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Abstract

In [5] Stanley associated to a (finite) graph G a symmetric function X generalizing the
chromatic polynomial of G. Using an involution on a special type of arrays constructed by
Gessel and Viennot [1], we show that if G is the incomparability graph of a (3 + 1)-free poset,
then X is a nonnegative linear combination of Schur functions. Since the elementary symmetric
functions are nonnegative linear combinations of Schur functions, this result gives supportive
evidence for a conjecture of Stanley and Stembridge ([5, Conjecture 5.1] or [6, Conjecture 5.5]).

Résumé

Dans {5], Stanley associe & tout graphe (fini) G une fonction symétrique Xg qui généralise
le polyndme chromatique de G. En utilisant une involution sur certains tableaux construits par
Gessel et Viennot [1], nous démontrons que si G est le graphe de la relation d’incomparabilité
d’un ensemble partiellement ordoné qui ne contient pas (3 - 1), alors X est une combinaison
linéaire de fonctions de Schur dont les coefficients sont positifs. Puisque les fonctions symétriques
élémentaires sont des combinaisons linéaires de fonctions de Schur dont les coefficients sont
positifs, notre résultat confirme une conjecture de Stanley et Stembridge ([5, Conjecture 5.1] ou
[6, Conjecture 5.5]).

1. Introduction

Let G be a (finite) graph with vertex set V = V(G) = {v}, v3,...,v4}. A coloring
of G is a function x: ¥ — P, where P = {1,2,...} is the set of colors. A coloring
i is called proper if x(u) # w(v) whenever u and v are the vertices of an edge of
G. The chromatic polynomial of G is the function y¢: P — P such that ys(n) is the
number of proper colorings of G with n colors. (It is not difficult to see that g is
indeed a polynomial of degree 4.) In [5] Stanley introduced and studied a symmetric
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function Xg, generalizing yg. It is defined as follows. Let xi,x3,... be commuting
indeterminates. Then

X = Xg(x) = X(x1,%2,...) = Exk(vy Yoi(vz) - « - Xxlog)s
K

where the sum ranges over all proper colorings of G. It is immediate from the definition
that X(1") = xc(n), where Xg(1") is the specialization of X obtained by letting
X1 =X = =X, =1 and xp41 = Xp12 = ‘v. = 0. One very interesting question
is to study the coefficients that arise in the expansion of X in terms of the ‘natural’
bases for the vector space of symmetric functions A. (In [5] many results related to
this question are proved.) In particular, we may ask whether these coefficients are
nonnegative. Following [5] we say that a symmetric function f is u-positive, where
{u;} is a basis for A, if the coefficients d; in the expansion f = Y, d,u; are all
nonnegative. A graph G is said to be u-positive if X¢ is u-positive. Let s and e stand
for the Schur functions and the elementary symmetric functions, respectively. A poset
P is called (a + b)-free if P does not have an induced subposet isomorphic to the
direct sum (a + b) of an a-element chain and a b-clement chain. The incomparabz‘lity
graph of a finite poset P, inc(P), is the graph with vertex set P and edge set £ =
{(u,v) € P?* | u and v are incomparable in P}. Stanley stated the following conjecture
[5, Conjecture 5.1], which as he mentions is equivalent to [6, Conjecture 5.5].

Conjecture 1 (Stanley-Stembridge). If P is (3 + 1)-free, then inc(P) is e-positive.

This conjecture has been verified for all posets with at most 7 elements by Stanley
and Stembridge [6, pp. 277-278] and for all 8-element posets by Stembridge.

Since each e; is s-positive, Conjecture 1 implies that the incomparability graphs
of (3 + 1)-free posets are s-positive. Further evidence in support of Conjecture 1 is
Theorem 1 below, which follows easily from results of Haiman [2, Theorem 1.4] and
Stembridge [7, Corollary 3.3]. An indifference graph (or unit interval graph) is an
incomparability graph of a poset which is both (3 + 1)-free and (2 + 2)-free.

Theorem 1. Let G be an indifference graph. Then G is s-positive.
In this paper we prove (a generalization of) the following theorem.

Theorem 2. If G is the incomparability graph of a (3 + 1)-free poset, then G is
s-positive.

This theorem provides new evidence in support of Conjecture 1. Its proof is relatively
short and uses only standard facts from the theory of symmetric functions.

2. The main result

Definition. Let G be a graph with vertex set ¥V = {v1,02,...,04}. A multicoloring of
G is a function x: ¥V — 2F, where 2P is the set of all finite subsets of P = {1,2,...},
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including the empty set. The multicoloring is proper if x(u) N x(v) = ® whenever
u and v are the vertices of an edge of G. If m = (m;,m,,...,m;) is a sequence
of nonnegative integers, then an me-multicoloring is a multicoloring x such that
|k(v;)| = m; for i = 1,2,...,d. For a finite subset S = {s1,52,...} of P we define
X§ = XgXgy+ .

Definition. Let m = (my,m»,...,my) be as above. Define
(8 =X3(x) = Xq01,%2, ) = 3 Xtor o) * * *Xrtoa)»
K
where the sum ranges over all proper m-multicolorings x: ¥ — 2F.

It is clear that X ¢ is a symmetric function which generalizes X in the sense that

~(1,1,..,1
2ot

= X¢. Then Theorem 2 is a special case of the following theorem.

Theorem 3. If G is the incomparability graph of a (3+1)-free poset with d elements,
and m = (my,my,...,m;) is any sequence of nomnegative integers, then X T is
s-positive.

Proof. Let P = (P, <) be a partially ordered set. We define a P-array to be an array

a)r a2
az ax

of elements in P, arranged in left-justified rows, and satisfying the following condition:
a;; < a; j+1 whenever a;; and a; j, are defined. 2.1)

(Note that a P-array is allowed to have empty rows in the middle of non-empty rows.)
A P-tableau is a P-array satisfying the additional condition:

Ifi,j>1 and a;1,,; is defined, then a;; is defined and a;41,; 4 a;;. .2)

Such arrays were first considered by Gessel and Viennot [1]. The weight of an array
T with entries in P is the sequence wit(T) = (n1,n3,...), where n; is the number of
occurrences of v; in T.

Let G be the incomparability graph of P. To each proper multicoloring x of G, we
can associate a P-array T, in the following way. For any i>1, let {v(li),vg),...} =
k~1(i). Since « is proper, it follows that k(i) is a stable subset of ¥, i.e., no two
vertices in k(i) are connected by an edge in G. This implies that k~1(i) is a chain

in P, so we may assume that v(li) =< vg) ~<.... Then T, is the array

Ugl) Ugl)
o

o2
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It is clear that for any P-array T, there is a unique multicoloring x¥ of G such that
T = T. For a partition 4, let m; and h; denote, respectively, the monomial sym-
metric function and the complete symmetric function indexed by A. It is well known
(see [3, Ch. 1, Section 4] for example) that the s; form an orthonormal basis for A
with the inner product defined by (m;,4,) = d,,. Therefore, if Xm = 3-,€a8a, then
c; = (X™.s)). Let (1) be the length of A. The Jacobi-Trudi identity (see e.g.
[3, Ch. L, (3.4)] or [4, Theorem 4.5.1]) is the following:

53 = det(hy, i+ N <ij<ia)- (2.3)
Let S; denote the group of permutations of {1,2,...,7}. If A = (4,...,4) is a partition
of length /, and = € §;, then we denote by n(1) the sequence {(; — n(j) + j}}sl.
Expanding the determinant on the right-hand side of (2.3) we get that

s2=3, SE(T)ha(z)s
nES;

where, for any integer sequence a = (%1,...,%), Ay = Ay, ... hy,. (We set b, = 0 if
r<0.) Thus ¢; = 3 cg Sg(R)XN, hazy), where (X, hy(sy) is, by the definition of
the inner product (~, —), the coefficient of my, in X, i.., the coefficient of x™» in
~'{;‘, which in turn is the number of proper m-multicolorings of G with weight n(1).
(The weight wi(x) of a multicoloring x is the sequence (|x~!(1)},|x~1(2)},...).) Since
the shape of Ty is wt(x), we get that (X™, k) is the number of P-arrays of shape
n(4) and weight m. Let

A={(n,T)| ne Sy and T is a P-array of shape n(1) and weight m}.

B={(n,T)€ 4| T is not a P-tableau}

and note that if T is a P-tableau, then n(1); 2n(A), > ..., hence n = id. Thus to prove
that ¢; >0 it will be enough to find an involution ¢:B — B such that if (¢,7") =
@(m, T), then sgn(s) = —sgn(n). One such involution is constructed in [1, Proof of
Theorem 11]. We describe a slight modification of it below, Let

ay  a
T=gay an

and let ¢ = ¢(T") be the smallest positive integer such that (2.2) fails for some i and
j=c¢. Let r = r(T) be the largest i such that (2.2) fails for i and j = ¢. Then define
o = no{r,r+1), where (r,7 + 1} is the permutation that interchanges » and r + 1.
Define T’ to be the array obtained from I by switching the elements in row » from
column ¢ on with those in row r 4+ 1 after column ¢, so

by by
T'=by by

ceuy
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where

bj=a; ifi#trr+1 ori=rand j<c-1
ori=r+1and j<c¢

by =ar 0 if j=2c and a4y ;4 is defined;
by, j=arj—1 if j2c+1 and a,;_; is defined.

Note that rows » and 7 + 1 in T’ have lengths n(A)ry1 — 1 = Apgyy —7(r + 1) +r =
Aoy —0(r)+r = 0(d), and n(A),+1 = Aoy —n(r)+r+1 = Aopyiy—0(r+1)+r+1 =
6(A),+1, respectively, so 77 has shape ¢(4). Since by assumption a,. is not defined or
Qry1,c = Qr, it follows that T’ satisfies (2.1) for i = r + 1. So to show that 77 is a
P-array, it suffices to show that T’ satisfies (2.1) for i =7, i.e., @ c—1 < dpt1,0+1. But
Grite-i < @rilec < Grytcti 18 @ 3-element chain in P and a@r41,0.—1 X @1, 50 by
the assumption that P is (3 + 1)-free, it follows that a,.—y < a@y41,c+1. Thus 77 is a
P-array which is not a tableau (by4+1c = Gr41,c < Bre = @re1,c+1 if by is defined) and
clearly ¢(T’) = ¢(T) and r(T") = r(T). This shows that ¢(c,T') =(n,T), so ¢ is an
involution. Moreover, sgn(e) = —sgn(n). O

From the proof of Theorem 3 we get the following combinatorial interpretation of
the coeflicients c¢;.

Theorem 4. If X% =3 1 CiS1, then c; is the number of P-tableaux of shape A and
weight m.
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