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INTRODUCTION 

Let G be a finite group, and R be a commutative ring with identity. 
We denote by Af(RG) the category of RG-modules. Rys$r any subgroup 

Hc G, O;ITI~ has two basic functors A(RG) 2 di’(RH) and 

A(RH) 2 &(RG), given by restriction and induction, which play an 
essential role in representation theory. An important and elementary class 
of RG-representations is permutation modules which are direct sums of 
modules Indz(R) obtained by induction from the trivial RH-module R for 
various Hs G. In another extreme, one has RG-modules which arise by 
induction from RH-projective modules, leading to the concept of relative 
projectivity and Green’s theory of vertices and sources [CR], [GR]. The 
value of these subcategories of modules in representation theory and 
related areas is well known. In a different direction (influenced by algebraic 
geometry and topology), one considers not only module categories, but 
various categories of chain complexes of modules and their cohomologies. 
This culminates in the more recent approaches to representation theory 
through the theory of derived categories. See [SC], [CPS] and their many 
references. 
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A natural problem is to develop and study generalizations of induction- 
restriction theories in the set-up of derived categories. Of course, one has 
the various generalizations of the restriction and induction functors to 
the categories of chain complexes. However, most natural examples of 
RG-chain complexes which arise in applications are complexes whose 
constituent chain modules only happen to be permutation modules. This 
leads to the study of complexes of permutation modules and the 
representations afforded by their homologies. On the other hand such 
RG-complexes are far too general for the purposes of induction-restriction 
theory. For example, an RG-free resolution C, of an arbitrary RG-module 
M may be thought of as a complex of permutation modules whose only 
non-vanishing homology H,( C, ) = M. Moreover, the usual finiteness 
conditions in the derived category lead to undue restriction. For example, 
if we require further that C, above be quasi-isomorphic to a bounded 
RG-free chain complex, then M will be very close to being RG-projective. 
For instance, if R is a field of characteristic p and G is a p-group, then RG 
is a local ring, and M is necessarily RG-free. Thus the familiar conditions 
in the derived category lead to either severe restrictions or unmanageable 
generality. 

A middle ground is provided by “permutation complexes” which form a 
restricted and proper subcategory of the complexes of permutation 
modules. See Section 1 for exact definitions. In particular, permutation 
complexes which are quasi-isomorphic to bounded permutation complexes 
form a distinguished and suitably large subcategory with a rich structure. 
Homology representations afforded by bounded permutation complexes 
demonstrate remarkable properties which make them desirable objects of 
study. In practice, such complexes arise naturally in the combinatorial 
approach to group theory, topology, and algebraic geometry (see Sec- 
tion 1). 

The theme of the present paper is a preliminary study of the deep rela- 
tionship between the representation-theoretic and homological properties 
of permutation complexes and their homology representations from a 
local-to-global point of view. In particular, we prove a localization theorem 
(Theorem 2.1) which is an elementary but basic tool. A projectivity 
criterion (Theorem 3.3) is applied to relate the present subject to more 
familiar constructions in group theory (Theorem 3.4). We introduce and 
study a Hermitian analogue of the theory in Section 4 which is applied to 
some well-known and classical topics in fixed point theory of topological 
transformation groups (Theorem 4.5 and Corollary 4.13). In Section 5 
we study the so-called invertible elements of the stable Green ring and 
endo-trivial homology representations. 
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1. PERMUTATION COMPLEXES 

Let S be a G-set, i.e., a disjoint union of left cosets G/H for various 
HE G. The free R-module whose basis is given by S is denoted by R [S]. 
The trivial G-action on R and the left action of G on S give R[S] the 
structure of an RG-module. R[S] is called the permutation module with 
permutation basis S. If S = 0, R[S] = 0. A complex of permutation modules 
is a chain (cochain) RG-complex C, such that each C; is a permutation 
module. A special case occurs in the following: 

1.1. DEFINITION. Let Y = uisZ Si be a disjoint union of G-sets. An 
RG-complex X, is called a permutation complex with permutation basis 9’ 
if 

(1) each Xi = R[S,] is a permutation module with basis Si: 
(2) the boundary homomorphisms di: Ci + Ci_ 1 is RG-linear and 

satisfies ai c R [Sy- 1 ] for each HE G. 

It follows that @ isL R[Sy] E X, is a subcomplex, which we denote by 
X,(H). It is clear that condition (2) of 1.1 is equivalent to the following: 

(2)’ For each HE G, the graded submodule X,(H) is a subcomplex 
of X, . We call X,(H) the subcomplex of H-fixed points of X,. The 
equivalent properties (2) and (2)’ tie the local and global structures of X, 
together and impose non-trivial restrictions on the homology representa- 
tions of bounded permutaion complexes. The isotropy (or stability) sub- 
groups of Y are called also the isotropy subgroups of X*. With respect to 
the natural action of N,(H)/H on SH, X*(H) becomes an R[N,(H)/H]- 
permutation complex, and restricting actions to N,(H) yields a pair of 
N,(H)-permutation complexes (X,, X,(H)). Let %?(RG) be the category of 
RG-complexes and RG-chain maps. There are two subcategories of %(RG) 
whose objects consist of permutation complexes. The first one is P(RG), 
where the morphisms are the chain maps X, + Y, which are induced from 
the G-maps of the permutation bases (as G-sets) of X, and Y,. The second 
category is @(RG), which is the full subcategory of ‘X(RG) whose objects 
are the same as the objects of Y(RG). LY(RG) is closed under most of the 
familiar constructions: quotient complexes, mapping cylinders, mapping 
cones, push-outs, etc. 

1.2. DEFINITION. Let X, be a positive permutation complex, and let R 
be concentrated in degree zero. X, is called based if there is a split augmen- 
tation in B(RG) X, 5 R, so that X, z a(R) 0 Ker(e) in 9(RG). Based 
complexes and based chain homomorphisms form a subcategory PO(RG). 
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1.3. Constructions on permutation complexes. Let X, and Y, be per- 
mutation complexes with permutation bases A = u n E L An, B = u n E z B,, 
and let Xi and Yi be based permutation complexes with split augmenta- 
tions 

X’ & R 
o-xy-- and y’ & R OT -. 

We have the following constructions in .9’( RG) : 

(i) Direct sum X, 0 Y, corresponding to the disjoint union A u B. 

A2) T 
ensor product X, @ Y, corresponding to the Cartesian product 

(iii) m-fold shift for m E Z by shifting the grading of the basis, or 
equivalently, (X,[m])i= Xi_,. 

(iv) Wedge XJI v Yi = Zi in the subcategory of based complexes 
Po(RG) is defined by Z,! = Xi@ Yi for i b 1, and ZG is the push-out 

together with the induced split augmentation Z(, s R from this square. 
One may think of Xi v Yi as “sum” in Po(RG). 

(v) Product in Yo(RG) is the smash-product Xi A Y; defined as the 
pull-back 

x;, A r; 

1 -7, 

r; “2\R - 

Equivalently, let Xiv Y*EX*@~~(R)V e,(&!)@Y; and (Xi A Y;)i= 
((Xi @ YA )/(Xi v Yi ))i for i >/ 1 and for i = 0 the pull-back diagram of 
RG-modules: 



PERMUTATION COMPLEXES 471 

(vi) Reduced suspension in gO(RG) of XA is the based complex ZXi 
defined by (.ZX,)i+l=Xi for i>,O, and (.EX,)o=R@R with (Z8)i+,=8i 
and Cd,: (ZX,), + (ZX,) given by E: X,, + (R), =first factor in (ZX,),. 
The split augmentation is provided by the projection onto the second 
factor of (ZX,),. The iteration of suspension for each n > 1 is denoted by 
L’“X,. This is the analogue of the shift in (iii) for &(RG). 

(vii) In addition, there are other constructions suggested by their 
analogues for topological spaces, e.g., the join X, 0 Y,, the cone on X, 
denoted by cX*, or unreduced suspension in 9(RG). We leave these, and 
the verification of the fact that most of the other familiar constructions for 
chain complexes (e.g., mapping cylinders, mapping cones) can be perfor- 
med in 9(RG) or pO(RG), to the reader. The proof of this lemma follows 
from definitions and is omitted. 

1.4. LEMMA. The above constructions are functorial in 9(RG) and 
9$(RG). In particular, they commute with the formation of “subcomplexes of 
fixed points,” e.g., (A’, A Y,)(H) = X,(H) A Y,(H). 

1.5. Important Remark. In literature, the terminology “permutation 
complex” occurs in various contexts with different meanings. Often, what 
we refer to as “a complex of permutation modules” (i.e., only condition (1) 
of Definition 1.1 above) is called “a permutation complex” and condition 
(2) is not imposed. See, e.g., Arnold [Arl], [Ar2], Adem [Adl], [AdZ], 
and Justin Smith [Sml]. See [Al, Chap. VIII] for further references. 

1.6. EXAMPLES. (1) It is obvious from the definition that a complex 
of permutation modules need not satisfy condition (2) of Definition 1.1. 
For instance, let C,, = ZG, C, = Z, and a: C, + Co be the norm map 
w=CgEGg. 

(2) Permutation complexes arise naturally in the combinatorial 
approach to finite group theory, e.g., as in Ken Brown [Bl 1, [B2], 
Quillen [QZ], Webb [Wl], [WZ], S. D. Smith [Sdl], and their references. 
One considers a partially ordered set of subgroups of G and chooses the 
permutation basis in dimension n to be the chains of length n. The G-action 
is induced from the conjugation by elements of G. 

(3) If X is a simplicial complex and elements of G act on X by simpli- 
cial maps, then the simplicial chains of the second barycentric subdivision 
of X yield a permutation complex. See Bredon [Bdn, Chap. 23. 

(4) More generally, if X is a G-CW complex (see Bredon [Bdn, 
Chap. 21, also Illmann [I] for related discussion of G-CW complexes), 
then the complex C,(X) of cellular chains of X is a permutation complex. 
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If Xc # a, then C,(X) will be a based permutation complex if we choose 
a base point in Xc. In (3) and (4), C,(H) corresponds to the simplicial 
and cellular chains of XH. 

(5) Smooth G-manifolds as well as complex algebraic subsets of @” 
and CP” with algebraic G-actions also admit triangulations with simplicial 
G-actions. See Illmann [I] and Hironaka [Hir]. Thus, (3) above applies. 
For instance, one concludes that their homology representations arise as 
the homology of a permutation complex. 

(6) For more general G-spaces (e.g., paracompact ones), it is possible 
to use suitable Tech coverings as in Bredon [Bdn, Chap. 21 to obtain a 
permutation complex whose cohomology computes the cohomology of the 
space. 

(7) It is easy to see that P(RG) contains many permutation com- 
plexes which do not arise from topological situations of (3~(6). Even for 
RG-complexes C, whose underlying R-complex is the complex of cellular 
chains of a CW-complex X, it happens (more often than not) that C, is 
not even RG-chain homotopy equivalent to a permutation complex of a 
G-CW complex as in (4) above. See Justin Smith [Sml ] and Quinn [Qf] 
for obstruction theories which analyze the homological obstructions for 
topological realization of chain complexes. 

2. LOCALIZATION AND VARIETIES 

In this section we discuss localization and its consequences in the theory 
of module varieties. 

Let X, be a permutation complex, and let W, be a projective resolution 
of R over RG. The homology and cohomology of the total complexes 
associated to the double complexes W, OG X, and Hom,( W,, X*) are 
called the hyperhomology and the hypercohomology of X,, and they are 
denoted by W .,, (G; X, ) and W *(G; A’* ). The topological analogue of the 
above construction for topological transformation groups is the Bore1 
equivariant homology Hz(X, R) and H$(X, R) defined for a G-space X, 
using the twisted product (or the Bore1 construction) E, xG X-3 BG 
associated to the universal principal bundle E, + BG. See Bredon [Bdn], 
W. Y. Hsiang [Hsg], Bore1 [Bor], or Quillen [Ql] for the topological 
theory, and Ken Brown [B3] and Cartan and Eilenberg [CE], as’ well as 
Swan [Swl 1, for an algebraic discussion. 

Let R = IF, or any other field of characteristic p (e.g., F,,), and let 
G = (Z,)“. Then for p = 2, H*(BG; Fp) = N*(G; Fp) = Fp[t,, . . . . t,,] with 
tjcH’(G; 5,). For p> 2, let A(u,, . . . . u,) be the exterior algebra generated 
by H’(G; (F,)= HomlFD((IFP)“, [F,) and let tieH2(G; 5,) be the image of 
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the Bockstein /J: H’(G; IF,) + H*(G; FP). Then H*(G; IF) = A(u,, . . . . u,)@ 
IF, Ct1, ***, t,]. Similar formulas hold for R replacing FP. If X is a tinite- 
dimensional paracompact G-space, and j: A? -+ X is the inclusion, then the 
induced homomorphism in equivariant cohomology j$ : Hz (X; R) + 
H,*(XG; R) is H*(G; R)-linear. Let S c H*(G; R) be the multiplicatively 
closed subset generated by the non-zero If,-linear combinations of the 
polynomial generators { tl, . . . . t”}. The localization theorem in equivariant 
cohomology (originally due to Bore1 [Bor] and further generalized by 
W. Y. Hsiang [Hsg] and Quillen [Ql]) states that the localized homo- 
morphism S-‘j,*: S-‘Hz(X; R) + S-‘Hz(.A?; R) is an isomorphism. This 
theorem and its ramifications have been at the heart of the developments 
in the cohomology theory of transformation groups since the 1950s. See 
Bore1 [Bor], Bredon [Bdn], W. Y. Hsiang [Hsg], and Quillen [Ql] for 
examples and applications. 

We have the following generalization of the above localization theorem 
which will be one of the main technical tools in the homological study of 
permutation complexes. 

2.1. THEOREM (Localization theorem for permutation complexes). Let 
C, be a bounded RG-permutation complex. Assume that G = (Zp)“, R is a 
field of characteristic p, and S c H*(G; R) is as in the above. Then, the 
inclusion p: C.,.(G) --t C, induces an isomorphism S-‘p*: S-‘W*(G; C*) + 
S-’ W *(G; C*(G)). 

Proof Consider the exact sequence of RG-chain complexes: 0 --) 
C,(G) 5 C, 5 Q, + 0. Consider the long exact sequence in hyper- 
cohomology: . . . + W’(G; Q*) -% W’(G; C*) 3 W’(G; C*(G)) 5.. . in 
which all homomorphisms are H*(G; R)-linear. Since localization is an 
exact functor, the theorem will follow from the statement 
S- ’ W * (G; Q * ) = 0. Note that Q, is a permutation complex for which 
Q,(G)=O. Th er ef ore, the following lemma will comlete the proof of the 
above theorem. 1 

2.2. LEMMA. Let G = (Z,)” and R be a commutative ring. Suppose Q, is 
a bounded complex of permutation modules with basis Zi such that ZF = 4. 
Then 0-I *(G; Q * ) is an H* (G; R)-torsion module. Therefore, if P, is an 
RG-complex RG-chain homotopic to Q,, then W*(G; P*) is also H*(G; R)- 
torsion. 

Proof Since Q* is a bounded complex, the second spectral sequence of 
the double complex Hom( W,, Q*) is convergent. (See Cartan and Eilen- 
berg [CE] for more details.) The E,-term of this spectral sequence has a 
filtration by H*(G; R)-torsion modules, since H*(G; Qi) E ei H*(Kj; R), 
where Qi= @,R[G/K,] and Kj# G by hypothesis. Thereore, the Em-term 
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is H* (G; R)-torsion, which implies that W *(G; Q*) is H*(G; R)- 
torsion. 1 

2.2A. Remark. The referee has pointed out that an alternative proof of 
Theorem 2.1 is possible by adapting the proof of J. Smith [Sm, Proposi- 
tion 2.31 to the above context. We refer the reader to [Sm] for further 
details and other aspects of localization. 

2.3. COROLLARY. Keep the notation and hypotheses of above theorem. 
Let D, be an RG-chain complex which is RG-chain homotopic to a 
permutation subcomplex C; c C, and assume that C,(G) s cl,. Then 
S-‘W*(G; D*)rS-‘W*(G; C*). 

Proof. The hypotheses and the above localization theorem imply that 
S-‘W*(G;D*)zS--‘W*(G; C’*) z S-‘W*(G;C*(G))zS-‘W*(G; C*). 

Next, we study the varieties for homology representations of permuta- 
tion complexes. The localization process in cohomology is closely related 
to the notions of support and rank varieites for modules, introduced by 
J. Carlson [Cl], [C2] and developed further by Avrunin and Scott [AS] 
and others. For simplicity, let E = (Z/p)” be generated by (x,, . . . . x, ), 
and consider the reduced cohomology ring H, = H* (E; k)/Radical % 
k[t,, . . . . t,]. Any kE-module M gives rise to an Hrmodule H*(E; M), and 
as such, it has a support in Spec H,. For many purposes, it suffices to con- 
sider the subspace of closed points in Spec H,, namely Max H, consisting 
of maximal ideals. Let Z(M) c H, denote the annihilating ideal of the 
HEmodule H* (E; M). The cohomological support variety V,(M) c 
Max H, is nothing but the variety defined by Z(M): V,(M) = 
(m E Max H,: m 3 Z(M)}. This definition generalizes directly to any 
p-group G, and with a slight modification to the case of general finite 
groups (see Avrunin and Scott [AS] for details, and Carlson [Cl], [C2] 
for details of what follows). Note that Max H, g k” = the afine k-space of 
dimension n. There is another n-dimensional affine space associated to 
E = (Z/p)“. Namely, let J, c kE be the usual augmentation ideal, and 
observe that JE/Ji z HI(E, k) g k”. By choosing a basis for J,/Ji and a 
splitting (T of the projection 71: J E 6 JE/Jg, we obtain an n-dimensional 
k-subspace of kE, which is denoted by L. For example, for E = (x1, . . . . x, ), 
let a basis of L be {x1 - 1, . . . . x,- 11. To an n-tuple (ar, . . . . a,)E k”, there 
corresponds the element u, = 1 + Cl= r a,(x, - 1) E 1 + L, which is a unit, 
and it generates a subgroup (u, ) = Z/p c kE. (u, ) is called a shifted cyclic 
subgroup of kE, and it was introduced by E. Dade [D] to study endo- 
trivial modules. Using shifted cyclic subgroups, Jon Carlson defined the 
subset V’,(M) c L E k” via V’,(M) = {(a,, . . . . a,)E k” : MJk<u.) is not 
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k(u,)-free} u (0) (called the rank variety of M). Indeed V”(M) is a well- 
defined subset of J,/J’,= k” independent of the choice of L, and it is a 
homogeneous affine subvariety of k”. There is a natural identification 
J,/Ji-% Max HE, and this results in a map V”(M) + V,(M), which was 
shown to be an isomorphism of sets by Avrunin and Scott [AS], thus 
proving a conjecture of Carlson; see also [C2]. This isomorphism is 
natural and compatible with respect to the inclusion of subgroups, in 
particular, products of shifted cyclic subgroups S = (u, ) x (us) x . .. x 
(ur ) (the so-called shifted subgroups of kE which have ranks <rank(E)). 

The theory of varieties for modules has proved to be extremely valuable, 
not only in representation theory and finite group theory, but in the 
context of restricted Lie algebras (cf. Friedlander and Parshall [FP] and 
Jantzen [J]) and topological transformation groups and homotopy- 
theoretic aspects of geometric topology (e.g., Adem [Ad2], Assadi [A2], 
[AS], Benson and Carlson [BC], and many other references). 

We use the theory of varieties in the following sections, and for future 
reference, we discuss briefly how this theory generalizes to the context of 
permutation complexes. The motivation and many of the details may be 
found in Assadi [A23 and further applications in [AS]. 

First suppose that C, is any kG-complex such that @ ieZ H,(C,) is a 
finitely generated kG-module. For simplicity of exposition, assume that G 
is a p-group, so that the kG-module k (with trivial G-action necessarily) is 
the only simple kG-module. Following [A2], the idea is to modify C, in 
the category of kG-complexes so as “to simplify” its cohomological struc- 
ture without changing its hypercohomology W *(G; C*) locally. Namely, 
call C, freely equivalent to a kG-chain complex D, if there is a kG-chain 
complex K, such that C, c K, and D, c K, are kG-subcomplexes and 
K,IC., and K,/D, are both kc-free, and bounded with finitely generated 
homology. This notion was introduced in Assadi [Al] in order to study 
combinatorial properties of permutation complexes. As in [A21 (compare 
with [Al]) it is easy to see that free equivalence is an equivalence relation, 
and the equivalence class of C, has a representative (?* such that 
H,(c*) = 0 for i # I and H,(e’,) = M is a finitely generated kG-module. 
Call C* a resoluent for C,. 

2.4. DEFINITION-PROPOSITION. Let G be a p-elementary abelian group. 
The rank variety and support variety of C, are defined by 
V&(C,)= V;,(H,(e’,))= V;,(M) and V&C,)= V,(M), where c, is any 
resolvent of C, defined as above. V,( C, ) and VL (C, ) are independent of 
the choice of the resolvent c*. 

Remark. The above definitions certainly make sense for any finite 
group G with the appropriately defined varieties, e.g., as in Avrunin and 
Scott [AS] and Assadi [AS]. 

481/144/2-14 
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When dealing with based kG-complexes, it is possible to choose the 
resolvent C* also in the category of based complexes, hence I >/ 0. In this 
case, the sensible definition is to let fi= B,(C*) z the reduced homology 
and define V’,(C,, k) = V;(D) and V&C,, k) = V,(2). Clearly 
VG(C,, k) = V’,(C,/k) = V;;(C,/k) and similarly for I’,. 

It is useful to generalize some of the properties of module varieties to 
kG-complexes before specializing to the case of permutation complexes. 

2.5. PROPOSITION. Let X,, Xi, Y,, be kG-complexes with finitely 
generated total homology, and let Xi and Y; be based. Then the following 
hold 

(a) VL(X, ), I/,(X, ), and their based versions are unchanged under: 

(i) free equivalence; 

(ii) iterated shifts and iterated suspensions of 1.3; 
(iii) taking duals X* = Horn (X, , k) = X-, ; 

(iv) chain homotopy equivalence, or more generally kG chain maps 
of any degree inducing a homology isomorphism. 

(b) GW,) g VAX*) 

(c) v&f-*0 Y*)= V,(X*)n V;,(Y*). 
(d) Similarly for the based version V;,(X; v Yi, k) = V’,(Xi, k) u 

V’o(Y;,k) and V’,(Xi-r\ YA, k)= V”(Xi, k)n V’o(Yi, k). 

(e) If X, is bounded and kG-free then Vo(X,)=O. 

(f) If X, is kc-chain homotopy equivalent to a non-negative kG-com- 
plex, then Vo(X*) is the variety defined by the annihilating ideal of the 
Ho-module W *(G; X* ). 

Proof Most of the above follow from the definitions and elementary 
observations. Part (b) is essentially the Avrunin-Scott theorem [AS] 
mentioned above. In (c) and (d), we may first take resolvents having their 
non-trivial homologies in the same dimension (reduced homology for based 
complexes). In (e) the resolvent 2, is seen to have a kG-free homology 
since X, is bounded and kG-free. (f) From the ,hypercohomology exact 
sequence of the short exact sequence 0 + X, -L X, + X,/X, + 0 that 
j* : W i(G; 8* ) + I-I i(G; X* ) is an isomorphism for all sufficiently large i 
(since X,/X, is kG-free and bounded, hence with bounded hyper- 
cohomology ). Therefore, the annihilating ideals of W *(G; X*) and 
W *(G; 8* ) have the same radical. Similarly, H* (G; H*(X*)) and 
W *(G; X*) define the same varieties and (f) follows. 1 

Next, we specialize to the case of permutation complexes. It is 
convenient to think of all varieties defined for complexes or modules over 
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kG as homogeneous afline subvarieties of V&(k) = k” for G= (Z/p)“. In 
particular, for each subgroup KEG, V’,(Indz(k)) is a linear subspace of 
V’,(k) defined with If,,-coefficients and it is isomorphic to V>(k). The 
cohomological analogue is the restriction of Spec H,+ Spec Ho induced 
by the restriction homomorphism pg: H*(G; k) + H*(K, k) to the sub- 
space of closed points. In this way, we establish a one-to-one corre- 
spondence between F,,-rational linear subspaces of Vo(k) (or equivalently 
V,(k)) and subgroups of G itself. In particular, cyclic subgroups of G and 
If,-rational lines of J,/Ji correspond under the above. An important 
property of shifted cyclic subgroups (u, ) c kG (corresponding to 
a = (a,, . ..) c(,) E k” as above) is that kG is k(u, )-free. Moreover the usual 
apparatus of induction and restriction of representations (e.g., Mackey’s 
formula) and their homological consequences hold for shifted subgroups. 
See Carlson [C2] and Kroll [K] for justification and details. In particular, 
k[G/H] = Indz(k) is a k(u,)-free module if k(u,) n kH= k( 1) g k by 
Mackey’s formula. Thus, if we choose c1 such that the line k {a 1 is not 
[F,-rational in Jo/J; = k”, then k[G/H] are k( u, )-free for all proper sub- 
groups H!$ G. Suppose that X, is a permutation complex with permuta- 
tion basis Y = UisL Si. For the above choice of ~1, the only elements of 
Sj c Xi which are left fixed by (u, ) are those with isotropy group G. This 
suggests the slight abuse of notation X,( (u,)) indicating the fact 
Y<UU)=9’G. Since kG is k(u,)-free and X,((u,))=X,(G), X,lk(u,) is 
a k( U, )-permutation complex and we can apply our machinery and results 
on k [H/p-J-permutation complexes as before. The following summarizes 
these observations with a slight useful generalization. 

2.6. PROPOSITION. Let X, be a permutation kG-complex, where G is any 
finite group, and let HE G, H = (Z/p)“. Then for a suitable choice of a 
shifted cyclic subgroup (u, ) c kH, X, 1 k( u, ) will have a natural structure 
of a k(u,)-permutation complex such that X,(k(u,))= X,(H) and 
X,/X,(H) is k(u,)-free. 

Remark. Clearly the set of a E VL(k) for which (u,) has the above 
property forms a Zariski open dense subset. A useful application of the 
above discussion is a simplified calculation of fixed subcomplexes. 

2.7. PROPOSITION. Suppose X, is a bounded permutation kG-complex, 
and (Z/p)” z H c G is a subgroup. 

(a) For any shifted subgroup (u, > c kH as in Proposition 2.6 above, 
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where A = A*((u,); k)r H*((u,); k)[l/t,] and t,EH’((u,);k) is the 
polynomial generator and i = 1 for p = 2 and i = 2 for p > 2. 

(b) If f* is a resoloent for X, and H*(f*) = M, then H,(X,(H)) z 
A*((u,); M) Oa k (ungraded). 

Proof. Consider the short exact sequence 0 +X,(H) -& X, -+ 
X,/X,(H) + 0 and the corresponding long exact sequence in hyper- 
cohomology...W*((u,);X*)L W*((u;);X*(H))-+ . . . . The proof of 
the localization theorem 2.1 applies to this case since W*( (u,); 
Hom(X,/X,(H), k))[l/t,] r0 because X,/X,(H) is k(u,)-free and 
bounded. A standard calculation implies (a) and (b). a 

The following result shows that homology representations of bounded 
permutation complexes (permutable modules) have special types of rank 
varieties which arise for permutation modules. 

2.8. THEOREM. Let X, be a bounded permutation kG-complex, where 
G = (Z/p)“. Then V&(X,) consists of IF,-rational linear subspaces of V’,(k) 
corresponding to subgroups K E G for which H, (X, (K)) # 0. 

Proof. First, let KS G be a subgroup such that H,(X,(K)) # 0. 
Without loss of generality and for simplicity of notation, assume that X, 
is a resolvent complex, and H,(X,) = M. By Proposition 2.7 above, 
we may choose (u,) c kK such that X.,.( (u,)) = X,(K). Then, 
Proposition 2.7(b) shows that A( (u, ); M) @ A k E H,(K)) # 0, hence 
Z?( (u, ); M) # 0. This implies that M 1 k( u, ) is not k( u, )-free. The set of 
such CLE V’,(k) with X,((u,))=X,(K) f orms a Zariski dense open subset. 
Thus for all tx E I/‘,(k), Ml k(u,) is not k(u,)-free. As discussed above, 
the F,-rational linear subspace V&(Indg(k))s V’,(k) corresponds to K, 
and hence it lies in V;;(M). Conversely, if Ml k(u, ) is free for such a 
choice of c(, the localization result of 2.7(b) shows that H,(X,((u,))) = 
H, (X,( H)) = 0. It remains to see that if there exists an a E V;,(M) which 
does not lie in any proper 5,-rational linear subspace of I/‘,(k), then 
V;(M)= T/‘,(k) and H,(X,(G))#O. But this follows from the same 
argument applied above. 1 

Let US make a few useful technical remarks which will be needed for the 
following proof of the analogue of Carlson’s conjecture (Avrunin and Scott 
[AS, Theorem l] and Carlson [CZ]). First, for a kG-complex Y, and a 
short exact sequence 0 + K + G + G/K + 0 of groups, there is a Lyndon- 
Hochschield-Serre spectral sequence with Ei;’ s H’( G/K; Wi( K; Y *)) =s 
W’+‘(G; Y* ) when Y, is bounded below. There is an analogue of this 
spectral sequence for G = (Z/p)” and shifted subgroups Kc kG and K’ c kG 
with the property kK@ kK’ r kG, H’(K’; Wj(K, Y*)) =s. O-U’+‘(G; Y*). This 
is discussed for kG-modules in Carlson [Cal. One may modify Carlson’s 
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argument and apply it to the double complex Hom,,,.( W, 0 WA, Y*) 
(where W, and Wi are the free resolutions of k over kK and kK’, respec- 
tively) to obtain the above spectral sequence. However, the usual spectral 
sequence for modules can be used in the following arguments provided that 
we replace Y, by a resolvent kG-complex of Y,. 

2.9. PROPOSITION. Suppose Y, is a bounded permutation kG-complex for 
G = WpY’, and let (u,) be a shifed cyclic subgroup of kG, and 
t, E H’( (u,); k) a polynomial generator of H,,,>. Then W*(G; Y*)[ l/t,] E 
fi*((u,);k)@W*(K’; Y*((u,))), wherekGgk(u,)QkK’. Inparticular, 
W*(G; Y*)[l/t,] #O ifand only ifH,(Y,((u,)))#O. 

Proof: Since localization is an exact functor, we can localize the above- 
mentioned spectral sequence: H*(K’; W*((u,); Y*))[l/t,] = W*(G; Y*) 
[l/t,]. But H*(K’; W*((u,); Y*))[l/t,] z H*(K’; W*((u,); Y*)[l/t,]) 
r H*(K’; W*((u,); Y*((u,)))[l/t,]) r H*(K’; A*(+,); k) @ 
H*(Y*((u,)))) by the localization theorem2.1 and since (u,) 
acts trivially on Y*( (u,)). To verify the formula for the Em-term, 
consider performing the localization on the E,-level, E:* [l/t,] z 
Hom,.( W&; W*((u,); Y*))[l/t,] z HomK( W;; W*((u,); Y*((u,))) 
[l/t,]), and since K’ acts trivially on H*( (u,); k) and (u,) acts trivially 
on Y*((u,)), E:*ClIt,lrHom,,(WS,;H*(Y*((u,))))~~*((u,>;k), 
which clearly converges to W *(K’; Y * ( ( U, ) )) @ fi* ( ( U, ); k) and the first 
assertion is proved. If H, ( Y, (( U, ))) # 0, then W *(K’; Y* (( u, ) )) # 0 and 
hence W *(G; Y*)[ l/t,] # 0. This follows from considering the second 
spectral sequence of the double complex Hom,.( W: ; Y*( (u,))) (which is 
convergent since Y,( (u,)) is bounded) and the universal coeficients 
formula. If H,( Y, (( u, ))) = 0, then the LHS-spectral sequence shows that 
W*(G; Y*)[l/t,] =O. m 

We use the above to prove the analogue of Carlson’s conjecture 
(Avrunin and Scott [AS, Theorem 11) by a different proof for bounded 
permutation complexes. This proof is particularly interesting from the 
point of view of local-to-global properties of the homology representations 
of permutation complexes. It also suggests an alternative proof of Carlson’s 
conjecture for arbitrary modules, which will be presented elsewhere. 

2.10. COROLLARY (Carlson’s conjecture for permutation complexes). 
Let G = (z/p)” and X, a bounded permutation kG-complex. Then &(A’,) = 
VG w, ). 

Proof: V&X*) is defined by the annihilating ideal of the H*(G; k)- 
modules H*(G; H*(8*)) or equivalently W*(G;X*), where 8* is a 
resolvent of X*, if p = 2, otherwise the annihilating ideal as H,-modules. 
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As in Theorem 2.8 above, assume Hi( X, ) = 0 for i > 0 and H,( X, ) = M. If 
Kc G is any subgroup then the inclusion induces split surjections 
H*(G; k) --) H*(K; k) and H, -+ H,. The same is true for a shifted sub- 
group Kc kG. The corresponding map on spectra yields an embedding 
pg: P’,(k) + V,(k) whose image may be identified with V,(Indz(k)) z 
V,(k). Now let C(E k” be chosen such that the line T/‘,(Ind~,>(k))z 
V;,,(k) does not lie in V;,(X,). According to the proof of Theorem 2.8 
above this condition is equivalent to H,(X, ( (u,))) = 0. By Proposi- 
tion 2.9 above, the latter condition implies that W *(G; X*)[ l/t,] = 0 
and consequently V,Ind~~~ > (k))nSupport(W*(G;X*))=O. That is, 
~~u,>O’<uz>W) does not lie in V&X,). Conversely, if the 
line V~(Ind~~~~(k)) lies in KAX,), then H,(X,(<u,)))ZO, and by 
Proposition 2.9, H*(G; X*)[l/t,] #O. 

Translated into a statement about supports, this is equivalent to 
K&G 1 n KAInd& (k)) # 0. Since both varieties are homogeneous, the 
proof is completed. 1 

3. HOMOL~CY REPRESENTATIONS 

Every RG-module M has a free RG-resolution C, : . . . + C, -+ C, -+ 
M-, 0. That is, HJC,) =0 for i> 0, and H,(C,) = M. Unless M is 
cohomologically trivial in the sense of Tate (see Brown [B3], Cartan and 
Eilenberg [CE], or Rim [RI), C, is infinite dimensional. If we choose Ci 
to be permutation modules, we may arrange to have a finite-dimensional 
chain complex C,. This point of view has been studied by Arnold [Ar2], 
who has developed, for instance, analogues of the familiar homological 
algebraic constructions using permutation modules. For instance, Arnold 
proves that in this context, for cyclic groups G every ZG-module A4 has a 
“resolution” by a complex of permutation modules of length 2. However, if 
we require “the resolutions” to be permutation complexes, then we get 
non-trivial restrictions on the type of RG-modules which arise in this way. 
More generally we formulate the following. 

3.1. PROBLEM. Suppose X, is a bounded permutation complex such 
that for some integer d, H,(X,) = 0 for i # d and Hd(X.+.) = M. We call X, 
a “permutable resolution” of M. (1) Which RG-modules M have per- 
mutable resolutions? (2) If M is a finitely generated RG-module, when can 
we find a finite permutable resolution for M? 

This is an algebraic analogue of the well-known Steenrod problem 
(see Lashof [L], Swan [SW~], Arnold [Arl], Smith [Sml], [Sm2], 
[Sm3], [Sm4], Carlsson [Cg], Vogel [V], and Assadi [A21 for a partial 
survey). 
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As we shall see below, the class of RG-modules which arises in (1) is 
quite restricted. Therefore, the existence of a permutable resolution may be 
considered as an extra structure imposed on an RG-module which is a 
natural generalization of being a permutation module. 

3.2. DEFINITION. An RG-module which has a permutable resolution is 
called a permutable module. 

As for part (2) of the above problem, the obstruction theory of 
R. Swan [Sw2] generalizes to the context of permutable resolutions. 
Therefore, the results of Swan [Sw2] are valid in this context and show 
that even among permutable modules, the existence of finite permutable 
resolutions imposes number-theoretic conditions on finitely generated 
ZG-modules. 

Using the localization theorem 2.1, we may extend many results of 
topological transformation groups to the context of permutation com- 
plexes. For example: 

3.3. THEOREM. Let X, be RG-chain homotopic to a bounded permutation 
complex, and assume that for each maximal p-elementary abelian group 
EGG and each p 1 (GI for which p-l $ R, the hypercohomology spectral 
sequence H*(E; H*(X*)) + W *(E; X*) degenerates. Then the RG-module 
M= @ i Hi(X*) is RG-projective if and only if for each subgroup C E G 
such that 1 C) = p and p- ’ $ R, M] RC is RC-projective. 

PraoJ The proof of Theorem 1.1 for G-spaces in Assadi [A31 is based 
on the localization theorem and arguments involving constructions which 
are valid in 9(RG) as well; see Section 1. We leave the minor modification 
to the reader. 1 

Let us mention some applications to group theory. Let G be a finite 
group, and let rr be a poset of proper subgroups of G. Let S,, be the set of 
chains of subgroups P,, < P, < . -. -c P, of length n + 1. Conjugation by 
elements of G makes S,, a G-set. The ith face map di: S, + S,_ , is defined 
by dropping the ith subgroup in the chain, and 8 : S, + R[ S, _ 1 J is given 
by 8 = XI= 0 ( - 1); ai, The resulting RG-chain complex C, is a permutation 
complex for suitable choices of 7~. In fact, C, is the simplicial chain 
complex of the simplicial complex 4(n) associated to the poset 7~ by 
the standard construction. See Brown [Bl], [BZ], Quillen [Q2], 
Solomon [Sol], Tits [Tt], and Webb [W2] for further discussion and 
applications. We use Quillen’s notation [Q2]: dp(G) = the poset of non- 
trivial p-elementary abelian subgroups of G, 5$(G) = the poset of p-sub- 
groups of G. If G is the finite group of E,-rational points of a semi-simple 
algebraic group (q=p’) of rank 1 over [F,, then we denote the Solomon- 
Tits building associated to G by T; see Solomon [Sol] and Tits [Tt]. The 
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complex of permutation modules C,(LY$(G)) is in fact a permutation 
complex, and according to Quillen [Q2, Theorem 3.11, C,(dp(G)) and 
C,(T) are chain homotopy equivalent. Moreover, C,(T) is based and 
H,(C, (T)) # 0 only for i = 0 and i = 1- 1, where I is the rank. The localiza- 
tion theorem 2.1 and the projectivity criterion, Theorem 3.3, together imply 
the following well-known results. (I am grateful to Steve Smith for pointing 
out a correction in the statement of 3.4 below). 

3.4. THEOREM. (a) H,- 1( T) is RG-projective, where R is a field of 
characteristic p or the p-adic integers. 

(b) Cj (-l)‘Hi(C,(z$(G)); R) is a virtual RG-projective for an 
arbitrary finite group G and R as in (a). 

(c) Let G be of p-rank 2, and c, be the reduced RG-chain complex 
associated to J$(G) or Yr(G). Then H,(c,) is RG-projective. 

Part (c) is obtained by Webb [Wl ] in a different context, and as 
pointed out in [Q2], and [W 11, H, (C, ) is isomorphic to the Steinberg 
module if G is assumed to be a finite Chevalley group of p-rank 2. 

Next, the projectivity criterion 3.3 above may be used as in Assadi [A2], 
[A31 to provide non-permutable modules. Note that since W *(G; X*) does 
not necessarily admit auxiliary structures, such as an action of the Steenrod 
algebra, the counterexamples to the Steenrod problem (e.g., as in [Cg]) 
which use such structures do not apply to Problem 3.1 above. 

3.5. THEOREM. Suppose G 1 Z, x Z, or Q, (= the quaternion group of 
order 8). Then there are finitely generated non-permutable ZG-lattices. 

Proof The examples constructed in Assadi [A2], [A31 use the projec- 
tivity criterion [A2, Theorem 1.11. We may apply the analogous criterion, 
Theorem 3.3 above, to the examples of [A2], [A3]. 1 

It is worth noting that the analogue of Theorem 3.1 of [A21 also holds 
for homology representations of bounded permutation complexes: 

3.6. THEOREM. Let G I Z, x Z, or Q8. Then: 

(a) There are non-trivial ZG-lattices M, and M, such that M, $ M, 
does not occur as the homology representation of any bounded RG-permuta- 
tion complex. 

(b) There are ZG-lattices MI and Mz such that neither M, nor M, 
occurs as the homology representation of a bounded permutation complex, 
but M, @ M, z H,(X,) for a bounded permutation complex X,. 

Proof The strategy of the proof is similar to Assadi [A23 with minor 
modifications. The details are omitted. m 
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4. DUALITY 

There is a “Hermitian analogue” of Problem 3.1 above which we will 
discuss briefly. Another property of permutation modules is their “self- 
duality”: If M is a permutation RG-module, then Hom,(M, R) g M as 
RG-modules. This property is not shared by most modules, and again, it 
can be thought of as an extra structure imposed on M. In particular, one 
may ask for the description of permutable modules which are in addition 
self-dual. A special case which arises in geometric topology and topological 
transformation groups is the homology representations of highly connected 
self-dual permutation complexes. Let C, be a positive RG-complex, and 
C* = Hom,(C,, R). If we use the usual convention Ci= c’, then the 
duality condition is formulated as follows: 

4.1. Condition (SD). Let C, be a connected (augmented) RG-complex. 
C, is called self-dual of formal dimension d, if there is a chain homotopy 
equivalence of degree d, h: C* -+ C,. (We may equivalently say that C, 
satisfies duality of formal dimension d.) 

Let X, be a self-dual bounded permutation complex of formal dimension 
2n such that H,(X,) = 0 for 0 < i < n (and by duality for n < i < 2n), and 
H,(X,) = M finitely generated. Then we have an RG-isomorphism 
H”(X*)* H,,(X,), which shows that MrHom,(M, R), using the 
universal coefficients formula. We call X, a self-dual permutable structure 
(SDP-structure for short). It is not unreasonable to conjecture that a 
module M with an SDP-structure is permutable. We will provide some 
evidence for this later. Based on this, we call an RG-module M self-dual 
permutable if there is an SDP-structure for M. 

4.2. PROBLEM. Determine self-dual permutable RG-modules. 

4.3. PROPOSITION. Let p ( 1 G 1 be an odd prime. Suppose that C, is a 
bounded connected RG-permutation complex such that H,(C, ) = 
H,,(C,) = R, H,(C,) = 0 for i> 2n, and for 0 < i < 2n, H,(C,) is RG- 
projective. Then for each HE J&(G), H,(C, (H)) z R @ R. 

ProoJ It suffices to assume that G z (Z,)’ and R = k. Choose 
a= (a,, . . . . q)Ekr such that the shifted subgroup (u,) satisfies 
k( u, ) n kH = k [ 1 ] for all proper isotropy subgroups H # G in C, . 

Consider the hypercohomology spectral sequence H*( (u, ); H*( C* )) * 
W *( (u,)~;~:*) in which the only possible non-trivial differential is 
d ; 

2n+l. + Ei+2”f1*0. We note that EiT+, = H’((t,); k) = 
H i+2n’+~~;1~.k)f.ji:2n+~,0_ - k and d2, + , is H* (( U, ); k)-linear. Since 
p is odd, the* cbhomo;gy’ period of H*( (u,); k) is even (considering the 
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action of the Bockstein on cohomology). Therefore d2,,+ 1 s 0 and the 
spectral sequence collapses. Now, the localization theorem 2.1 implies 
that S-‘W*((u,); C*(u,)) r S-‘H*((u,); k) @ H*((u,); k)) z 
A*((~,);k)O(kOk).SinceS-‘W*((u,);C*(u,))rS-’(H*((u,);k)O 
H*(C*(u,)))%‘fi*((u,);k)@H*(C*(u,)). Therefore H*(C*(u,))r 
S-‘W*((u,); C*(u,)) @,+c<u,>;kjk~k@k. By our choice of a, 
C,((U.>)ZC~(G), since for all HZG, C,(H)(,,,+, is k(u,)-free. 
Therefore, H*( C* (G)) ? k @ k as claimed. 1 

4.4. PROPOSITION. Let C, be a connected bounded RG-permutation com- 
plex such that H,(C,) = 0 for i$ (0, n, 2n) and H,(C,) = H2,(C*) = R. For 
each EE&“(G) such that C,(E)=O, one has rk,(H*(E;H”(C*))=2, 
where A = H* (E; R). 

Proof As in the above, we may assume that R = k, G = (Z, )’ and prove 
the statement for E = G. Again choose a E k’ as in 4.3 above such that 
k(u,) n kH = k[ l] for all isotropy subgroups H of C,. We remark that 
the set of such a forms a Zariski open (hence dense) subset of the alTine 
k-space k’. Since C,(G)=O, C,((u,))=O also and C, Ik(u,) is k(u,)- 
free. It follows that H,(C,)( k<u.) 2 M @ M 0 F, where F is k( u, )-free and 
M = k if n = odd and M = Z= augmentation ideal for n = even. See 
Assadi [A4]. Thus, A*( (u, ); H”(C)) g Z?* ( (u, ); k @ k). Since the set of 
all a for which this holds forms an open dense subset of k’, we conclude 
that H*(G; H”(C*))[l/t,] g H*(G; k@k)[l/t,], and from this the claim 
follows. 1 

4.5. THEOREM. Let p be an odd prime, and E E &r(G). Let M be a self 
dual permutable kG-module with an SDP-structure C,. Suppose the rank of 
H*(E; M) over H*(E, k) is one. Then dim,H,(C,(E)) = 3. 

Proof As in the above, we may assume that E = Z; = G, and let 
H*(G; k)red = A and K= quotient field of A. Recall that in the hyper- 
cohomology spectral sequence H*(G; H*(V)) * W*(G; C*) all E,**- 
terms are modules over H*(G; k) for n > 2, and the differentials are 
H* (G; k)-linear. The first differential to consider is d, + 1 : E;;:’ -+ ELyI+ ‘J 
forj=O,n and all i. If C,(G)=O, then rankH*(G;M)=2 by Proposi- 
tion 4.4. Therefore, we may assume that C,(G) # 0, and choose 0 < I < 2n 
to be the smallest integer such that C,(G) # 0. As in Proposition 4.3 choose 
a E k’ such that k( u, ) n k[H] = k[ 1 ] for all H # G. We will need the 
following lemmas in order to study the above spectral sequence: 

4.6. LEMMA. In the hypercohomology spectral sequence H*((u,); 
H*(C*))*W*((u,);C*) the dijferentiald,+,:E~~l-+E~++“I+‘~o vanishes 
for all i. 



PERMUTATION COMPLEXES 485 

Proof of Lemma 4.6. If I= 0, then we have a split augmentation 
C,(G) Z k which gives a split augmentation C, $ k. Thus, the induced 
homomorphism H*( ( U, ); k) + W * (( U, ); C* ) is split injective. Now 
suppose that 1> 0. We define kc-chain complexes D, such that Di = Ci for 
0 < i < I- 1 and Di = 0 for i 2 1, and (?* from the exact sequence of 
kG-complexes: 0 + D, + C, -% c* + 0. By the choice of I> 0, D, is 
k( u, )-free, and since it is bounded, W i( (u, ); D * ) = 0 for i $0. Therefore, 
for all large values of i, q *: Wi((u,); C*)-* Wi((u,); C*) is an 
isomorphism. Since c* has a split augmentation (shifted to degree I) 
P: c,=C,% k, the differential ci,_,+,:E~“,+,(~*)-,E~-‘,~‘;“-‘(~’,) 
vanishes for all large values of i, as in the previous case. The periodicity of 
the cohomology of (u, ) implies that dTPI+ i = 0 for all values of i. There- 
fore, o*:H*((u,);k)-+W*((u,);c*) is injective. Since q* is an 
H*((u,);k)-linear isomorphism for i%O, H’((u,);k)+W’((u,);C*) 
is injective. This in turn implies that the above differential d,+ 1 = 0 for 
all i. 1 

Let h: C* + C, be a chain homotopy equivalence given by the 
self-duality of C,, and let h,: H’(C*)+H,,-i(C*) be the induce 
kG-isomorphism. Choose a generator 526 H2”(C*) z k, and define the 
non-degenerate pairing q: H’(C*) @ H’“-‘(C*) + k z H2”(C*) via 
q( f @ g) = g(h,, (f )) 52. Here we have used the universal coefficients formula 
H’“-‘(C*) 2 Homk(H2,-i(C,), k). Since h, is a kG-isomorphism, q 
becomes a kG-homomorphism with respect to the diagonal action on the 
left side. Besides, we have the following commutative diagram in which z 
is the trace of an endomorphism: 

(0) 

* 
M@M - k 

I 
” 

I 
7 

M@Hom(M, k) A End(M) 

4.7. LEMMA. Keep the above notation and assume that I?‘( (u, ); M) E k 
for all i. Then it follows that: 

(a) q is split surjective; 
(b) ~*:fi*((u,);M@M)+fi*((u,);k) isan isomorphism; 
(c) A4 is stably k(u, )-isomorphic either to k or to the augmentation 

ideal of k<u, >. 

Proof of Lemma 4.7. Any indecomposable k[Z,]-module N is deter- 
mined by the Jordan canonical form of the generator of Z, acting 
on the k-vector space N. This shows that if N # 0 and N# kZ,, then 
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1 d dim,(N) d p - 1, and a standard cohomology calculation and induction 
on dim,N shows that ci’(Z, ; N) 2 k for all i E B in this case. The assump- 
tion of Lemma 4.6 shows that Mr M,@ F, where F is k(u,)-free and M0 
is indecomposable such that 1 < dim M, d p - 1. Hence dim M f 0 mod p. 
Define a splitting 5 : k -+ End(M) by r( 1) = (l/dim M)(id), where 
id E End(M) is the identity. The above commutative square ( 0 ) yields (a). 
To prove (b), observe that M@MrM,OM,@FOM,@M,@F@ 
F@ FZ M’@ F’, where M’ is indecomposable and M’ is k(u,)-free. 
The splitting of part (a), and the Krull-Schmidt-Azumaya theorem 
applied to the isomorphism kg Ker(q) z M’@ F’ implies that MOM z 
k @ (k( u, ) )” and Ker(q) z F’ is k( u, )-free. Thus, q* is an isomorphism 
and (b) follows. An easy calculation shows that for MO to satisfy 
M, 0 M, E k 0 (k( u, ))‘, the only possibilities are dim M0 = 1 or p - 1, 
hence (c) follows. b 

4.8. LEMMA. Keep the hypotheses of Lemma 4.1 and the above 
notation, and consider the internal cup-product in group cohomology, 
p: &((u,); M)@lj”((u,); M)--+Ij’+“((u,); MOM). 

(a) If M is k(u, )-stably isomorphic to k, then j3 is an isomorphism 
forallr~Omod2andaNs~.Z. 

(b) If M is k(u,)-stably isomorphic to the augmentation ideal of 
k (u, ), then fl is an isomorphism for all r z s E 1 mod 2. 

Proof The proof of (a) is immediate from periodicity of the coho- 
mology of (u, ) = Z,. To see (b), we proceed as follows. Consider the 
exact sequence 0 + M + F, + k 0 F2 + 0 in which F, and F2 are suitable 
k(u, )-free modules, and tensor it with M to obtain the exact sequence 
0 -+ M @ M --* F; -+ M @ Fi -+ 0, where F; and F; are also free. Let 
6: fi*((u,); k) --) fi*“((u,); M) and 6’: Z!?*((u,); M) + fi*+‘((u,); 
MOM) be the connecting homomorphisms in the long exact sequences of 
group cohomology applied to the above 
Z?* ( (u, ); k)-module isomorphisms and 
Brown [B3] or Cartan and Eilenberg 
commutative diagram 

short exact sequences. 6 and 6’ are 
compatible with cup-products (see 
[CE]). Therefore, we obtain the 

H2i((uI);k)OHb-1((u,); M) 

d@id s 

I 

@ , H*i+*j-l((u,); M) 

H2i+1((U,);M)~HZi-1((~,);M) B . H*‘+“((uf);M@M) 

In the above, p and /I are given by cup-products. Since p is an 
isomorphism, so is /I, and (b) is proved. 1 
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4.9. LEMMA. If I?‘( (u, ); M) z k for all i E Z, then the hypercohomology 
spectral sequence H*((u,); H*(C*))* W*((u,); C*) collapses. 

ProoJ From Lemma 4.6, it follows that we need to consider only 
d . p:, ~ p;y+ 1, n. n+l. First, note that there is a pairing in the above 
spectral sequence y : EiaQ Eib -+ E:+i,a+b as follows. Let q.+ : H*( (u, ); 
H’(C*)@ Hj(C*)) + H*((u,); H’+j(C*)) be the induced homomorphism 
from the pairing q given above by the self-duality. Note that in this case, 
we need to consider i =j = n, and if i = 0 or j = 0, q* is the identity. Next, 
we have the group cohomology cup-product j? as in Lemma 4.8 above. y is 
the composition ‘I.+ 0 p on the E,-level. We remark that p is constructed 
using a diagonal approximation in a resolution for (u,); hence, D 
satisfies a suitable form of the Leibnitz formula with respect to the 
differentials in the hypercohomology spectral sequences whose E,-terms are 
H*( (u,}; H*(C*)) and H*( (u,); H’(C* @ C*)) 2 H*( (u,); H*(C*)@ 
H*(C*)). Moreover, ye* commutes with the differentials since it is induced 
by coefficient homomorphisms. 

Let tEH2((u,);k)gk and Q~fi*((u,); H2’(C*))gk be generators. 
From Lemma 4.7(c) we are led to consider the two cases of Lemma 4.8. 
First, suppose- M is stably isomorphic to k, and write Q = y~,p(xOy), 
where x, y E I?“( (a,); M) and we have used Lemmas 4.7(b) and 4.8(a). 
Then dn+l(Q) = 4+l(rl~B(xQy)) = v,4+l(P(xQy)) = v.(&+,(x) 0 
y+x@d,+,(y))=O since d,+,(x)=O=d,+,(y) by Lemma4.6. In the 
case A4 is stably isomorphic to the augmentation ideal of k(u, ), we 
have tQ=~*B(u@u), where u,u~H’((u,);M). Then d,+,(tQ)= 
~,d,+,(B(uQ~))=~~(d,+l(~)Q~f~Qd,+l(U))=O again by the same 
lemmas. Since the E,-terms are modules over H*( (u,); k) and the 
differentials are H*( ( U, ); k)-linear, the periodicity of cohomology of (u, ) 
implies that d,, , z 0. For dimension reasons and using the H*( (u,); k)- 
module structure, it follows that dz,+ 1 z 0 also, and the spectral sequence 
collapses as claimed. [ 

4.10. LEMMA. With the hypotheses and the notation of Lemma 4.9 aboue, 
we have H,(C,( (a,))) z k3. 

Prooj This follows from Lemma 4.9 and the localization theorem 2.1 
applied to the k(u,)-permutation complex C, as in Proposition 4.3 
above. 1 

4.11. LEMMA. Let p be an odd prime, and let X, be a connected 
k[Z,]-permutation complex such that H,(X,)=O for i# (0, n, 2n) and 
H,(X,)=H,,(X,)=k. Zf H,(X,(Z,))=k, then H”(X,) satisfies 
Z?‘(h,; H”(X*)) = k for all iE E. 
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Proof. As in Lemma 4.6, the differential d,*;_“, : E:: 1 -+ El=“,+ LO 
vanishes. Denote by t E H2(Z,; k) = k the generator, and localize the 
spectral sequence by inverting t, so that E:: 1 [l/t] z fii(Z,; H”(X*)) 
and Eit i [l/t] z A’(Z,; k) z E>y, [l/t]. By the localization theorem 
(see 2.1), W*(Z,; X*)[l/t] z Z?*(Z,; k), so that the differential d,*fy[l/t]: 
A’(Z,; H2”(X*)) -+ @+“+ ‘(Z,; H”(X*)) is an isomorphism. 1 

We complete the proof of Theorem 4.5 as follows. Suppose 
rank(H*(G; M)) = 1. In the hypercohomology spectral sequence 
H*(G;H*(C*))*W*(G;C*), the differential d,+,: E~:,+E~~nlf’*o 
induces k-homomorphisms d,*;_“l @id: Ezc, 0 A k -+ Ezz;+ ‘3’ OA k and 
dz$Qid: EX$; @A k -+ EEz;-’ Oa k. Besides, EX;“, OA k 2 k z 
E;;O, OA kr E:;2; Oa k. The proof of Lemma 4.6 applied to the hyper- 
cohomology spectral sequence of G shows that dz;_“, 0 id = 0. (One needs 
to remark only that by Lemma 2.2, W* (G; D*) 0 A k = 0 in that proof.) 
If d;;“, Oa k # 0, then it must be an isomorphism. This implies that 
W*(G; C*) OA k z k. From the localization theorem 2.1 it follows that 
H*(C* (G)) = k. For a choice of 0: E k’ as in Lemma 4.6, C,(G) = 
C,( ( U, )) so that H,( C, ( U, )) = k. From Lemma 4.2 above, it follows 
that $( (u,); M) = k for all i E Z. But this contradicts Lemma 4.10. This 
contradiction shows that d,‘$ OA k = 0. Since dz;?, Oa k = 0 again by 
the proof of Lemma 4.6, and dz;;l I = 0 for dimension reasons, the spectral 
sequence collapses. Hence W *(G; C*) @A k z k3 and the localization 
theorem shows that dim,H,(C,(G)) = 3 as desired. 1 

4.12. EXAMPLE. Let p be odd and G = Z,, and consider the linear 
representation of G on C3 with three non-trivial distinct weights. The 
induced action on the complex projective space @P2 has precisely three 
fixed points, and H2(CP2) = Z. If we choose m free orbits of points in 
CP2 and blow-up these points, we get another algebraic action on an 
algebraic surface X, and topologically X = @P2 # ( mD2) (connected sum) 
and Z&(X) z P @ ( ZG)m. Similar examples can be constructed using projec- 
tive actions of G = Z, x L, on @P2 and by blowing up an orbit GfH of 
points, one obtains an algebraic surface Y with H2( Y) z Z 0 Z[G/H]. 
More complicated examples can be constructed by a variation on these 
examples. As remarked in Section 1, C,(X) and C,(Y) for suitable G-sim- 
plicial structures on X and Y provide examples of SDP-structures in which 
H*(G; M) has rank one over H*(G; k). The geometric consequence of 
Theorem 4.5 is that for a Poincare duality complex with an effective (7Z,)r- 
action, the fixed point set of any subgroup HE Z; is never homologically 
acyclic. Theorem 4.5 may be considered the algebraic analogue of the 
theorems of Conner and Floyd [CFl], [CF2], Atiyah and Bott CAB], 
and W. Browder [Bw]. 
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4.13. COROLLARY. Let p be an odd prime, G = (Z,)‘, and C, be an 
SDP-structure over kG of formal dimension 2n and H,, (C, ) = M. Then the 
following hold: 

(I) lfH,(C,(G))#O, thendim H,(C,(G))>2. 

(2) dim H, (C, (G)) = 2 if and only if H*(G; M) is a torsion 
H*(G; k)-module. 

Proof. (1) By choosing a E k’ as in Theorem 4.5 above, it follows that 
dimH,(C,((u,)))#l. Since C,((u,))=C,(G), dimH,(C,(G))a2. 
Part (2) follows from Proposition 4.3 and the following argument, 
H*(G; M) is a torsion H*(G; k)-module if and only if the Krull dimension 
of the support of H*(G; M) in SpecH”‘(G; k) is less than 
dim Spec H”‘(G; k) = rank(G) = r. Here, H”‘(G; k) = oi,,, H2’(G; k) is a 
commutative k-algebra whose reduced k-algebra is isomorphic to the 
polynomial ring k[t,, . . . . t,]. From the positive answer to the Carlson 
conjecture (Avrunin and Scott [AS], Carlson [Cl], [C2]) it follows that 
there is an a E k’ such that MI k( u, ) is k(u, )-free. In fact, the set of such 
vectors a forms a Zariski open dense subset of k’, namely, the complement 
of the proper closed subset (Supp H*(G; M)) n Max Spec(H”‘(G; k)). 
Thus, it is possible to arrange for such an a to satisfy C,( (u, >) = C,(G) 
as well. Now Proposition 4.4 shows that H,(C, (u,)) = k@ k, hence 
dim HJC, (G)) = 2. The converse proceeds along the same lines: For any 
a E k’ in the complement of the F,-rational linear subspaces corresponding 
to proper subgroups of G, C,( ( U, )) = C,(G). The proof of Proposi- 
tion4.4 shows that if dim H,(C,((u,)))=2, then H*((u,);M)=O, so 
that M is k (u,)-free. Therefore, the Carlson rank variety V&(M) (see 
Carlson [Cl]) is a proper subset of k’. Again, by the Avrunin-Scott 
theorem [AS, Theorem 11, the cohomological support variety V,(M) is a 
proper subset of Max Spec(H”(G; k)). Hence H*(G; M) is a torsion 
H*( G; k)-module. 

5. UNITS IN THE GREEN RING 

Recall that the Green ring of RG is the Grothendieck ring associated to 
the set of isomorphism classes of indecomposable RG-lattices. The direct 
sum and tensor product (over R) of RG-modules induce the ring opera- 
tions. The stable Green ring is the quotient of the Green ring by the ideal 
generated by RG-projective modules. We use the notation IW(RG) and 
@(RG) for the Green ring and its stable version. A unit in fi(RG) is seen 
to be represented by an RG-lattice M for which there exists another 
RG-lattice M’ such that M@ M’ z R 0 P, where P is RG-projective. An 
important class of RG-lattices is the endo-trivial modules introduced by 
J. Alperin and E. Dade (see Dade [D] and Alperin [Alp]) and they are 
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characterized by End,(M) z R @ P with P = projective RG-module. The 
canonical RG-isomorphism Hom,( M, R) 0 M z End,(M) shows that 
endo-trivial modules represent units of &RG). In the following, we deter- 
mine the units of fi(RG) which are permutable RG-modules arising in 
Steenrod’s problem. It is appropriate to call an RG-module M spherical if 
there is a finite-dimensional G-space X such that non-equivariantly, X is 
homotopy equivalent to a bouquet of d-dimensional spheres and the 
homology representation Hd(X, R) is RG-isomorphic to 44. This is inspired 
by Quillen’s terminology of d-spherical posets [Q2]. For example, if M is 
the Steinberg module of a finite Chevalley group G, or more generally the 
reduced homology of the simplicial complexes associated to posets ral,(G), 
yp(G) or Solomon-Tits buildings (see Quillen [Q2] and Section 3 above), 
then A4 is d-spherical, where d+ 1 is the appropriate “rank” of G. Let us 
call M a spherical unit of n(G), if M is spherical and a unit in R(G) and 
such that its inverse in l&G) is also spherical. 

5.1. EXAMPLE. If M is finitely generated endo-trivial and spherical, then 
M is a spherical unit. To see this, suppose that Hd(X, R) z M and we have 
arranged for X to be a finite-dimensional simplical complex with a simpli- 
cial G-action using standard approximation arguments of algebraic 
topology. Then we choose for G a large-dimensional real or complex 
representation space V, and embed X G-equivariantly in V, using the 
Mostow-Palais embedding theorem (cf. Bredon [Bdn]). Let I/, be the 
one-point compactification of V, which is a sphere with G-action. Let Y 
be the complement of X in V,. Then by Alexander duality, Y is connected, 
H,(Y)=0 for i#O, n-d-1, and Hn--d--l(Y)~HHd(X), so that 
H,-,- i( Y; R) z Hom,(H,(X; R), R) z Hom,(M, R). Thus, Hom,(M, R) 
is also spherical. By endo-triviality, Hom,(M, R) 0 M z R 0 P, where P is 
RG-projective. Thus M is a spherical unit in n(RG) as claimed. 

5.2. THEOREM. Suppose M is a spherical unit in the stable Green ring 
fi(RG), where G is an abelian p-group and R is a field of characteristic p. 
Then M is stably isomorphic to Q”(R) for some n E Z. rf M is indecom- 
posable, then M z W’(R). 

5.3. Remarks. (1) Sz is the Heller operator [Hell. See Curtis-Reiner 
[CR] for the definition and properties. 

(2) A deep and difficult theorem of E. Dade [D] characterizes endo- 
trivial RG-modules, for G = abelian p-group and R = field of characteristic 
p. In a forthcoming paper, we prove that 5.2 holds without the spherical 
hypothesis by a proof independent of Dade’s. However, the more general 
results require non-elementary algebraic geometry. The spherical case, 
however, uses elementary arguments which may help one to develop an 
intuitive feeling for the general results. 
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(3) From Section 1 it follows easily that spherical RG-modules are 
RG-permutable. 

ProoJ: Let E be the maximal p-elementary abelian subgroup of G. By 
suspending, if necessary, we may assume that there is a G-space X such 
that H,(X; R) = A4 and XG #& By definition, dim X< cc and X is 
homotopy equivalent to a bouquet of d-dimensional spheres. By standard 
arguments in alge%$c topology, we may assume that X is a G-CW com- 
plex, so that C, = C,(X) is a permutation complex with permutation 
basis given by the cells of X. Let z(X) be the singular set of the G-action 
on A’, that is, the union of fixed points XH for all 1 #HE G. Note that in 
the reduced regular representation Cc [G]/C [GIG, we may choose a 
G-invariant inner product by averaging any given inner product. Call S 
the unit sphere in this representation. Then S is a sphere with G-action 
and SG = 4. Hence the join X0 S with its natural G-action is homologically 
only an iterated suspension of X, so that XoS will be still spherical. 
Moreover. (XOS)~ = XG # 4. This operation preserves homology up to 
RG-isomorphism and it has the effect of increasing the codimension of 
the singular set, i.e., dim X-dim X(X) will be arbitrarily large after 
repeated replacements of X by X0 S. There is another operation which 
changes H,(X) by Q’H,(X), r> 0, up to stable RG-isomorphism. This is 
obtained by adding free orbits of (d+ l)-cells to X, obtaining a G-CW 
complex x’. We choose a surjection (RG)” + A4 and regard this as 
Hd+ 1 lx’, X) @ R a H&f), which is geometrically realized (using 
Hurewicz’s theorem) by attaching cells u G x Dd+ ’ to X to obtain x’. This 
operation has the effect of increasing the homological codimension, i.e., 
since C(X) = C(X’), dim X(X) remains constant and the dimension d, 
where H,(X; R) # 0, grows arbitrarily large. Since Q’MOQ-‘N is RG- 
stably isomorphic to MO N, O’M is still a spherical unit. 

Now choose Y such that YG # 4 and satisfying other hypotheses which 
X already satisfies, and such that Hd’( Y; R) g M’ is an inverse of M in 
@(RG). That is, iI48 M’ z R @ P, where P is RG-projective. Note that 
since R is a field of characteristic p and G is a p-group, RG is local and pro- 
jective modules coincide with free RG-modules. However, we will use this 
remark only for convenience. Consider 2 = X A Y, the smash product with 
the induced action (see Section 1). The Kiinneth formula shows that 
I7* (Z; R) r H,(X; R) @ H,( Y; R) r R @ P. By the localization theorem 
(Theorem 2.1 above, for example, or Hsiang [Hsg]), H5(ZH; R) z R 
for each 1 # H E E. Since Z” = X” A YH and H,(ZH; R) Y 
R,(XH; R) 0 E7, ( YH; R), it follows that 17,(X”; R) z R. Let 6(H) be the 
integer such that Ed(XH; R) = R and note that since X” 2 Xc #& 
6(H) 2 0. 

Consider the set % = { Hs E : ( E/HI =p}, and let W be the real linear 

4x1/144/2-15 
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representation of E which is the direct sum of m(H) irreducible non-trivial 
linear representations of E/H 2 Z, for each HE @. We choose m(H) 
(depending on p = 2 or p > 2) such that dim. WH = 6(H) + 1. Let 
dim. W = I+ 1. By shifting dimension or join operation as described 
above, we may arrange for X, and Z, to satisfy 1+ 2 >/ dim C(H) + 2. While 
this condition on X is not necessary for the proof, it will simplify and make 
the following argument more elementary. Consider the Z-skeleton of X, call 
it X(I) and its cellular chain complex C,(X”‘) = D,. Let F, = C,(X)/D,, 
which is RG-free by choice of 1. D, is a permutation complex which is 
based and H,(D,@R)zH,+~(F,@~). Since H,(F,@R)=O unless i=d 
or i = 1+ 1, and F, is RG-free and F, = 0 for i 6 I or i > dim X, it follows 
easily that H,(X; R) is RG-stably isomorphic to H,, , (F, @ 1). Hence, up 
to replacing M by PM for some r E Z, we have reduced the problem to 
showing that H,(D, 0 R) is RG-stably isomorphic to Q”(R) for some n E Z. 
(In the terminology of Assadi [A2], A4 and H,(D,; R) are w-stably 
isomorphic. See [A21 for related discussions.) 

The linear representation W satisfies the dimension equation 
dim W-dim WE=CHEa (dim WH - dim W”), hence the restriction of the 
G-action on X to the E-action satisfies the Bore1 formula l- 6(E) = 

c HEB (6(H) - 6(E)). (See Bore1 [Bor], Bredon [Bdn], or Hsiang [Hsg] 
for more details.) According to Dotzel [Dot], the converse to Borel’s 
theorem holds for such a situation and H,(X”‘; R) is RE-isomorphic 
to ROP,, where P, is RE-projective. By the above discussion, we 
may write MO (RE)’ s Qd- ‘( H,(X”‘; R)) @ (RI?)” r Q“- ‘(R) @ (RE)” as 
RE-modules. Consider SZ’-d(M) as an RG-module. By the above, 
a’- ‘(M)I E z R @ Q, where Q is RE-free. 

Consider the induced homomorphism p*: Z?*(G; SZIPd(M)) + 
k*(E; 52’-d(M)), which is an F-isomorphism in the terminology of 
Quillen [Ql 1. To see this, observe that Q’-d(M) is stably isomorphic 
to H,(X”‘; R), and for a choice of base point x E XG, H,*(X(‘), x; R) g 
H*(G; H/(X”‘, x; R) for * > I+ 1, and similarly for E. This is true since the 
spectral sequences of equivariant cohomology (or equivalently hyper- 
cohomology) have only one row. By Quillen [Ql 1, one knows that 
H,*(X, x; R) --* H,*(X, x; R) is an F-isomorphism since E is the unique 
p-elementary abelian subgroup of G. In particular, p* : p”(G; fi’-d(M)) --+ 
fi’(E; s2’-d(M)) z R is non-zero, hence surjective. Let M’ = a’-d(M). 
Thus, we may choose f~ Horn&R, M’) such that in the diagram 

fi’(G; R) f+ ti’(G; M’) 

I 
” 

I 
P* 

Z?‘(E; R) f* EiO(E; M’ ) 
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f,: A’(G; R) + fi’(G; M’) is injective. In the exact sequence of RG- 
modules O+Rf*M’+Coker(j)+O,f,:fi*(E;R)+fi*(E;M’) is an 
isomorphism, so that fi*(E; Coker(f)) = 0. It follows from Rim CR] that 
Coker(f)l, is RE-free. By Chouinard’s theorem (cf. [Ch], Curtis-Reiner 
[CR]), Coker(f) is RG-projective, hence the short exact sequence above 
splits over RG and M’ is stably isomorphic to R. Therefore, M is stably 
isomorphic to Qd-‘(R), and if M is indecomposable, Mr Q”-‘(R). 1 

In the above proof we only used the fact that G has a unique p-elemen- 
tary abelian group in an essential way. Other references to the fact that G 
is an abelian p-group may be avoided, and a modification of the above 
argument proves the following more general result: 

THEOREM. Let R be a field of characteristic p, and assume that G is a 
finite group with a unique conjugacy class of maxima1 p-elementary abelian 
subgroups. Suppose that M is a spherical unit in the stable Green ring 
&RG). Then M is RG-stably isomorphic to W’(R) for some n E Z. 

It is also worthwhile to point out the following corollary, whose proof 
follows from 5.3 and the constructions of Section 1 as used in the proof of 
Theorem 5.2. 

5.4. COROLLARY. The spherical units of any finite group G in bB(RG) 
form a multiplicative subgroup of the group of all units. Therefore, tf M is 
a spherical unit, so are Horn&M, R) and Q”M for all n E Z. 

The above results provide some evidence for the following: 

5.5. Conjecture. For an arbitrary finite group G and R = E or a field of 
characteristic p, all units of &RG) are spherical. 
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