effi-

cient coding theories of sensory processing have explained the

emergence of sparse V1 (Gabor-like) representations as reflect-

ing the sparse, statistically independent components of natural-

istic images (Olshausen and Field, 1996, Bell and Sejnowski,

1997), and recent compressed sensing research has devised

efficient sparse coding algorithms for recovering sparse signals

that underwent linear compression (Ganguli and Sompolinsky,

2012, Rozell et al., 2008).

The purpose of this article is to address the computational

benefits of expansion and sparseness in generic ensembles of

clustered stimuli. We focus on relatively simple and biologically

plausible architectures and dynamics. We examine the condi-

tions under which the system can retain adequate functionality
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Figure 1. Schematic Description of Sparse

and Expansive Representation

Neural activity patterns in the stimulus layer (top)

are organized as P clusters of size DS, around

central patterns S
m
, m = 1,.,P. Through feed-

forward synaptic projections J, patterns in the

stimulus layer are mapped onto patterns in the

cortical layer (middle) that, in turn, become orga-

nized into clusters of size DC, around central

patterns C
m
. The size of the stimulus layer is NS,

and the size of cortical layer is NC. While the rep-

resentations in the stimulus layer are dense and

low dimensional, cortical representations are

expansive (NC > NS) and sparse, i.e., a small

fraction f of cortical neurons are active in each

pattern. Each cluster of stimulus patterns belongs

to a class, e.g., appetitive (dark) or aversive (light)

in the olfactory context. A downstream readout

neuron (bottom) learns the binary classification of

the clusters through the synaptic weights W.
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in the presence of substantial variability in the input responses to

the same underlying stimulus. This variability may reflect natural

variability in the sensory environment and/or noise present in

upstream neuronal processing. The required robustness to vari-

ability yields surprising results regarding the role of both expan-

sion and sparseness and yields insight into the character of

neuronal computation across multiple sensory stages.
RESULTS

Model of Sensory Layers
Our model of early sensory processing is composed of three

layers of neurons arranged in a feed-forward structure (Figure 1,

right). The first layer (with NS neurons) is the ‘‘stimulus layer,’’

which stands for an early dense and relatively low dimensional

neural representation of the sensory stimuli, such as the

glomeruli layer in the olfactory bulb and the antenna lobe, the

mossy fibers in the cerebellum, or the relay cells in LGN. The sec-

ond layer (with NC neurons, NC > NS) is where the sparse and

expansive representation takes place. We call it the ‘‘cortical

layer,’’ as it often represents sensory cortices or cortical-like

structures, such as piriform cortex, V1 area, or the mushroom

body. The third layer is the ‘‘readout layer,’’ which represents a

downstream neural population that receives input from the

cortical layer and performs a specific computation, such as

recognition of a specific stimulus or classification of stimuli.

For concreteness, we will assume a single readout neuron that

performs a binary classification of the stimuli. For simplicity, all

neurons in the network are binary units, i.e., the activity level of

each neuron is either 0 (silent) or 1 (firing).

We further assume that the input patterns are organized as

clusters so that the center of each cluster represents a prototyp-

ical representation of an underlying stimulus such as a specific

odor (Figure 1, left). Other members of the cluster are noisy var-

iants of the central pattern, representing natural variations in

the stimulus representation due to changes in stimulus physical

features, input noise, or neural noise in afferent stages. For
1214 Neuron 83, 1213–1226, September 3, 2014 ª2014 Elsevier Inc.
example, in the olfactory system, cluster centersmight represent

the response of the olfactory bulb to a pure ethologically relevant

odorant with a given concentration, while the other members of

the cluster are responses to fluctuations in the odor’s concentra-

tion, contamination by other chemicals, or noise induced by the

olfactory receptors. There are P different clusters, and the activ-

ity of the i th neuron in the stimulus layer (i = 1,.,NS) correspond-

ing to the center of them th cluster (m = 1,.,P) is denoted by S
m

i ,

which are chosen as independent and identically distributed bi-

nary patterns, with ½ probability for S
m

i = 1. Other patterns in the

cluster, denoted as Sm, are generated by flipping at random the

state of the neurons in S
m
with a probability that we denote as

DS/2. Thus, DS quantifies the size (or radius) of the clusters.

This quantity also equals the average distance of patterns from

their corresponding cluster center: DS= 2hPNS

i = 1

���Sm
i � S

m

i

���i=NS,

where the angular brackets denote average over all patterns

Sm belonging to the cluster m. This distance is normalized so

that random patterns have distance 1 from any cluster center.

Thus, DS = 0 corresponds to clusters that contain only the cen-

tral patterns, and DS = 1 corresponds to clusters so large that

they encompass most of the patterns in the stimulus layer.

Each neuron in the cortical layer receives a weighted sum of

the inputs from the stimulus layer, with a synaptic weight matrix

J, and compares it against a threshold T (see Experimental Pro-

cedures). The cortical representation of the center of the m th

input cluster is denoted as C
m

j ; j = 1;.;NC. The level of sparse-

ness of the cortical layer, i.e., the fraction f of cortical neurons

that fire in response to each stimulus, is set by tuning the

threshold T (see Experimental Procedures). A number of

possible mechanisms, such as feed-forward inhibition (Koulakov

and Rinberg, 2011), lateral inhibition (Sachdev et al., 2012), or

intrinsic properties of neurons (Demmer and Kloppenburg,

2009) might perform this function.

A key question is what should be the ‘‘design principle’’ for the

synaptic matrix J. The simplest scenario is to assume that each

synaptic weight Jji is an independent and identically distributed

(i.i.d.) random variable. We implement this scenario by choosing
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Jji =N ð0; 2= ffiffiffiffiffiffi
NS

p Þ. Later on, we also consider alternative

schemes with more structured synapses.

Increased Cluster Sizes in Cortical Representation
Ideally, the transformation of the signals from the stimulus to the

cortical layer should enhance the robustness to noise and varia-

tions of the input signal in order to facilitate unambiguous pro-

cessing by downstream structures. Thus, in the cortical layer,

distances between different clusters should be large, while dis-

tances among patterns belonging to the same cluster should

shrink. In fact, with random projections to the cortical layer, dis-

tances between clusters are large (z1) in both layers; therefore,

we focus on the intracluster distances, or alternatively, on the

cluster sizes (schematically shown in Figure 2A). The cortical

cluster sizes are defined as:

DC= hPNC

j = 1

���Cm
j � C

m

j

���i=ð2NC fð1� fÞÞ, where Cm is the

cortical representation of Sm. Here again, the normalization is

such that a random cortical pattern with sparseness f is of dis-

tance 1 from any cluster center. Thus, our measure of the cortical

cluster size can be interpreted as the average squared Euclidean

distance between cortical patterns and the center of their clus-

ter, relative to the average distance between two cluster centers.

Thus, if DC = 1, the cluster structure is completely lost in the

cortical representation. As we show later, this normalization of

the squared Euclidean distances is also justified by the fact

that the readout signal-to-noise ratio depends on these dis-

tances through the factor 1 � DC (Equation 5).

We have evaluated analytically (and confirmed by simulations)

the cortical cluster sizes. Notably, we found that DC > DS,

namely, the transformation from the stimulus layer to the cortical

layer, causes an increase in the size of the clusters (Figure 2B).

For small stimulus clusters (DS � 1) and sparse cortical repre-

sentations (f � 1), the cortical cluster size can be approximated

as follows (see Experimental Procedures):

DCz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
jlog f jDS

r
: (Equation 1)

This implies that, in the regime of small DS, DC[ DS indicating

that under random projections, the variability inherent in stimuli

belonging to the same cluster is amplified in the cortical layer.

Notably, our results reveal that sparseness of cortical repre-

sentations increases the size of the cortical clusters, i.e., smaller

f leads to larger DC (Figures 2B and 2C). In fact, Equation 1 im-

plies that, for high sparseness (f � 1), even small stimulus clus-

ters, of sizes DS > 1/ jlog fj, are dispersed in cortex essentially

across the entire space of sparse patterns. Figure 2D provides

a schematic explanation of the adverse effect of sparseness.

Let us denote by h the net inputs to cortical neurons induced

by a central pattern S
m
. For large NS, h obeys a Gaussian distri-

bution (Figure 2D, solid curves). The area to the right of the

threshold represents the fraction of active neurons in the cortical

pattern C
m
, i.e., f (Figure 2D, gray areas). For small DS, a typical

pattern Sm induces a random change in the input that, in turn,

causes some neurons with hzT to cross the threshold and

change their state, yielding a cortical patternCm, which is slightly

different from C
m
(Figure 2D, shaded areas). DC is roughly the

size of the area corresponding to neurons that changed their
Ne
state from active to inactive, relative to the area of active neu-

rons. As seen in Figure 2D, this relative area is larger in the sparse

case (left) than in the dense case (right).

Excess Overlaps between Cortical Clusters
While, on average, the distance between pairs of cortical clusters

is 1, there are important deviations in intercluster distances,

which vary from one realization of J to another and from one

cluster pair to another (schematically shown in Figure 3A). To

quantify this effect, we define the overlap between the central

patterns of distinct cortical clusters m and n as the normalized

dot product between them, i.e., Om;n =
PNC

j = 1C
m

j C
n

j =NC. For m

s n, Om,n = f2 + rm,n, where the first term represents the average

overlap between two random sparse vectors and the second

term is the deviations of Om,n from this value. As is shown later,

overlaps between cluster centers are detrimental for the down-

stream readout, as they render the distinction of cortical patterns

more difficult. When averaged over all realizations of J, hrm,ni = 0,

but for any fixed J, it has a nonzero variance, which can be

written as:D
ðrm;nÞ2

E
= f2ð1� fÞ2

�
1

NC

+
Q2

NS

�
: (Equation 2)

Imagine that, instead of generating the cortical patterns via the

connections J, they would be chosen randomly (i.e., each C
m

j

is independently chosen to be 1 with probability f). In this case,

the fluctuations in their overlaps Om,n would yield

hðrm;nÞ2i= f2ð1� fÞ2=NC, which is the same as the first term in

the righthand side of Equation 2. Hence, we denote this contribu-

tion as the squared amplitude of the random overlap of clusters.

The extra term in Equation 2 is the consequence of the feed-for-

ward projections, i.e., the fact that the cortical patterns are

generated not randomly but by filtering the random stimulus cen-

ters S
m
and S

n
through the same projection matrix J. It is impor-

tant to note that this contribution scales as 1/NS, reflecting the

square amplitude of the random overlap of the stimulus patterns,

with a size-independent prefactorQ2. We refer toQ as the ampli-

tude of the excess overlap between cortical clusters. The

different scaling of the random overlap and the excess overlap

(Figure 3B) implies that the excess overlap is particularly impor-

tant when the stimuli undergo a large expansion, i.e., NS � NC.

Figure 3C shows thatQ vanishes as f/ 0, i.e., sparser represen-

tations lead to smaller excess overlaps between clusters in the

cortical layer. This is also implied by the analytical expression

for Q when f � 1 (see Experimental Procedures):

Qz2f jlog f j: (Equation 3)

An interesting signature of the excess overlaps between cortical

representations of different stimuli is the eigenvalue spectrum of

the covariance matrix of the cortical patterns. This can be done

by principal-component analysis (PCA) of the matrix Om,n. If the

cortical patterns are random, the resulting spectrum obeys the

well-known Marchenko-Pastur (MP) distribution. Because the

individual excess overlaps are small (of order 1=
ffiffiffiffiffiffi
NS

p
), the devi-

ation from the MP distribution is pronounced when the dimen-

sionality of the covariance matrix is large, i.e., the number of

patterns P is larger than NS. In this case, the cortical spectrum

shows an enhanced power in the first NS eigenvalues, whereas
uron 83, 1213–1226, September 3, 2014 ª2014 Elsevier Inc. 1215
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Figure 2. Size of Cortical Clusters in the Case of Random Projections

(A) Schematic description of the cluster sizes. The cluster center stimulus S
m
induces cortical pattern C

m
(left). A typical stimulus Sm, which is slightly different

from S
m
, induces cortical pattern Cm that is, in turn, slightly different from C

m
(right). The red neurons (right) are those that are active both in central and typical

patterns; the blue neurons are those that are active in the typical but not in the central pattern; and the crossed neurons are those that are active in the central but

not in the typical pattern. These variations of the typical patterns compared to the central patterns are quantified by cluster sizes DS and DC.

(B) Increase of the size of cortical clusters, DC, compared to the size of stimulus clusters, DS. In this and all subsequent figures, the filled circles are results of

numerical simulations, and the solid curves are analytical results. Different curves correspond to different activity levels, f, of the cortical layer. Other parameters

of the network are NS = 1000, NC = 10000, and P = 1000.

(legend continued on next page)

Neuron

Sparse Expansion in Sensory Representations

1216 Neuron 83, 1213–1226, September 3, 2014 ª2014 Elsevier Inc.



Neuron

Sparse Expansion in Sensory Representations
the rest of the spectrum has a profile similar to that of the MP

spectrum (with a slightly smaller amplitude). An example is

shown at the top of Figure 3D. It is interesting that, if P is further

increased, there is a discontinuity in the spectrum, signaling the

existence of a gap between the first NS eigenvalues and the rest

(Figure 3D, middle). The branch of the largestNS eigenvalues is a

stark signature of the approximate low dimensional character of

the cortical representations, inherited from its low dimensional

stimulus origin. The shape of the spectrum also depends on

the level of sparseness. As noted earlier, low values of f also

imply smaller Q and, correspondingly, a spectrum that is similar

to the MP shape (Figure 3D, bottom).

Classification by a Readout Neuron
With the aforementioned analyses, we are now equipped to

address the effect of sparseness and expansion on the perfor-

mance of a downstream readout neuron. The task of the readout

neuron is to classify the clusters of the input patterns into two

categories. For example, in the context of the olfactory system,

the two categories can be appetitive and aversive odors (Fig-

ure 1). Here, we assume that each clusterm is randomly associ-

ated with a label Lm, which is either 1 (e.g., appetitive) or�1 (e.g.,

aversive), each with ½ probability. As shown in Figure 1, we

consider a readout neuron that performs a linear classification

via a set of synapsesW. In order to perform a given classification,

these weights must be trained by a supervised learning rule that

provides information about the desired categories of inputs. We

concentrate on a simple Hebbian learning rule for training W,

because of its biological plausibility and its amenability to exact

analytical study. Qualitatively similar behavior is found in more

elaborate linear classification schemes, i.e., perceptron, pseu-

doinverse rule, and support vector machine (SVM) (see Supple-

mental Information available online). In the Hebb scheme, the

synaptic weight Wj from neuron j in the cortical layer to the

readout neuron is given by

Wj =
XP
m= 1

�
C

m

j � f
�
Lm: (Equation 4)

Each cluster contributes a term to this weight that is equal to the

product of the desired label of this cluster and the activity of the

presynaptic cortical neuron in this cluster (relative to the mean

activity, f). We find that the average classification error, ε, of

the Hebbian readout is given by ε=Hð ffiffiffiffiffiffiffiffiffiffi
SNR

p Þ, where H(,) is the

tail probability of the standard normal distribution (the Q func-

tion), and SNR denotes the signal-to-noise ratio of the synaptic

input to the readout neuron (see Experimental Procedures):

SNR=
ð1� DCÞ2
ðaC +aSQ2Þ; (Equation 5)
(C) The size of cortical clusters, DC, decreases as a function of the fraction of act

sizes, DS. Other parameters of the network are the same as in (A).

(D) Schematic explanation of the effect of sparseness on the cortical cluster size. S

in response to the central pattern of a stimulus cluster. The dashed vertical lines

than the threshold fire (gray areas). Shaded areas show the fraction of neurons th

the cluster. The shaded areas are large relative to the gray area when the represe

dense (right).

Ne
where aC = P/NC and aS = P/NS. The numerator measures the

square difference between the mean inputs
PNC

j =1WjðCm
j � fÞ

induced by +1 and �1 clusters. Note that this term decreases

as the mean cortical cluster size DC increases. The denominator

measures the variance of the inputs to the readout neurons and

consists of two contributions: the first one is generated by the

random overlaps between the classified input cluster and other

cluster centers, and the second one originates from the excess

overlaps between them (see Equation 2 and Experimental Pro-

cedures). This expression allows us to analyze the effect of

sparseness and expansion on the performance of the readout.

Increasing the number of cortical neurons, NC, causes the first

term in the denominator of Equation 5 to decrease, thereby

increasing the SNR and improving the readout performance (Fig-

ures 4A and 4B; Figure S1). Nevertheless, theSNR remains finite,

even for arbitrarily large NC, because the second term in the de-

nominator, the contribution of the excess overlaps, is indepen-

dent of NC. Furthermore, there exists a characteristic size, Nsat
C ,

beyond which further expansion yields negligible improvement

in performance. This saturation occurs when the first term in

the denominator of Equation 5 becomes smaller than the second

term, yielding

Nsat
C =

NS

Q2
: (Equation 6)

Since Q decreases with f, expansion is more effective

when the representation is sparse. Equation 3 implies that

Nsat
C fNSðf log fÞ�2 for small f. Therefore, sparseness of cortical

representations renders the expansion more effective (Figures

4 and S1).

Despite the fact that Nsat
C increases with sparseness, the over-

all performance of the readout is nonmonotonic as a function of

the fraction of active neurons, f. This is because decreasing f de-

creases not only the noise (Equation 5, denominator) but also the

signal (Equation 5, numerator), resulting in an optimal finite level

of activity, fopt, for which the readout error is minimized (Fig-

ure 4C; Figure S3, left):

foptf

�
NS

NC

�1=2

ðDSÞ1=4: (Equation 7)

Note, however, that the increase in error is rather shallow as f in-

creases beyond fopt.

Sparse Expansion through Structured Synapses
Our analysis of sparse and expansive cortical representations re-

vealed some of the limitations of these representations: First,

nearby patterns in stimulus layer are mapped into distal patterns

in cortical layer, making the cortical representations sensitive

to variations of the input. Second, excess overlaps between

clusters, which are induced in the cortical layer, limit the benefit
ive cortical neurons, f. Different curves correspond to different stimulus cluster

olid curves show the distribution of the net input h received by cortical neurons

show the threshold of cortical neurons. Neurons that receive net inputs higher

at cross the threshold and change their state in response to a typical pattern of

ntation is sparse (left), while they are relatively small when the representation is

uron 83, 1213–1226, September 3, 2014 ª2014 Elsevier Inc. 1217
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Figure 3. Overlaps between Cortical Representations in the Case of Random Projections

(A) Schematic description of the variance of overlaps between cortical patterns. The red neurons on the left are active in both cortical patternsC
1
andC

2
, while the

blue neurons are active inC
2
but not inC

1
. The same color code is used to denote the overlap betweenC

1
andC

3
on the right. Although the average overlap is f2,

it deviates from pair to pair, i.e., r1,2 and r1,3 are different.

(B) The bars show the distribution of the deviations of the overlaps rm,n, m s n between all pairs of cortical patterns C
m
and C

n
projected from corresponding

patterns in the stimulus layer through feed-forward random synapses, obtained by numerical simulations. The dotted curves show the distribution of overlaps

between putative uncorrelated random cortical patterns. The width of the distribution is larger for the projected cortical patterns; therefore, there exists an

‘‘excess overlap’’ induced by the feed-forward projections. The width of the distribution for projected patterns decreases as the size of the stimulus layer, NS,

increases (top to bottom). Other parameters are NC = 10000, P = 1000, and f = 0.05.

(C) Amplitude of the excess overlap, Q, increases as a function of the fraction of active cortical neurons, f. Other parameters are NS = 1000, NC = 10000, and P =

1000.

(D) Red dots show the principal components of the cortical patterns ðCm � fÞ, i.e., eigenvalues of the overlapmatrix rm,n (including the diagonal elements), forNS =

100, NC = 1000, and f = 0.1. Blue dots show the principal components of putative random uncorrelated cortical patterns for comparison. The first NS eigenvalues

are enhanced. When aS = P/NS is very large (middle), there is a gap in the spectrum. Sparser representations lead to a spectrum that is more similar to that of the

random uncorrelated patterns (bottom).
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of expansion. Finally, increasing sparseness (i.e., decreasing f)

improves the performance of the readout up to some finite levels,

beyond which further sparseness degrades it.

Some of these limitations are due to the randomness of the

synaptic weights that implement the transformation from the

stimulus to the cortical layer. As an alternative, it is reasonable
1218 Neuron 83, 1213–1226, September 3, 2014 ª2014 Elsevier Inc.
to hypothesize that the synaptic weights encode information

about the statistics of the inputs, which, in our case, is their clus-

tered structure. Here, we propose a simple scheme based on

associating the stimulus clusters with random f� sparse cortical

patterns. These associations are encoded in the synaptic

weights Jji through the following rule,
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Figure 4. The Effect of Expansion and

Sparseness on Readout Performance in

the Case of Random Projections

(A) SNR of the readout increases as a function of

the size of cortical layer, NC; however, it reaches a

plateau. Different curves correspond to different

activity levels, f, of the cortical layer.

(B) The error of the Hebb readout decreases as a

function of the size of cortical layer,NC; however, it

reaches a plateau. Different curves correspond to

different activity levels, f. The stimulus cluster size

is fixed at DS = 0.1. Other parameters are NS =

1000 and P = 1000.

(C) The error of the Hebb readout is nonmonotonic

as a function of the fraction of active cortical

neurons, f. There is an optimal activity level, fopt,

for which the readout error is minimized. Different

curves correspond to different stimulus cluster

sizes, DS. Other parameters are NS = 1000, NC =

10000, and P = 1000.
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Jji =
1

NS

XP
m= 1

�
S
m

i � 1

2

��
Rm

j � f
�
; (Equation 8)

where Rm is a random f � sparse cortical state associated with

them th cluster center, S
m
. This rule can be interpreted as result-

ing from a sum of Covariance Hebb modifications (Tsodyks and

Feigelman, 1988) induced by each pairing of S
m
andRm (see Dis-

cussion). As in the random weight scenario, cluster center input

patterns S
m
and cluster members Sm induce cortical cluster cen-

tersC
m
and cluster membersCm, respectively, by linear summa-

tions with weights J and thresholding with threshold T to ensure

the desired sparseness f. Note that, in contrast to the supervised

Hebb rule of the output weights (Equation 4), J of Equation 8

does not incorporate information about the behavioral efficacy

of the stimuli, i.e., their labels Lm.

In contrast to the random weights, the structured synapses

(Equation 8) yield cortical clusters with mean size, DC, which is

significantly smaller than the stimulus cluster sizeDS (Figure 5A).

Furthermore,DC decreases rapidly with decreasing f (Figure 5B),

as can be seen from the following expression (valid for finite DS

and f � 1):

DCz

ffiffiffiffiffiffiffiffiffiffi
2aSf

pffiffiffi
p

p ð1� DSÞ exp
 

� ð1� DSÞ2
8aSf

!
(Equation 9)

(see Experimental Procedures). In the asymptotic limit of f / 0,

the size of cortical clusters approaches zero as long as DS is

smaller than 1.

Aqualitativeexplanation for this result is presented inFigure 5C.

Consider cortical neurons that receive inputs which are highly

overlapping with one cluster center, say S
1
. According to Equa-

tion 8, the mean total synaptic inputs to neurons with R1
j = 1 will
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be positive (proportional to 1� f), whereas

for those with R1
j = 0, it will be negative

(proportional to � f). This results in a

bimodal input distribution composed of

two Gaussians (Figure 5C, solid curves),

as opposed to the unimodal distribution
of Figure 2D. The width of both Gaussians (which is proportional

to f(1� f); see Experimental Procedures) decreaseswhen the rep-

resentation becomes sparser (Figure 5C, left versus right). There-

fore, sparser representations lead to a better separation of the

two Gaussians so that the area that contributes to DC is expo-

nentially small when f � 1. This provides resilience to noise and

variations in the input. As suggested by Equation 9, this structure

depends not only on f but also on the number of clusters per input

neuron, aS. Thus, when aSf [ 1, the overlap between the two

Gaussians becomes larger than their widths and DC behaves

similarly to the case of random synapses (Figure 5B, bottom).

Another advantage of the structured connections is the strong

suppression of the excess overlaps between cortical clusters, in

particular, for low f (Figure 6, top). In the limit of sparse represen-

tations (f � 1), this overlap decreases exponentially with 1/aSf:

Qff�1 exp

�
� 1

4aSf

�
; (Equation 10)

in contrast to the approximately linear dependence in the case of

randomweights (Equation 3). The reason for the strong suppres-

sion in the overlap is that the cortical patterns C
m

induced by

structured connections are close to the random statesRm (which

have zero excess overlap). As before, in the limit of aSf[ 1, the

structured projections behave as random projections, destroy-

ing the relationship between individual cluster centers C
m

and

the paired random patterns Rm and yielding a similar excess

overlap as in random projections (Figure 6, bottom).

As in the case of random projections, the SNR of the readout is

given by Equation 5; hence, a finite saturation of performance

with expansion, given by Equation 6, holds also for structured

expansion. However, here, the saturation size of the cortical
ptember 3, 2014 ª2014 Elsevier Inc. 1219
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Figure 5. Size of Cortical Clusters in the Case of Structured Projections

(A) Shrinkage of the size of cortical clusters, DC, compared to that of the stimulus clusters, DS. Different curves correspond to different cortical activity levels, f.

Other parameters of the network are NS = 1000, NC = 10000, and P = 1000.

(B) The size of cortical clusters,DC, as a function of the fraction of active cortical neurons, f.DS is fixed at 0.1. When the number of clusters per input neuron, aS, is

large, the behavior of structured synapses converges to the random case (bottom). Other parameters of the network are the same as in (A).

(C) Schematic explanation of the effect of sparseness on cortical cluster size. Solid curves show the distribution of the net input received by cortical neurons in

response to a central pattern of a cluster in the stimulus layer. The dashed lines show the threshold of cortical neurons. Neurons that receive net inputs higher than

the threshold fire (gray areas). Shaded areas show the fraction of neurons that cross the threshold and change their state in response to a typical pattern of the

cluster. When the cortical activity is sparse (left), the two peaks of the distribution are well separated, and the shaded areas are very small relative to the gray area.
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layer (calculated via Equation 10) increases exponentially with

f�1, as Nsat
C ff2 expð1=2aSfÞ. Thus, for sparse representations,

expansion is highly effective at improving the SNR (Figures 7A

and 7B; Figure S3, right). Additionally, sparseness not only de-

creases the noise but also increases the signal (Figure 5); hence,

the overall performance monotonically decreases with sparse-

ness (Figure 7C; Figures S2, right, and S3, left).

Stimuli with Intrinsic Low Dimensionality
In our model, stimuli are distributed as random NS dimensional

patterns so that different cluster centers are not correlated. How-

ever, many natural stimuli exhibit strong correlations, resulting

in intrinsic dimensionality that is significantly lower than their
1220 Neuron 83, 1213–1226, September 3, 2014 ª2014 Elsevier Inc.
dimensionality. By intrinsic dimensionality of a collection of stim-

ulus representations, wemean the dimensionality of themanifold

on which they (approximately) lie, whereas their dimensionality

refers to the number of pixels or neurons participating in the rep-

resentation. For instance, in vision, most of the power of natural

images lies in the low Fourier components, reflecting the strong

correlations between nearby pixels (Field, 1987). In olfaction,

behavioral and neuronal data suggest that natural stimuli lie on

a low dimensional manifold (Haddad et al., 2010; Koulakov

et al., 2011). Intrinsic low dimensional representations may also

emerge in association cortices that encode both stimulus and

contextual information (Miller and Cohen, 2001). To study the ef-

fect of expansion and sparseness on stimulus representations
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Figure 6. Amplitude of Excess Overlap between Cortical Represen-

tations in the Case of Structured Projections

Solid curves show the amplitude of excess overlap as a function of the fraction

of active cortical neurons, f. Dashed curves show the amplitude of excess

overlap in the case of random projections for comparison. The number of

clusters (P and, hence, aS) increases from top to bottom. Other parameters are

NS = 1000 and NC = 10000. Note that the dashed curves do not change by

changing the number of clusters.
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with intrinsic low dimensional structure, we generatedNS dimen-

sional vectors S
m

with intrinsic dimensionality M with M < NS

(Supplemental Information; Figure S6A). As before, expansion

improves the performance with an asymptote to a nonzero error

for large NC (Figure S6D). Random projections yield a perfor-

mance that is optimal at a finite value of f (example shown in Fig-

ure S6C). Sparseness considerably improves the performance in

the case of structured projections (Figure S6E, right).

Performance in Other Tasks
In the preceding text, we have analyzed the performance of

readout in binary classification tasks in which the clusters are

labeled as null or target at randomwith ½ probability. The results

of our analysis hold qualitatively for other tasks as well. For

instance, consider the case where the number of target clusters

(e.g., appetitive stimuli) is much smaller than the number of null

stimuli. This can bemodeled by assuming that the readout labels

have a probability l of being one and 1 � l of being zero, with

small l. In the extreme case where l = 1/P, the task can be inter-

preted as an ‘‘identification’’ task, i.e., the readout neuron has to

signal the presence (or absence) of one particular stimulus. We

find that Equation 5 for the SNR holds also for these tasks,

except for an overall increase by a factor of 4l(1� l) (see Supple-

mental Information). Therefore, sparseness of the readout tasks

improves the performance, while the effects of cortical sparse-

ness, expansion, and structuring the input weights remain un-

changed (Figure S7).
Ne
Another interesting task is a reconstruction task. In this case,

the readout layer consists of NS neurons that are required to

reconstruct for each noisy stimulus pattern, Sm, its cluster cen-

ter, S
m
. To perform this task, the cortical layer is connected to

the readout layer by an NC 3 NS dimensional weight matrix W

(Figure S8A), with weights that are given by a Hebb rule, associ-

ating the cortical states C
m

with the desired output states S
m
.

The performance of this reconstruction task is, in general, supe-

rior to that of the classification task, particularly when the cortical

representation is dense. The qualitative effect of sparseness and

expansion remains the same as that of the classification task.

DISCUSSION

Our analysis highlights the subtle effects of sparseness and

expansion, two fundamental concepts in the theory of biological

and artificial signal processing. It is often argued that sparseness

suppresses noise because two N -bit patterns with sparseness

level f can deviate by, at most, 2Nf bits. We argue, however,

that the relevant measure of noise is the distance between two

sparse patterns belonging to the same stimulus or category,

relative to the distance between two random sparse patterns

with the same level of sparseness, a measure that is encapsu-

lated in our normalized distances or cluster sizes DS and DC.

This normalization is ultimately justified by the analysis of the

readout SNR, which depends on the cluster size through 1 �
DC. As shown here, whether sparseness shrinks DC or not

depends on the nature of the synaptic weights J. Random pro-

jections into sparse representations increase the normalized dis-

tances, thereby degrading the ability of the system to identify

nearby input patterns as equivalent; as a consequence there is

a nonzero optimal sparseness, fopt (cf. Equation 7). A finite

optimal sparseness has been also found numerically in a model

for processing inputs that lie in low dimensional subspace by

projecting them with random weights (Barak et al., 2013).

Sparse expansion via projections that incorporate the clus-

tered structure of the inputs shrinks the distance between

patterns belonging to the same cluster, conferring enhanced

robustness to the system. In addition, by pairing input states

with random cortical patterns, these connections greatly sup-

press correlations between cortical representations, especially

when they are sparse. As a result, increasing the sparseness of

the representation improves the readout performance, yielding

error levels that are substantially lower than those achieved by

random projections. Increasing sparseness is beneficial as

long as the number of active neurons in the sparse patterns

(fNC) remains large. Otherwise, the fluctuations in the number

of neurons that represent a cluster limit the performance of the

system.

It is well known that a nonlinear mapping of a set of low dimen-

sional inputs into a high dimensional space enhances their linear

separability, namely, the ability of classifying them by down-

stream linear classifier units. Similarly, in our case, the number

of patterns that can be perfectly classified by a suitable linear

readout unit increases with the dimensionality of the inputs

to the readout, NC, independent of their sparseness level. Sur-

prisingly, however, we have found that when one considers clas-

sifications of the entire clusters (i.e., DS > 0), there is a limit to the
uron 83, 1213–1226, September 3, 2014 ª2014 Elsevier Inc. 1221
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Figure 7. The Effect of Sparseness and Expansion on Readout Performance in the Case of Structured Projections

(A) SNR of the readout increases as a function of the size of cortical layer, NC; however, it reaches a plateau. Different curves correspond to different cortical

activity levels, f.

(B) The error of the Hebb readout decreases as a function of the size of cortical layer, NC; however, it reaches a plateau. Different curves correspond to different

cortical activity levels, f. Sparser cortical representations lead to a higher SNR and lower readout error. Note that the SNR is considerably higher compared to

random projections (Figure 4A), and in the case of highly sparse representations (black curve), it does not saturate in the given range. The stimulus cluster size is

fixed at DS = 0.1. Other parameters are NS = 1000 and P = 1000.

(C) The error of the Hebbian readout is monotonically increasing as a function of the fraction of active cortical neurons, f, as opposed to the case of random

projections (Figure 4C), i.e., sparseness decreases the error unboundedly. Different curves correspond to different stimulus cluster sizes, DS. Other parameters

are NS = 1000, NC = 10000, and P = 1000.
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gain achieved by expansion (as demonstrated by ourNsat
C ; Equa-

tion 6). This saturation stems from the excess overlaps between

the cortical patterns inherited from the original low dimensional

stimulus layer. These overlaps scale inversely with the input

dimension, NS, and are therefore not affected by the expansion

dimension, NC. This saturation occurs for both random and

structured expansions; however, the saturation size for the

structured expansion is substantially larger than that of the

random expansion when the cortical representation is highly

sparse. We have shown that the excess overlaps can be

observed by a PCA of the covariance matrix of cortical activity

patterns generated by distinct stimuli, provided that the number

of stimuli is large compared to stimulus dimensionality, NS. In

such a case, the theory predicts a distinct band of enhanced

power of the firstNSmodes, reflecting the source low dimension-

ality of the cortical representations (Figure 3D).
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Our conclusions about readout performance are based on the

analysis of a supervised Hebb rule for readout weights, which is

tuned to classify the central pattern of each cluster. As an alter-

native training scheme, the readout neuron can be trained to

classify samples of the typical, noisy input patterns belonging

to the clusters (Supplemental Information). Training the Hebb

readout with these inputs reduces both the signal and the noise

of the readout (numerator and denominator of Equation 5,

respectively). For most parameter ranges, this results in degra-

dation in performance compared to training with the cluster

centers. Nevertheless, the qualitative behavior of the readout re-

mains the same (Figure S4A).

The supervised readout Hebb learning rule has the advantage

of being amenable to systematic analytic study and is biologi-

cally plausible. Linear classifiers with more complex learning

rules such as pseudoinverse, perceptron, and SVM, are more
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Figure 8. Comparison of Readout Perfor-

mance between Random Projections, at

Left, and Structured Projections, at Right,

When the Fraction of Active Neurons is f =

0.1, in the Top Row, and f = 0.01, in the Bot-

tom Row

Horizontal and vertical axes indicate the stimulus

cluster size, DS, and the number of clusters, P,

respectively. The color scale shows the readout

error. The sizes of the stimulus and cortical layers

are fixed at NS = 1000 and NC = 500,000,

respectively. Note that the difference between the

two modes of projections is more manifest when

the cortical activity is sparse (bottom).
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powerful in that they allow for perfect classification of noiseless

patterns, up to their capacity limit, whereas the SNR of the Hebb

rule is small but nonzero, even for DS = 0 (compare Figure 4C

with Figure S3, left). In addition, in the presence of noise, their

performance is generally better than the simpler Hebb readout.

Although a systematic analytical study of these classifiers is

not available, our numerical simulations of a range of parameters

suggest that the behavior of these linear classifiers is qualita-

tively similar to the Hebb rule (Figures S1–S3 and S4B). In partic-

ular, the error of all these classifiers saturates to a finite value as

NC increases, and with random expansion, but not with struc-

tured expansion, there is an optimal sparseness level that mini-

mizes the readout error.

Our results are consistentwith recent compressed sensing and

sparse coding theories (for a review, see Ganguli and Sompolin-

sky, 2012). While random projections of sparse signals are effec-

tive in compressing them into low dimensions, generating an

appropriate expanded sparse code requires a nonlinear compu-

tation that incorporates information about the hidden structure of

the compressed signals (e.g., the ‘‘dictionary’’ of their sparse ba-

sis vectors). Our Hebbian model for J plus the subsequent

threshold nonlinearity can be viewed as a simple, biologically

plausible approximation to the more complex machine learning

algorithms for sparse reconstruction (Ganguli and Sompolinsky,

2012; Rozell et al., 2008). To demonstrate the relation of our

work to sparse coding in vision, we have applied our scheme to

inputs taken from natural images. The stimulus layer of size

NS = 256 consists of neurons that code the analog pixel values

of 163 16whitened patches of natural images. Mapping of these

inputs to a cortical layer of sizeNC= 5000was implemented using
Neuron 83, 1213–1226, Se
online Hebb learning rule for the synaptic

matrix J (Supplemental Information; also

discussed later). It is interesting that

imposing a high degree of sparseness

yields Gabor-like cortical receptive fields

(Figure S5), which is the hallmark of

sparse coding theory of early vision (Field,

1994; Bell and Sejnowski, 1997). Thus,

the combined effect of averaging the

input stream using the Hebb learning

and competition at the cortical layer

imposed by sparseness results in a syn-

apticmatrix that encodes the hidden clus-
tered structure of natural image patches, with Gabor-like cluster

centers (Saxe et al., 2011).

Application to Biological Systems
Comparing our results to specific neuronal systems requires an

estimate of several key parameters, such as the sparseness level

of the cortical layer, f; the number of behaviorally relevant distinct

stimuli or objects represented in the system, P; and the magni-

tude of variability or noise in their primary sensory representa-

tion, i.e., DS. To provide a concrete plausible setting, we show

in Figure 8 the case ofNS = 103 andNC = 0.53 106, an expansion

that is roughly the same order of magnitude as in rodent olfactory

system (where roughly 103 glomeruli project to 106 neurons in the

piriform cortex) and in cerebellum (where a single Purkinje cell re-

ceives input from roughly 103mossy fibers via an expanded layer

of 200,000 parallel fibers). For the number of distinct stimuli, we

take the range NS%P%10NS. Figure 8 shows that, for a moder-

ate sparseness level f = 0.1, whichmight characterize the activity

level in piriform cortex, the performance of the structured expan-

sion is equal or even slightly worse than the random case (Fig-

ure 8, top). In contrast, in the case of f = 0.01, which is similar

to that of the granular layer in cerebellum (Chadderton et al.,

2004; Galliano et al., 2013), the structured projections are supe-

rior even for a number of distinct stimuli ten times larger than the

size of the input layer (Figure 8, bottom). Additionally, for f = 0.1,

our theory predicts that the benefit of expansion saturates at

Nsat
C z104, suggesting that the size of the piriform cortex serves

other computational purposes than those considered here. In

contrast, for f = 0.01, Nsat
C z23105, which is consistent with the

expansion in the cerebellum.
ptember 3, 2014 ª2014 Elsevier Inc. 1223
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Analyzing the projections from the glomeruli in the antenna

lobe to the Kenyon cells in the mushroom body of the fly, Caron

et al. (2013) concluded that the observed connectivity is indistin-

guishable froma random 0,1matrix. It should be noted, however,

that our structured projections may be built from a random 0,1

connectivity by appropriate modification of the magnitude of

the nonsynaptic efficacies. Thus, a definitive test of the random

versus structured scenarios must require data not only about

connectivity but also about the synaptic strengths. An alternative

experimental test is to measure intracellularly the distribution of

the net synaptic potentials induced by a set of natural stimuli. In

the case of structured projections, this distribution should be

bimodal, with the firing threshold in between the two modes,

separating the preferred from the null stimuli for each neuron.

Our model of structured projections (Equation 8) associates

each stimulus cluster with a random sparse cortical pattern,

raising the question of what might be the biological mechanism

of this allocation process. One possible scenario is that,

throughout learning or development, noise is injected to the

cortical layer during stimulus presentation, resulting in random

cortical activation patterns. A Hebbian plasticity will then asso-

ciate these cortical patterns with the corresponding stimulus

inputs. The notion that noise is injected to cortical neuronal re-

sponses during learning, presumably by basal ganglia struc-

tures, has gathered support from recent experiments in birdsong

learning and motor association learning in primates (Ölveczky

et al., 2005; Sheth et al., 2011). It is argued that this variability en-

hances exploratory behavior, which benefits reinforcement-like

learning. Our results suggest that, in addition to this role,

enhanced variability during learning is beneficial as an effective

mechanism for forming associations between inputs and ran-

domized cortical patterns. A recent theory proposes that the hip-

pocampus plays a central role in the process of allocations of

neurons in cortex to form new ‘‘concepts’’ (Valiant, 2012). Alter-

natively, the feed-forward connections may start initially as

random projections and generate initial cortical representations,

which are then subjected to online Hebbian modifications (see

Supplemental Information). This scheme, which combines ele-

ments from our two models of J, results in a performance that

is intermediate between the random and structured models

studied earlier (see Figure S5). An alternative hybrid architecture

is a combination of feed-forward random projections with Heb-

bian recurrent connectivity in the cortex. Thus, a fuller under-

standing of the computational principles of cortical sensory

transformations will require extending our architecture to include

both recurrent and feedback connections.
EXPERIMENTAL PROCEDURES

Numerical Simulations

Stimulus and Cortical Clusters

Central patterns of each cluster, S
m
, in the stimulus layer are generated as ar-

rays of NS {0,1} bits i.i.d. with equal probabilities. To generate other members

of a cluster—say, Sm —the value of each element of S
m
is independently flip-

ped (zero to one or one to zero) with probability DS/2. This guarantees that the

cluster size is DS.

Cortical responses for each stimulus pattern—say, Sm —are calculated by

evaluating the weighted sums hmj =
PNS

i =1JjiðSm
i � 1=2Þ for each cortical neuron

j. Note that the offset �1/2 (which can be incorporated in the definition of the
1224 Neuron 83, 1213–1226, September 3, 2014 ª2014 Elsevier Inc.
neuron’s threshold) enhances the SNR of the cortical neurons. The cortical

pattern is obtained as Cm
j =Qðhmj � TÞ, where Q(,) denotes the Heaviside

step function. The threshold T is set so that a fraction f of all PNC realizations

of hmj are larger than T. In order to calculate the cortical cluster sizes DS and

DC, one representative typical pattern is generated from each of theP clusters,

and the values are averaged over the P clusters. The numerical results appear

as filled circles in Figures 2, 3, 5, and 6.

Linear Readouts

The synaptic weights of the Hebbian readout are obtained according to Equa-

tion 4. In addition, we studied the performance of alternative linear readouts

(see Supplemental Experimental Procedures). In all cases, the readout error

is calculated as:

ε=

*�����Lm � sign

 XNC

j =1

Wj

�
Cm

j � f
�!�����

+,
2:

The average is over P cortical pattern/label pairs (Cm,Lm), with one represen-

tative typical pattern from each cluster. In Figures 4, 7, and S1–S7, the readout

error averaged over 400 different realizations of the readout is shown, each

with its own randomly chosen labeling of the clusters.

Analytical Calculations

All analytical results are derived in the limit of large NS, NC, and P, while aS = P/

NS andaC=P/NC are finite.We also assume thatNCf[ 1. Central limit theorem

implies that the input potentials to cortical neurons, as well as to the readout

neuron, are Gaussian. The first-order and second-order statistics is readily

calculated from the statistics of the input patterns and synaptic weights.

Size of Cortical Clusters

The cortical cluster size can be formulated as:

DC=

XNC

j = 1

�
Pr
�
Cm

j = 1;C
m

j = 0
�
+Pr

�
Cm

j = 0;C
m

j = 1
��

2NCfð1� fÞ

=
Pr
�
Cm

j = 0;C
m

j = 1
�

fð1� fÞ

: (Equation 11)

The net input received by j th cortical neuron fromm th stimulus cluster center

is h
m

j =
PNS

i =1JjiðS
m

i � 1=2Þ. Similarly, the net input in response to a typical

member of m th cluster is hmj =
PNS

i =1JjiðSm
i � 1=2Þ. The joint probability in

Equation 11 can be written as Prðhmj <T ;h
m

j >TÞ. In the case of random projec-

tions, both h
m

j and hmj have zero mean and unite variance, and their covariance

is hhmj hmj i= ð1� DSÞ. Therefore, the size of cortical clusters is:

DC=
1

fð1� fÞ
ZN
T

dh

exp

�
�h2

2

�
ffiffiffiffiffiffi
2p

p H

 
ð1� DSÞh� Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DSð2� DSÞp
!
: (Equation 12)

Threshold T, which imposes sparseness, is obtained from the condition f =

H(T), where HðxÞ= RNx dx expð�x2=2Þ= ffiffiffiffiffiffi
2p

p
. The aforementioned exact form

of DC is illustrated as solid curves in Figures 2B and 2C, while Equation 1 is

its approximation in the limit of small DS and small f.

In the case of structured projections, the means of net inputs are

hhmj i= ðRm
j � fÞ and hhmj i= ðRm

j � fÞð1� DSÞ, respectively; their variance is

s2 = aSf(1� f); and their covariance is (1� DS)s2. Therefore, the size of cortical

clusters is:

DC=

ZN
T0

dh

f exp

 
� ðh� ð1� fÞÞ2

2s2

!
+ ð1� fÞexp

 
� ðh+ fÞ2

2s2

!
ffiffiffiffiffiffi
2p

p
sfð1� fÞ

3H

 
ð1� DSÞh� Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DSð2� DSÞp

s

!
;

(Equation 13)

where T0 and T are the threshold values in the case of responding to central

and typical patterns, respectively. They are obtained from the condition of

maintaining sparseness f in the cortical layer:

f = ð1� fÞH
�
T + fð1� DSÞ

s

�
+ fH

�
T � ð1� fÞð1� DSÞ

s

�
: (Equation 14)
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Note that T0 is obtained by setting DS = 0 in the aforementioned condition. The

exact form ofDC is illustrated as solid curves in Figures 5A and 5B, while Equa-

tion 9 is its approximation in the limit of small f and finite DS.

Amplitude of Excess Overlap

Random Projections. We define the overlap between a pair of cortical clus-

ters as rm;n =
PNC

j = 1ðC
m

j � fÞðCn

j � fÞ=NC;msn. Its average over J is zero. Its

variance can be written as in Equation 2 with:

Q2 =
NS

ðNCPfð1� fÞÞ2 3
XNC

j = 1

XNC

j0 = 1 jsj0

XP
m= 1

XP
n= 1 nsm

D�
C

m

j � f
�

3
�
C

n

j � f
��

C
m

j0 � f
��

C
n

j0 � f
�E

:

(Equation 15)

The averaging is over stimulus patterns (S
m
;S

n
) and also the feed-forward syn-

aptic weights J, from which the cortical patterns (C
m
;C

n
) originate. Note that

the terms j = j’ contribute as 1/NC, which is the random overlap contribution

to Equation 2; hence, they are not included in Equation 15. Thus, if the patterns

C
m
were independent random states, Q = 0. Nonzero Q reflects the correla-

tions induced to the cortical patterns by the filtering of the random input states

through the same projection matrix J. The averaging yields the following

expression for amplitude of excess overlap:

Q=
expð�T2Þ
2pfð1� fÞ: (Equation 16)

This exact form ofQ is illustrated as solid curves in Figure 3C, while Equation 3

is its approximation in the limit of small f.

Structured Projections. In the case of the structured synapses and DS > 0,

the definition of the overlap between clusters must take into account the

different statistics of cortical patterns Cm induced by noisy inputs Sm, in addi-

tion to cluster centers C
m
, which appear in the expression of the readout syn-

apsesW (Equation 4). Thus, the relevant definition of overlap between a pair of

cortical clusters is rm;n =
PNC

j = 1ðC
m

j � fÞðCn
j � fÞ=NC;msn, yielding

Q2 =
NS

ðNCPfð1� fÞÞ2 3
XNC

j = 1

XNC

j0 = 1 jsj0

XP
m= 1

XP
n= 1 nsm

D�
C

m

j � f
�

3
�
Cn

j � f
��

C
m

j0 � f
��

Cn
j0 � f

�E
:

(Equation 17)

Note that here, even in the case of DS = 0, Q2 is nonzero. The reason is that,

although the cortical states Rm that appear in J (Equation 8) are uncorrelated,

the actual cluster centers C
m
are correlated as they are affected by all random

states Rm, through filtering of the random stimulus patterns through the same

projection matrix J. The averaging in Equation 17 is performed over stimulus

patterns (S
m
;S

n
), the random states (Rm,Rn) incorporated in the feed-forward

synaptic weights J, and stimulus patterns (Sm,Sn) from which the cortical pat-

terns (Cm,Cn) originate. In the case of DS = 0, the averaging yields:

Q=A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aSA2 + ðaSA+ 2BÞ2

q
; (Equation 18)

where A and B are given as:

A=

f exp

 
� ðT0 � ð1� fÞÞ2

2aSfð1� fÞ

!
+ ð1� fÞexp

 
� ðT0 + fÞ2
2aSfð1� fÞ

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2paSfð1� fÞp

B=H

 
T0 � ð1� fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aSfð1� fÞp

!
� H

 
T0 + fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aSfð1� fÞp
! : (Equation 19)

The exact form ofQ (Equation 18) is illustrated as solid curves in Figure 6, while

Equation 10 is its approximation in the limit of small f.

Readout Error

The net input to the readout neuron in response to a pattern belonging to clus-

ter m is gm =
PNC

j =1WjðCm
j � fÞ. If gm > 0, the readout classifies the pattern as

belonging to class 1, and otherwise belonging to class �1. Conditioned on

the class label, the net input gm has a mean:

hgmi=
*PNC

j =1

Wj

�
Cm

j � f
�+

=

*XNC

j = 1

XP
n= 1

�
C

n

j � f
��

Cm
j � f

�
Ln

+

=NCfð1� fÞð1� DCÞLm

: (Equation 20)
Ne
The averaging is over all P cluster center/label pairs (C
n
; Ln). With a similar

averaging, the variance of the synaptic input to the readout is:

s2
g =
D
ðgmÞ2

E
� hgmi2zNCPf

2ð1� fÞ2 +N2
CPf

2ð1� fÞ2Q2
.
NS: (Equation 21)

The first term in the aforementioned equation arises from random overlaps be-

tween cortical patterns, and the second term arises from excess overlaps;

hence, it contains Q2. Assuming that the synaptic input to the readout neuron

obeys a normal distribution, the probability of misclassification of pattern Sm is

ε = H(Lmhgmi/sg). The error ε calculated in this way appears as solid curves in

Figures 4 and 7 and the panels of Figure 8. In analogy with ideal observer

theory, the square of the argument of H represents the SNR of the system.
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