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Abstract

This paper is a continuation of [N. Ghoussoub, Y. Guo, On the partial differential equations of electro-
static MEMS devices: Stationary case, SIAM J. Math. Anal. 38 (2007) 1423–1449] and [N. Ghoussoub,
Y. Guo, On the partial differential equations of electrostatic MEMS devices II: Dynamic case, NoDEA
Nonlinear Differential Equations Appl. (2008), in press], where we analyzed nonlinear parabolic problem

ut = �u− λf (x)

(1+u)2 on a bounded domain Ω of R
N with Dirichlet boundary conditions. This equation mod-

els a simple electrostatic Micro-Electromechanical System (MEMS) device consisting of a thin dielectric
elastic membrane with boundary supported at 0 above a rigid ground plate located at −1. Here u is mod-
eled to describe dynamic deflection of the elastic membrane. When a voltage—represented here by λ—is
applied, the membrane deflects towards the ground plate and a snap-through (touchdown) must occur when
it exceeds a certain critical value λ∗ (pull-in voltage), creating a so-called “pull-in instability” which greatly
affects the design of many devices. In an effort to achieve better MEMS design, the material properties of the
membrane can be technologically fabricated with a spatially varying dielectric permittivity profile f (x). In
this work, some a priori estimates of touchdown behavior are established, based on which the refined touch-
down profiles are obtained by adapting self-similar method and center manifold analysis. Applying various
analytical and numerical techniques, some properties of touchdown set—such as compactness, location and
shape—are also discussed for different classes of varying permittivity profiles.
© 2008 Elsevier Inc. All rights reserved.
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Fig. 1. The simple electrostatic MEMS device.

1. Introduction

Micro-Electromechanical Systems (MEMS) are often used to combine electronics with micro-
size mechanical devices in the design of various types of microscopic machinery. MEMS devices
have therefore become key components of many commercial systems, including accelerome-
ters for airbag deployment in automobiles, ink jet printer heads, optical switches and chemical
sensors and so on. The simplicity and importance of this technique have led many applied math-
ematicians and engineers to study mathematical models of electrostatic-elastic interactions. An
overview of the physical phenomena of the mathematical models associated with the rapidly
developing field of MEMS technology is given in [18].

The key component of many modern MEMS is the simple idealized electrostatic device shown
in Fig. 1. The upper part of this device consists of a thin and deformable elastic membrane that is
held fixed along its boundary and which lies above a rigid grounded plate. This elastic membrane
is modeled as a dielectric with a small but finite thickness. The upper surface of the membrane
is coated with a negligibly thin metallic conducting film. When a voltage V is applied to the
conducting film, the thin dielectric membrane deflects towards the bottom plate, and when V is
increased beyond a certain critical value V ∗—known as pull-in voltage—the steady-state of the
elastic membrane is lost, and proceeds to touchdown, i.e. snap through, at a finite time creating
the so-called pull-in instability.

A mathematical model of the physical phenomena, leading to a partial differential equation for
the dimensionless dynamic deflection of the membrane, was derived and analyzed in [5] and [15].
In the damping-dominated limit, and using a narrow-gap asymptotic analysis, the dimensionless
dynamic deflection u = u(x, t) of the membrane on a bounded domain Ω in R

2, is found to
satisfy the following parabolic problem

ut − �u = −λf (x)

u2
for x ∈ Ω, (1.1a)

u(x, t) = 1 for x ∈ ∂Ω, (1.1b)

u(x,0) = 1 for x ∈ Ω. (1.1c)

An outline of the derivation of (1.1) was given in Appendix A of [15]. The initial condition
in (1.1c) assumes that the membrane is initially undeflected and the voltage is suddenly applied
to the upper surface of the membrane at time t = 0. The parameter λ > 0 in (1.1a) characterizes
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the relative strength of the electrostatic and mechanical forces in the system, and is given in terms

of the applied voltage V by λ = ε0V
2L2

2Ted3 , where d is the undeflected gap size, L is the length scale
of the membrane, Te is the tension of the membrane, and ε0 is the permittivity of free space in
the gap between the membrane and the bottom plate. We shall use from now on the parameter λ

and λ∗ to represent the applied voltage V and pull-in voltage V ∗, respectively. Referred to as
the permittivity profile, f (x) in (1.1) is defined by the ratio f (x) = ε0

ε2(x)
, where ε2(x) is the

dielectric permittivity of the thin membrane.
There are several issues that must be considered in the actual design of MEMS devices. Typ-

ically one of the primary goals is to achieve the maximum possible stable deflection before
touchdown occurs, which is referred to as pull-in distance (cf. [15] and [17]). Another consider-
ation is to increase the stable operating range of the device by improving the pull-in voltage λ∗
subject to the constraint that the range of the applied voltage is limited by the available power
supply. Such an improvement in the stable operating range is important for the design of cer-
tain MEMS devices such as microresonators. One way of achieving larger values of λ∗, while
simultaneously increasing the pull-in distance, was first studied in [17] and [15], and consists
of introducing a spatially varying dielectric permittivity ε2(x) of the membrane. The idea is to
locate the region where the membrane deflection would normally be largest under a spatially
uniform permittivity, and then make sure that a new dielectric permittivity ε2(x) is largest—and
consequently the profile f (x) smallest—in that region.

J.A. Pelesko studied in [17] the steady-states of (1.1), when f (x) is assumed to be bounded
away from zero, i.e., 0 < C � f (x) � 1 for all x ∈ Ω. He established in this case an upper
bound for λ∗, and derived numerical results for the power-law permittivity profile, from which
the larger pull-in voltage and thereby the larger pull-in distance, the existence and multiplicity
of the steady-states were observed. Recently, Y. Guo, Z. Pan and M.J. Ward studied in [15] the
dynamic behavior of (1.1), which is also of great practical interest. They considered a more
general class of profiles f (x), where the membrane is allowed to be perfectly conducting, i.e.,
0 � f (x) � 1 for all x ∈ Ω , with f (x) > 0 on a subset of positive measure of Ω . By using both
analytical and numerical techniques, they obtained larger pull-in voltage λ∗ and larger pull-in
distance for different classes of varying permittivity profiles. These results were extended and
sharpened in [8] and [1], where we focused on the steady-state solutions of (1.1) in the form

−�v = λf (x)

(1 − v)2
, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω, (S)λ

with 0 < v < 1 on Ω ⊂ R
N , and f (x) was assumed to satisfy

f ∈ Cα(Ω̄) for some α ∈ (0,1], 0 � f � 1 and

f > 0 on a subset of Ω with positive measure. (1.2)

Theorem A. (See [8, Theorem 1.1].) Assume f satisfies (1.2) on a bounded domain Ω , then
there exists a finite pull-in voltage λ∗ := λ∗(Ω,f ) > 0 such that:

(1) If 0 � λ < λ∗, there exists at least one solution for (S)λ.
(2) If λ > λ∗, there is no solution for (S)λ.
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The rigorous bounds of pull-in voltage λ∗ were also given in Theorem 1.1 of [8]. Fine prop-
erties of steady states—such as regularity, stability, uniqueness, multiplicity, energy estimates
and comparison results—were shown in [8] and [1] to depend on the dimension of the am-
bient space and on the permittivity profile. For any solution v of (S)λ, we introduced in [8]
the linearized operator at v defined by Lv,λ = −� − 2λf (x)

(1−v)3 , and its corresponding eigenval-
ues {μk,λ(v); k = 1,2, . . .}. In particular, the following properties of positive minimal solutions
of (S)λ were established in [8]. Here a solution vλ of (S)λ is said to be a minimal solution, if
vλ(x) � v(x) in Ω whenever v is any solution of (S)λ.

Theorem B. (See [8, Theorem 1.2].) Assume f satisfies (1.2) on a bounded domain Ω , and
consider λ∗ := λ∗(Ω,f ) as defined in Theorem A. Then:

(1) For any 0 � λ < λ∗, there exists a unique minimal solution vλ of (S)λ such that μ1,λ(vλ) > 0.
Moreover for each x ∈ Ω , the function λ → vλ(x) is strictly increasing and differentiable on
(0, λ∗).

(2) If 1 � N � 7 then—by means of energy estimates—one has supλ∈(0,λ∗)‖vλ‖∞ < 1 and con-
sequently, v∗ = limλ↑λ∗ vλ exists in C1,α(Ω̄) with 0 < α < 1 and is a solution for (S)λ∗ such
that μ1,λ∗(v∗) = 0. In particular, v∗—often referred to as the extremal solution of problem
(S)λ—is unique.

(3) On the other hand, if N � 8, f (x) = |x|α with 0 � α � α∗∗(N) := 4−6N+3
√

6(N−2)
4 and Ω

is the unit ball, then the extremal solution is necessarily v∗(x) = 1 − |x| 2+α
3 and is therefore

singular.

We remark that in general, the function v∗ exists in any dimension, does solve (S)λ∗ in a
suitable weak sense and is the unique solution in an appropriate class. The above theorem says
that it is however a classical solution in dimensions 1 � N � 7.

For the dynamic problem (1.1), we now define

Definition 1.1. (1) A steady-state uλ(x) of (1.1) is said to be a maximal steady-state, if uλ(x) �
u(x) in Ω whenever u(x) is any steady-state of (1.1).

(2) A solution u(x, t) of (1.1) is said to touchdown, i.e. quenching, at finite (infinite) time
T = T (λ,Ω,f ) if the minimum value of u reaches 0 at the time T < ∞ (T = ∞).

More recently, in [9] we dealt with issues of global convergence as well as finite and infinite
time touchdown of (1.1), together with [10], where one of the main results was the following
analysis of the relationship between the applied voltage λ and dynamic solution u of (1.1):

Theorem C. (See [9 and 10, Theorem 1.1].) Assume f satisfies (1.2) on a bounded domain Ω ,
and suppose λ∗ is as in Theorem A. Then the followings hold:

(1) If λ � λ∗, then there exists a unique solution u(x, t) for (1.1) which globally converges
pointwise as t → +∞ to its unique maximal steady-state.

(2) If λ > λ∗, then a unique solution u(x, t) of (1.1) must touchdown at a finite time.

Theorems B and C show that the solution u of (1.1) may touchdown at infinite time in higher
dimension (N � 8), which exactly occurs at λ = λ∗; however, infinite-time touchdown cannot
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occur in MEMS because the dimension of its ambient space is N = 1 or 2. Recall that pull-in
distance of MEMS devices refers to the maximum possible stable deflection before touchdown
occurs. Therefore, Theorems B and C also show that pull-in distance is exactly achieved at λ = λ∗
in MEMS devices.

In this paper we consider the case λ > λ∗ and we shall give a refined description of finite-time
touchdown behavior for u, including some touchdown estimates, touchdown rates, as well as
some information on the properties of touchdown set—such as compactness, location and shape.
This paper is organized as follows: the purpose of Section 2 is mainly to derive some a priori
estimates of touchdown profiles under the assumption that touchdown set of u is a compact
subset of Ω . In Section 2.1, we establish the following lower bound estimate of touchdown
profiles.

Theorem 1.1. Assume f satisfies (1.2) on a bounded domain Ω , and suppose u is a touchdown
solution of (1.1) at finite time T . If touchdown set of u is a compact subset of Ω , then

(1) any point a ∈ Ω̄ satisfying f (a) = 0 is not a touchdown point of u(x, t);
(2) there exists a bounded positive constant M such that

M(T − t)
1
3 � u(x, t) in Ω × (0, T ). (1.3)

Whether the compactness of touchdown set holds for any f (x) satisfying (1.2) is a quite
challenging problem. We shall prove in Proposition 2.1 of Section 2 that the compactness of
touchdown set holds for the case where the domain Ω is convex and f (x) satisfies the additional
condition

∂f

∂ν
� 0 on Ωc

δ := {
x ∈ Ω: dist(x, ∂Ω) � δ

}
for some δ > 0. (1.4)

Here ν is the outward unit norm vector to ∂Ω . On the other hand, when f (x) does not satisfy
(1.4), the compactness of touchdown set was numerically observed, see [9,15] or Section 4 of
the present paper. Therefore, it is our conjecture that under the convexity of Ω , the compactness
of touchdown set holds for any f (x) satisfying (1.2). In Section 2.2 we estimate the derivatives
of touchdown solution u, see Lemma 2.6; and as a byproduct, an integral estimate is also given
in Section 2.2, see Theorem 2.7.

Motivated by Theorem 1.1, the key point of studying touchdown profiles is a similarity vari-
able transformation of (1.1). For the touchdown solution u = u(x, t) of (1.1) at finite time T , we
use the associated similarity variables

y = x − a√
T − t

, s = − log(T − t), u(x, t) = (T − t)
1
3 wa(y, s), (1.5)

where a is any interior point of Ω . Then wa(y, s) is defined in Wa := {(y, s): a + ye−s/2 ∈ Ω,

s > s′ = − logT }, and it solves

ρ(wa)s − ∇ · (ρ∇wa) − 1
ρwa + λρf (a + ye− s

2 )

2
= 0,
3 wa
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where ρ(y) = e−|y|2/4. Here wa(y, s) is always strictly positive in Wa . The slice of Wa at a given
time s1 is denoted by Ωa(s

1) := Wa ∩ {s = s1} = es1/2(Ω − a). Then for any interior point a

of Ω , there exists s0 = s0(a) > 0 such that Bs := {y: |y| < s} ⊂ Ωa(s) for s � s0. We now
introduce the frozen energy functional

Es[wa](s) = 1

2

∫
Bs

ρ|∇wa|2 dy − 1

6

∫
Bs

ρw2
a dy −

∫
Bs

λρf (a)

wa

dy. (1.6)

By estimating the energy Es[wa](s) in Bs , one can establish the following upper bound estimate.

Theorem 1.2. Assume f satisfies (1.2) on a bounded domain Ω in R
N , suppose u is a touchdown

solution of (1.1) at finite time T and wa(y, s) is defined by (1.5). Assume touchdown set of u

is a compact subset of Ω . If wa(y, s) → ∞ as s → ∞ uniformly for |y| � C, where C is any
positive constant, then a is not a touchdown point for u.

Based on a priori estimates of Section 2, we shall establish refined touchdown profiles in
Section 3, where self-similar method and center manifold analysis will be applied. Here is the
statement of refined touchdown profiles:

Theorem 1.3. Assume f satisfies (1.2) on a bounded domain Ω in R
N , and suppose u is a

touchdown solution of (1.1) at finite time T . Assume touchdown set of u is a compact subset
of Ω , then:

(1) If N = 1 and x = a is a touchdown point of u, then we have

lim
t→T − u(x, t)(T − t)−

1
3 ≡ (

3λf (a)
) 1

3 (1.7)

uniformly on |x − a| � C
√

T − t for any bounded constant C. Moreover, when t → T −,

u ∼ [
3λf (a)(T − t)

]1/3
(

1 − 1

4| log(T − t)|

+ |x − a|2
8(T − t)| log(T − t)| + · · ·

)
, N = 1. (1.8)

(2) If Ω = BR(0) ⊂ R
N is a bounded ball with N � 2, f (r) = f (|x|) is radially symmetric, and

suppose r = 0 is a touchdown point of u, then we have

lim
t→T − u(r, t)(T − t)−

1
3 ≡ (

3λf (0)
) 1

3 (1.9)

uniformly on r � C
√

T − t for any bounded constant C. Moreover, when t → T −,
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u ∼ [
3λf (0)(T − t)

]1/3
(

1 − 1

2| log(T − t)|

+ r2

4(T − t)| log(T − t)| + · · ·
)

, N = 2. (1.10)

Note that the uniqueness of solutions for (1.1) gives the radial symmetry of u in Theo-
rem 1.3(2). When dimension N � 2, it should remark from Theorem 1.3(2) that we are only
able to discuss the refined touchdown profiles for special touchdown point x = 0 in the radial
situation, and it seems unknown for the general case.

Adapting various analytical and numerical techniques, Section 4 will be focused on the set
of touchdown points. This may provide useful information on the design of MEMS devices. In
Section 4.1 we discuss the radially symmetric case of (1.1) as follows:

Theorem 1.4. Assume f (r) = f (|x|) satisfies (1.2) and f ′(r) � 0 in a bounded ball BR(0) ⊂ R
N

with N � 1, and suppose u is a touchdown solution of (1.1) at finite time T . Then, r = 0 is the
unique touchdown point of u.

Remark 1.1. Assume f (r) = f (|x|) satisfies (1.2) and f ′(r) � 0 in a bounded ball BR(0) ⊂ R
N

with N � 1. Together with Proposition 2.1 below, Theorems 1.1 and 1.4 show an interesting
phenomenon: finite-time touchdown point is not the zero of f (x), but the maximum value point
of f (x), see also [10].

Remark 1.2. Numerical simulations in Section 4.1 show that the assumption f ′(r) � 0 in The-
orem 1.4 is sufficient, but not necessary. This gives that Theorem 1.3(2) does hold for a larger
class of profiles f (r) = f (|x|).

For one-dimensional case, Theorem 1.4 already implies that touchdown points must be unique
when permittivity profile f (x) is uniform. In Section 4.2 we further discuss one-dimensional
case of (1.1) for varying profile f (x), where numerical simulations show that touchdown points
may be composed of finite points or finite compact subsets of the domain. Finally, Section 5 is a
conclusion, where we review the main results of this paper, and address their applications to the
understanding of dynamic deflection of MEMS devices.

2. A priori estimates of touchdown behavior

Under the assumption that touchdown set of u is a compact subset of Ω , in this section we
study some a priori estimates of touchdown behavior, and establish the claims in Theorems 1.1
and 1.2. In Section 2.1 we establish a lower bound estimate, from which we complete the proof
of Theorem 1.1. Using the lower bound estimate, in Section 2.2 we shall prove some estimates
for the derivatives of touchdown solution u, and an integral estimate will be also obtained as a
byproduct. In Section 2.3 we shall study the upper bound estimate by energy methods, which
gives Theorem 1.2.

We first prove the following compactness result for a large class of profiles f (x) satisfy-
ing (1.2) and (1.4).



2284 Y. Guo / J. Differential Equations 244 (2008) 2277–2309
Proposition 2.1. Assume f satisfies (1.2) and (1.4) on a bounded convex domain Ω , and sup-
pose u is a touchdown solution of (1.1) at finite time T . Then, the set of touchdown points for u

is a compact subset of Ω .

Proof. We prove Proposition 2.1 by adapting moving plane method from Theorem 3.3 in [4],
where it is used to deal with blow-up problems. Take any point y0 ∈ ∂Ω , and assume for sim-
plicity that y0 = 0 and that the half space {x1 > 0} (x = (x1, x

′)) is tangent to Ω at y0. Let Ω+
α =

Ω ∩{x1 > α} where α < 0 and |α| is small, and also define Ω−
α = {(x1, x

′): (2α−x1, x
′) ∈ Ω+

α },
the reflection of Ω+

α with respect to the plane {x1 = α}, where x′ = (x2, . . . , xN).
Consider the function

w(x, t) = u(2α − x1, x
′, t) − u(x1, x

′, t)

for x ∈ Ω−
α , then w satisfies

wt − �w = λ(u(x1, x
′, t) + u(2α − x1, x

′, t))f (x)

u2(x1, x′, t)u2(2α − x1, x′, t)
w.

It is clear that w = 0 on {x1 = α}. Since u(x, t) = 1 along ∂Ω and since the maximum principle
gives ut < 0 for 0 < t < T , we may choose a small t0 > 0 such that

∂u(x, t0)

∂ν
> 0 along ∂Ω, (2.1)

where ν is the outward unit norm vector to ∂Ω . Then for sufficiently small |α|, (2.1) implies that
w(x, t0) � 0 in Ω−

α and also w = 1 − u(x1, x
′, t) > 0 on (∂Ω−

α ∩ {x1 < α}) × (t0, T ). Applying
the maximal principle we now conclude that w > 0 in Ω−

α × (t0, T ) and ∂w
∂x1

= −2 ∂u
∂x1

< 0 on
{x1 = α}. Since α is arbitrary, it follows by varying α that

∂u

∂x1
> 0, (x, t) ∈ Ω+

α0
× (t0, T ), (2.2)

provided |α0| = |α0(t0)| > 0 is sufficiently small.
Fix 0 < |α0| � δ, where δ is as in (1.4), we now consider the function

J = ux1 − ε1(x1 − α0) in Ω+
α0

× (t0, T ),

where ε1 = ε1(α0, t0) > 0 is a constant to be determined later. The direct calculations show that

Jt − �J = 2λf

u3
ux1 − λfx1

u2
= 2λf

u3
ux1 − λ

u2

∂f

∂ν

∂ν

∂x1
� 0 in Ω+

α0
× (t0, T ) (2.3)

due to (1.4). Therefore, J cannot attain negative minimum in Ω+
α0

× (t0, T ). Next, J > 0 on

{x1 = α0} by (2.2). Since (2.1) gives ∂u(x,t0)
∂x1

� C > 0 along (∂Ω+
α0

∩ ∂Ω) for some C > 0, we
have J > 0 on {t = t0} provided ε1 = ε1(α0, t0) > 0 is sufficiently small. We now claim that for
small ε1 > 0,

J > 0 on
(
∂Ω+

α ∩ ∂Ω
) × (t0, T ). (2.4)
0
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To prove (2.4), we compare the solution U := 1 − u satisfying

Ut − �U = λf (x)

(1 − U)2
, (x, t) ∈ Ω × (t0, T ),

U(x, t0) = 1 − u(x, t0), U(x, t) = 0, x ∈ ∂Ω,

with the solution v of the heat equation

vt = �v, (x, t) ∈ Ω × (t0, T ),

where 0 � v(x, t0) = U(x, t0) < 1 and v = 0 on ∂Ω . Then we have U � v in Ω × (t0, T ).
Consequently,

∂U

∂ν
� ∂v

∂ν
� −C0 < 0 on

(
∂Ω+

α0
∩ ∂Ω

) × (t0, T ),

and hence ∂u
∂ν

� C0 > 0 on (∂Ω+
α0

∩∂Ω)×(t0, T ). It then follows that J � C0
∂ν
∂x1

−ε1(x1 −α0) >

0 provided ε1 = ε1(α0, t0) is small enough, which gives (2.4).
The maximum principle now yields that there exists ε1 = ε1(α0, t0) > 0 so small that J � 0

in Ω+
α0

× (t0, T ), i.e.,

ux1 � ε1(x1 − α0), (2.5)

if x′ = 0 and α0 � x1 < 0. Integrating (2.5) with respect to x1 on [α0, y1], where α0 < y1 < 0,
yields that

u(y1,0, t) − u(α0,0, t) � ε1

2
|y1 − α0|2.

It follows that

lim
t→T −

u(0, t) = lim
t→T −

lim
y1→0− u(y1,0, t) � ε1α

2
0/2 > 0,

which shows that y0 = 0 cannot be a touchdown point of u(x, t).
The proof of (2.2) can be slightly modified to show that ∂u

∂ν
> 0 in Ω+

α0
× (t0, T ) for any

direction ν close enough to the x1-direction. Together with (1.4), this enables us to deduce that
any point in {x′ = 0, α0 < x1 < 0} cannot be a touchdown point. Since above proof shows that α0
can be chosen independently of initial point y0 on ∂Ω , by varying y0 along ∂Ω we deduce that
there is an Ω-neighborhood Ω ′ of ∂Ω such that each point x ∈ Ω ′ cannot be a touchdown point.
This completes the proof of Proposition 2.1. �
2.1. Lower bound estimate

Define for η > 0,

Ωη := {
x ∈ Ω: dist(x, ∂Ω) > η

}
, Ωc

η := {
x ∈ Ω: dist(x, ∂Ω) � η

}
. (2.6)



2286 Y. Guo / J. Differential Equations 244 (2008) 2277–2309
Since touchdown set of u is assumed to be a compact subset of Ω , in the rest of this section we
may choose a small η > 0 such that any touchdown point of u must lie in Ωη. Our first aim of
this subsection is to prove that any point x0 ∈ Ω̄η satisfying f (x0) = 0 cannot be a touchdown
point of u at finite time T , which then leads to the following proposition.

Proposition 2.2. Assume f satisfies (1.2) on a bounded domain Ω , and suppose u(x, t) is a
touchdown solution of (1.1) at finite time T . If touchdown set of u is a compact subset of Ω , then
any point x0 ∈ Ω̄ satisfying f (x0) = 0 cannot be a touchdown point of u(x, t).

This claim is based on the following Harnack-type estimate, which was proved in Lemma 3.2
of [9].

Lemma 2.3. For any compact subset K of Ω̄ and any m > 0, there exists a constant
C = C(K,m) > 0 such that ‖v‖∞ � C < 1 on K , whenever v satisfies

�v � m

(1 − v)2
, x ∈ Ω, 0 � v < 1, x ∈ Ω. (2.7)

Proof of Proposition 2.2. Since touchdown set of u is assumed to be a compact subset of Ω , it
now suffices to discuss the point x0 lying in the interior domain Ωη for some small η > 0, such
that there is no touchdown point on Ωc

η .
For any t1 < T , we first recall that the maximum principle gives ut < 0 for all (x, t) ∈ Ω ×

(0, t1). Further, the boundary point lemma shows that the outward normal derivative of v = ut

on ∂Ω is positive for t > 0. This implies that for taking small 0 < t0 < T , there exists a positive
constant C = C(t0, η) such that ut (x, t0) � −C < 0 for all x ∈ Ω̄η. For any 0 < t0 < t1 < T , we
next claim that there exists ε = ε(t0, t1, η) > 0 such that

J ε(x, t) = ut + ε

u2
� 0 for all (x, t) ∈ Ωη × (t0, t1). (2.8)

Indeed, it is now clear that there exists Cη = Cη(t0, t1, η) > 0 such that ut (x, t) � −Cη on the
parabolic boundary of Ωη × (t0, t1). And further, we can choose ε = ε(t0, t1, η) > 0 so small
that J ε � 0 on the parabolic boundary of Ωη × (t0, t1), due to the local boundedness of 1

u2 on
∂Ωη × (t0, t1). Also, direct calculations imply that

J ε
t − �Jε = 2λf

u3
J ε − 6ε|∇u|2

u4
� 2λf

u3
J ε.

Now (2.8) follows again from the maximum principle.
Combining (2.8) and (1.1) we deduce that for a small neighborhood B of x0 where λf (x) �

ε/2 is in B ⊂ Ω̄η, we have for v := 1 − u,

�v � ε

2

1

(1 − v)2
, (x, t) ∈ B × (t0, t1).

Proposition 2.2 is now a direct result of Lemma 2.3, since t1 < T is arbitrary. �
Essentially, the claim (2.8) is ready to give the following lower bound estimate, which com-

pletes the proof of Theorem 1.1.
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Lemma 2.4. Assume f satisfies (1.2) on a bounded domain Ω , and suppose u is a touchdown
solution of (1.1) at finite time T . Assume touchdown set of u is a compact subset of Ω , then there
exists a bounded positive constant M such that

M(T − t)
1
3 � u(x, t) (2.9)

for all 0 < t < T . Moreover, ut → −∞ as u touches down.

Proof. Given any small η > 0, applying the same argument used for (2.8) yields that for any
0 < t0 < t1 < T , there exists ε = ε(t0, t1, η) > 0 such that

ut � − ε

u2
in Ωη × (t0, t1).

This inequality shows that ut → −∞ as u touchdown, and there exists M > 0 such that

M1(T − t)
1
3 � u(x, t) in Ωη × (0, T ) (2.10)

due to the arbitrary of t0 and t1, where M1 depends only on λ, f and η. Furthermore, one can
obtain (2.9) because of the boundedness of u on Ωc

η. �
2.2. Gradient estimates

As a preliminary of next section, it is now important to know a priori estimates for the deriva-
tives of touchdown solution u, which are the contents of this subsection. Following the analysis
in [4], our first lemma is about the derivatives of first order without the compactness assumption
of touchdown set.

Lemma 2.5. Assume f satisfies (1.2) on a bounded convex domain Ω , and suppose u is a
touchdown solution of (1.1) at finite time T . Then for any 0 < t0 < T , there exists a bounded
constant C > 0 such that

1

2
|∇u|2 � C

u
− C

u
in Ω × (0, t0), (2.11)

where u = u(t0) = minx∈Ω u(x, t0), and C depends only on λ, f and Ω .

Proof. Fix any 0 < t0 < T and treat u(t0) as a fixed constant. Let w = u − u, then w satisfies

wt − �w = − λf (x)

(w + u)2
in Ω × (0, t0),

w = 1 − u in ∂Ω × (0, t0),

w(x,0) = 1 − u in Ω.

We introduce the function

P = 1 |∇w|2 + C − C
, (2.12)
2 w + u u
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where the bounded constant C � 2λ supx∈Ω̄ f will be determined later. Then we have

Pt − �P = Cλf (x)

(w + u)4
− λ∇f (x)∇w

(w + u)2
+ 2(λf (x) − C)|∇w|2

(w + u)3
−

N∑
i,j=1

w2
ij

� λC supx∈Ω̄ f

(w + u)4
+ −2λ|∇w|2 supx∈Ω̄ f + λ|∇w| supx∈Ω̄ |∇f |

(w + u)3
−

N∑
i,j=1

w2
ij

� λ(C supx∈Ω̄ f + C1)

(w + u)4
−

N∑
i,j=1

w2
ij , (2.13)

where C1 := (supx∈Ω̄ |∇f |)2

8 supx∈Ω̄ f
� 0 is bounded. Since (2.12) gives

N∑
i=1

(
Pi + C

(w + u)2
wi

)2

=
N∑

i,j=1

(wjwij )
2 � |∇w|2

N∑
i,j=1

w2
ij , (2.14)

we now take

C := max

{
2λ sup

x∈Ω̄

f,
λ supx∈Ω̄ f + λ

√
(supx∈Ω̄ f )2 + 4C1

2

}
� 2λ sup

x∈Ω̄

f

so that C2 � λ(C supx∈Ω̄ f +C1), where C clearly depends only on λ, f and Ω . From the choice
of C, a combination of (2.13) and (2.14) gives that

Pt − �P � �b · ∇P,

where �b = −|∇w|−2(∇P + 2C∇w

(w+u)2 ) is a locally bounded when ∇w �≡ 0. Therefore, P can only

attain positive maximum either at the point where ∇w = 0, or on the parabolic boundary of
Ω × (0, t0). But when ∇w = 0, we have P � 0.

On the initial boundary, P = C
1+u

− C
u

< 0. Let (y, s) be any point on ∂Ω × (0, t0), if we can
prove that

∂P

∂ν
� 0 at (y, s), (2.15)

it then follows from the maximum principle that P � 0 in Ω × (0, t0). And therefore, the asser-
tion (2.11) is reduced from (2.12) together with w = u − u.

To prove (2.15), we recall the fact that since w = const on ∂Ω (for t = s), we have

�w = wνν + (N − 1)κwν at (y, s),

where κ is the non-negative mean curvature of ∂Ω at y. It then follows that
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∂P

∂ν
= wνwνν − Cwν

(w + u)2
� wν

[
�w − (N − 1)κwν − λf (x)

(w + u)2

]

= wν

[
wt − (N − 1)κwν

] = −(N − 1)κw2
ν � 0

at (y, s), and we are done. �
The following lemma is dealt with the derivatives of higher order, and the idea of its proof is

similar to Proposition 1 of [11].

Lemma 2.6. Assume f satisfies (1.2) on a bounded domain Ω , and suppose u is a touchdown
solution of (1.1) at finite time T . Assume touchdown set of u is a compact subset of Ω , and x = a

is any point of Ωη for some small η > 0. Then there exists a positive constant M ′ such that

∣∣∇mu(x, t)
∣∣(T − t)−

1
3 + m

2 � M ′, m = 1,2, (2.16)

holds for |x − a| � R.

Proof. It suffices to consider the case a = 0 by translation, and we may focus on 1
2R2 < r2 < R2

and denote Qr = Br × (T [1 − ( r
R

)2], T ).
Our first task is to show that |∇u| and |∇2u| are uniformly bounded on compact subsets of QR .

Indeed, since f (x)/u2 is bounded on any compact subset D of QR , standard Lp estimates for
heat equations (cf. [16]) give∫ ∫

D

(∣∣∇2u
∣∣p + |ut |p

)
dx dt < C, 1 < p < ∞.

Choosing p to be large enough, we then conclude from Sobolev’s inequality that f (x)/u2 is
Hölder continuous on D. Therefore, Schauder’s estimates for heat equations (cf. [16]) show that
|∇u| and |∇2u| are uniformly bounded on compact subsets of D. In particular, there exists M1
such that

|∇u| + ∣∣∇2u
∣∣ � M1 for (x, t) ∈ Br ×

(
T

[
1 −

(
r

R

)2]
, T

[
1 − 1

2

(
1 − r

R

)2])
, (2.17)

where M1 depends only on R, N and M given in (2.9).
We next prove (2.16) for |x| < r and T [1 − 1

2 (1 − r
R

)2] � t < T . Fix such a point (x, t), let
μ = [ 2

T
(T − t)]1/2 and consider

v(z, τ ) = μ− 2
3 u

(
x + μz,T − μ2(T − τ)

)
. (2.18)

For above given point (x, t), we now define O := {z: (x + μz) ∈ Ω} and g(z) := f (x + μz) � 0
on O . One can verify that v(z, τ ) is a solution of

vτ − �zv = −λg(z)

v2
, z ∈ O,

v(z,0) = v0(z) > 0, v(z, τ ) = μ− 2
3 , z ∈ ∂O, (2.19)
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where �z denotes the Laplacian operator with respect to z, and v0(z) = μ− 2
3 u(x + μz,

T − μ2T ) > 0 satisfies �zv0 − λg(z)

v2
0

� 0 on O . The formula (2.18) implies that T is also the

finite touchdown time of v, and the domain of v includes Qr0 for some r0 = r0(R) > 0. Since
touchdown set of u is assumed to be a compact subset of Ω , one can observe that touchdown
set of v is also a compact subset of O . Therefore, the argument of Lemma 2.4 can be applied
to (2.19), yielding that there exists a constant M2 > 0 such that

v(z, τ ) � M2(T − τ)
1
3 ,

where M2 depends only on R, λ, f and Ω again. The argument used for (2.17) then yields that
there exists M ′

1 > 0, depending on R, N and M2, such that

|∇zv| + ∣∣∇2
z v

∣∣ � M ′
1 for (z, τ ) ∈ Br ×

(
T

[
1 −

(
r

r0

)2]
, T

[
1 − 1

2

(
1 − r

r0

)2])
,

(2.20)

where we assume 1
2 r2

0 < r2 < r2
0 . Applying (2.18) and taking (z, τ ) = (0, T

2 ), this estimate re-
duces to

μ− 2
3 +1|∇u| + μ− 2

3 +2
∣∣∇2u

∣∣ � M ′
1.

Therefore, (2.16) follows since μ = [ 2
T

(T − t)] 1
2 . �

Before concluding this subsection, we now apply gradient estimates to establishing integral
estimates.

Theorem 2.7. Assume f satisfies (1.2) on a bounded domain Ω , and suppose u is a touchdown
solution of (1.1) at finite time T . Assume touchdown set of u is a compact subset of Ω , then for
γ > 3

2N we have

lim
t→T −

∫
Ω

f (x)u−γ (x, t) dx = +∞.

Proof. For any given t0 ∈ (0, T ) close to T , Lemma 2.5 implies that

1

2
|∇u|2 � C

u2
(u − u) in Ω × (0, t0) (2.21)

for some bounded constant C > 0, where u = u(x0, t0) = minx∈Ω u(x, t0). Considering any t

sufficiently close to t0, we now introduce polar coordinates (r, θ) about the point x0. Then in
any direction θ , there is a smallest value of r0 = r0(θ, t) such that u(r0, t) = 2u. Note that r0
is very small as t < t0 sufficiently approach to T . Furthermore, since x0 approaches to one of
touchdown points of u as t → T −, Proposition 2.2 shows that as t < t0 sufficiently approach
to T , we have f (x) � C0 > 0 in {r < r0} for some C0 > 0. Since (2.21) and the definition of u
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imply that ur√
u−u

�
√

2C
u

, which is 2
√

u − u �
√

2C
u

r , we attain
√

2
C

u3/2 � r0 by taking r = r0.

Therefore, for γ > 3
2N we have

∫
Ω

u−γ dx � C

∫
Ω

f (x)u−γ dx � CC0

∫
{r�r0}

u−γ dx � C

∫
θ

dSθ

∫
{r�r0}

u−γ rN−1 dr

� C

∫
θ

dSθ

∫
{r�r0}

(2u)−γ rN−1 dr

� C

∫
θ

dSθ u−γ rN
0 � C

∫
θ

dSθ u−γ+ 3
2 N = +∞

as t → T −, which completes the proof of Theorem 2.7. �
2.3. Upper bound estimate

In this subsection, we discuss the upper bound estimate of touchdown solution u, and we shall
apply energy methods to establishing Theorem 1.2 already stated in the introduction.

First, we note the following local upper bound estimate.

Proposition 2.8. Suppose u is a touchdown solution of (1.1) at finite time T . Then, there exists a
bounded constant C = C(λ,f,Ω) > 0 such that

min
x∈Ω

u(x, t) � C(T − t)
1
3 for 0 < t < T . (2.22)

Proof. Set

U(t) = min
x∈Ω

u(x, t), 0 < t < T,

and let U(ti) = u(xi, ti) (i = 1,2) with h = t2 − t1 > 0. Then,

U(t2) − U(t1) � u(x1, t2) − u(x1, t1) = hut (x1, t1) + o(h),

U(t2) − U(t1) � u(x2, t2) − u(x2, t1) = hut (x2, t2) + o(h).

It follows that U(t) is Lipschitz continuous. Hence, for t2 > t1 we have

U(t2) − U(t1)

t2 − t1
� ut (x2, t2) + o(1).

On the other hand, since �u(x2, t2) � 0, we obtain

ut (x2, t2) � − λf (x2)

2
= −λf (x2)

2
� − C

2
for 0 < t2 < T.
u (x2, t2) U (t2) U (t2)
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Consequently, at any point of differentiability of U(t), it deduces from above inequalities that

U2Ut � −C a.e. t ∈ (0, T ). (2.23)

Integrating (2.23) from t to T we obtain (2.22). �
For the touchdown solution u = u(x, t) of (1.1) at finite time T , we now introduce the asso-

ciated similarity variables

y = x − a√
T − t

, s = − log(T − t), u(x, t) = (T − t)
1
3 wa(y, s), (2.24)

where a is any point of Ωη for some small η > 0. Then wa(y, s) is defined in

Wa := {
(y, s): a + ye−s/2 ∈ Ω, s > s′ = − logT

}
,

and it solves

∂

∂s
wa − �wa + 1

2
y · ∇wa − 1

3
wa + λf (a + ye−s/2)

w2
a

= 0. (2.25)

Here wa(y, s) is always strictly positive in Wa . Note that the form of wa defined by (2.24) is
motivated by Theorem 1.1 and Proposition 2.8. The slice of Wa at a given time s1 will be denoted
by Ωa(s

1):

Ωa

(
s1) := Wa ∩ {

s = s1} = es1/2(Ω − a).

Then for any a ∈ Ωη, there exists s0 = s0(η, a) > 0 such that

Bs := {
y: |y| < s

} ⊂ Ωa(s) for s � s0. (2.26)

From now on, we often suppress the subscript a, writing w for wa , etc.
In view of (2.24), one can combine Lemmas 2.4 and 2.6 to reaching the following estimates

on w = wa :

Corollary 2.9. Assume f satisfies (1.2) on a bounded domain Ω , and suppose u is a touchdown
solution of (1.1) at finite time T . Assume touchdown set of u is a compact subset of Ω , then the
rescaled solution w = wa satisfies

M � w � e
s
3 , |∇w| + |�w| � M ′ in W,

where M is a constant as in Lemma 2.4 and while M ′ is a constant as in Lemma 2.6. Moreover,
it satisfies

M � w(y1, s) � w(y2, s) + M ′|y2 − y1|

for any (yi, s) ∈ W , i = 1,2.
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We now rewrite (2.25) in divergence form:

ρws − ∇ · (ρ∇w) − 1

3
ρw + λρf (a + ye− s

2 )

w2
= 0, (2.27)

where ρ(y) = e−|y|2/4. We also introduce the frozen energy functional

Es[w](s) = 1

2

∫
Bs

ρ|∇w|2 dy − 1

6

∫
Bs

ρw2 dy −
∫
Bs

λρf (a)

w
dy, (2.28)

which is defined in the compact set Bs of Ωa(s) for s � s0.

Lemma 2.10. Assume f satisfies (1.2) on a bounded domain Ω , and suppose u is a touchdown
solution of (1.1) at finite time T . Assume touchdown set of u is a compact subset of Ω , then the
rescaled solution w = wa satisfies

1

2

∫
Bs

ρ|ws |2 dy � − d

ds
Es[w](s) + gη(s) for s � s0, (2.29)

where gη(s) is positive and satisfies
∫ ∞
s0

gη(s) ds < ∞.

Proof. Multiply (2.27) by ws and use integration by parts to get

∫
Bs

ρ|ws |2 dy

=
∫
Bs

ws∇(ρ∇w)dy + 1

3

∫
Bs

ρwws dy −
∫
Bs

λρwsf (a + ye− s
2 )

w2
dy

= −1

2

∫
Bs

d

ds
|∇w|2ρ dy +

∫
Bs

d

ds

(
1

6
w2 + λf (a)

w

)
ρ dy

+
∫

∂Bs

ρws

∂w

∂ν
dS +

∫
Bs

λρws[f (a) − f (a + ye− s
2 )]

w2
dy

= − d

ds
Es[w](s) +

∫
∂Bs

ρws

∂w

∂ν
dS + 1

2s

∫
∂Bs

ρ|∇w|2(y · ν)dS

− 1

s

∫
∂Bs

ρ

(
1

6
w2 + λf (a)

w

)
(y · ν)dS +

∫
Bs

λρws[f (a) − f (a + ye− s
2 )]

w2
dy

� − d

ds
Es[w](s) +

∫
ρws

∂w

∂ν
dS + 1

2s

∫
ρ|∇w|2(y · ν)dS
∂Bs ∂Bs
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+
∫
Bs

λρws[f (a) − f (a + ye− s
2 )]

w2
dy

:= − d

ds
Es[w](s) + I1 + I2 + I3, (2.30)

where ν is the exterior unit norm vector to ∂Ω and dS is the surface area element. The following
formula is applied in the third equality of (2.30): if g(y, s) : W �→ R is a smooth function, then

d

ds

∫
Bs

g(y, s) dy =
∫
Bs

gs(y, s) dy + 1

s

∫
∂Bs

g(y, s)(y · ν)dS.

For s � s0, we next estimate integration terms I1, I2 and I3 as follows:
Considering |y| � S in Bs , Corollary 2.9 gives

|ws | =
∣∣∣∣�w − 1

2
y · ∇w + 1

3
w − λf (a + ye− s

2 )

w2

∣∣∣∣ � C
(
1 + |y|) + 1

3
w � C1s + 1

3
e

s
3 ,

which implies

I1 � CsN−1e− s2
4

(
C1s + 1

3
e

s
3

)
� C2s

Ne− s2
4 + s

3 . (2.31)

It is easy to observe that

I2 � C3s
N−1e− s2

4 . (2.32)

As for I3, since w has a lower bound and since f (x) ∈ Cα(Ω̄) for some α ∈ (0,1], we apply
Young’s inequality to deduce

I3 � Ce− α
2 s

∫
Bs

ρ|y|αws dy � Ce− α
2 s

[
ε

∫
Bs

ρw2
s dy + C(ε)

∫
Bs

ρ|y|2α dy

]
,

where the constant ε > 0 is arbitrary. Because e− α
2 s < ∞, one can take sufficiently small ε such

that

I3 � 1

2

∫
Bs

ρw2
s dy + C4e

− α
2 s . (2.33)

Combining (2.30)–(2.33) then yields

1

2

∫
Bs

ρ|ws |2 dy � − d

ds
Es[w](s) + C̄1s

Ne− s2
4 + s

3 + C̄2e
− α

2 s

:= − d

ds
Es[w](s) + gη(s),

where gη(s) is positive and satisfies
∫ ∞
s0

gη(s) ds < ∞, and we are done. �
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Remark 2.1. Supposing the convexity of Ω , one can establish an energy estimate in the whole
domain Ωa(s):

∫
Ωa(s)

ρ|ws |2 dy � − d

ds
EΩa(s)[w](s) + Kη(s) for s � s0, (2.34)

where Kη(s) is positive and satisfies
∫ ∞
s0

Kη(s) ds < ∞, and EΩa(s)[w](s) is defined by

EΩa(s)[w](s) = 1

2

∫
Ωa(s)

ρ|∇w|2 dy − 1

6

∫
Ωa(s)

ρw2 dy −
∫

Ωa(s)

λρf (a)

w
dy. (2.35)

However, by estimating the energy functional Es[w](s) in Bs , instead of Ωa(s), it is sufficient to
obtain the desirable upper bound estimate of w, see Theorem 2.12 below.

The following lemma is also necessary for establishing the desirable upper bound estimate.

Lemma 2.11. Assume f satisfies (1.2) on a bounded domain Ω , and suppose u is a touchdown
solution of (1.1) at finite time T . Assume touchdown set of u is a compact subset of Ω , and a

is any point of Ωη for some η > 0. Then there exists a constant ε > 0, depending only on λ, f

and Ω , such that if

u(x, t)(T − t)−
1
3 � ε (2.36)

for all (x, t) ∈ Qδ := {(x, t): |x −a| < δ, T − δ < t < T }, then a is not a touchdown point for u.
Here δ > 0 is an arbitrary constant.

Proof. Setting v(x, t) = 1
u(x,t)

, then v(x, t) blows up at finite time T , and v satisfies

vt − �v = −2|∇v|2
v

+ λf (x)v4 � K
(
1 + v4) in Qδ, (2.37)

where K := λ supx∈Ω̄ f (x) > 0. We now apply Theorem 2.1 of [13] to (2.37), which gives that
there exists a constant 1

ε
> 0, depending only on λ, f and Ω , such that if

v(x, t) � 1

ε
(T − t)−

1
3 in Qδ,

then a is not a blow-up point for v, and hence (2.36) follows. �
Theorem 2.12. Assume f satisfies (1.2) on a bounded domain Ω , and suppose u is a touchdown
solution of (1.1) at finite time T . Assume touchdown set of u is a compact subset of Ω , and a is
any point of Ωη for some η > 0. If wa(y, s) → ∞ as s → ∞ uniformly for |y| � C, where C is
any positive constant, then a is not a touchdown point for u.



2296 Y. Guo / J. Differential Equations 244 (2008) 2277–2309
Proof. We first claim that if wa(y, s) → ∞ as s → ∞ uniformly for |y| � C, then

Es[wa](s) → −∞ as s → ∞. (2.38)

Indeed, it is obvious from Corollary 2.9 that the first term and the third term in Es[wa](s) are
uniformly bounded. As for the second term, we can write∫

Bs

ρw2 dy =
∫
BC

ρw2 dy +
∫

Bs\BC

ρw2 dy �
∫
BC

ρw2 dy.

Since wa → ∞ as s → ∞ uniformly on BC , we have
∫
BC

ρw2 dy → ∞ as s → ∞, which gives
− 1

6

∫
BC

ρw2 dy → −∞ as s → ∞, and hence (2.38) follows.
Let K be a large positive constant to be determined later. Then (2.38) implies that there

exists s̄ such that Es̄[wa](s̄) � −4K . Using the same argument as in [12], it is easy to show that
for any fixed s, Es[wa](s) varies smoothly with a ∈ Ω . Therefore, there exists r0 > 0 such that

Es̄[wb](s̄) � −3K for |b − a| < r0.

Since touchdown set of u is assumed to be a compact subset of Ω , we have dist(a, ∂Ω) > η for
some η > 0. Therefore, it now follows from Lemma 2.10 that

Es[wb](s) � −2K for |b − a| < r0, s � s̄,

provided K � M1 := ∫ ∞
s0

gη(s) ds, where gη(s) is as in Lemma 2.10. Since the first term and the
third term in Es[wb](s) are uniformly bounded, we have∫

Bs

ρw2
b dy � 6K for |b − a| < r0, s � s̄. (2.39)

Recalling from Corollary 2.9,

w2
b(y, s) � 2

(
w2

b(0, s) + M ′2|y|2),
we obtain from (2.39) that

3K � w2
b(0, s)

∫
Bs

ρ dy + M ′2
∫
Bs

ρ|y|2 dy � C1w
2
b(0, s) + C2.

We now choose K � max{M1,
2
3C2} so large that

wb(0, s) �
√

3K

2C1
:= ε. (2.40)

Setting t̄ := T − e−s̄ , it reduces from (2.40) that

u(b, t)(T − t)−
1
3 � ε for |b − a| < r0, t̄ < t < T .

Applying Lemma 2.11 with a small r0, we finally conclude that a is not a touchdown point for u,
and the theorem is proved. �
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3. Refined touchdown profiles

In this section we first establish touchdown rates by applying self-similar method [6,11]. Then
the refined touchdown profiles for N = 1 and N = 2 will be separately derived by using center
manifold analysis of a PDE [3], which will be discussed for N = 1 in Section 3.1 and for N � 2
in Section 3.2, respectively. It should be pointed out that for N = 1 we may establish the re-
fined touchdown profiles for any touchdown point, see Theorem 1.3(1); while for N � 2, we are
only able to deal with the refined touchdown profiles in the radial situation for the special touch-
down point r = 0, see Theorem 1.3(2). Throughout this section and unless mentioned otherwise,
touchdown set for u is assumed to be a compact subset of Ω , and a is always assumed to be any
touchdown point of u. Therefore, all a priori estimates of last section can be adapted here.

Our starting point of studying touchdown profiles is a similarity variable transformation
of (1.1). For the touchdown solution u = u(x, t) of (1.1) at finite time T , as before we use
the associated similarity variables

y = x − a√
T − t

, s = − log(T − t), u(x, t) = (T − t)
1
3 w(y, s), (3.1)

where a is any touchdown point of u. Then w(y, s) is defined in W = {(y, s): |y| < Res/2,

s > s′ = − logT }, where R = max{|x − a|: x ∈ Ω}, and it solves

ws − 1

ρ
∇(ρ∇w) − 1

3
w + λf (a + ye− s

2 )

w2
= 0 (3.2)

with ρ(y) = e−|y|2/4, where f (a) > 0 since a is assumed to be a touchdown point. Therefore,
studying touchdown behavior of u is equivalent to studying large time behavior of w.

Lemma 3.1. Suppose w is a solution of (3.2). Then, w(y, s) → w∞(y) as s → ∞ uniformly on
|y| � C, where C > 0 is any bounded constant, and w∞(y) is a bounded positive solution of

�w − 1

2
y · ∇w + 1

3
w − λf (a)

w2
= 0 in R

N, (3.3)

where f (a) > 0.

Proof. We adapt the arguments from the proofs of Propositions 6 and 7 in [11]: let {sj } be a
sequence such that sj → ∞ and sj+1 − sj → ∞ as j → ∞. We define wj(y, s) = w(y, s + sj ).
According to Theorem 1.1, Corollary 2.9 and Arzela–Ascoli theorem, there is a subsequence
of {wj }, still denoted by wj , such that

wj(y, s) → w∞(y, s)

uniformly on compact subsets of W , and

∇wj(y,m) → ∇w∞(y,m)

for almost all y and for each integer m. We obtain from Corollary 2.9 that either w∞ ≡ ∞
or w∞ < ∞ in R

N+1. Since a is a touchdown point for u, the case w∞ ≡ ∞ is ruled out by
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Theorem 2.12, and hence w∞ < ∞ in R
N+1. Therefore, we conclude again from Corollary 2.9

that

w � C1
(
1 + |y|) (3.4)

for some constant C1 > 0.
Define the associated energy of w at time s,

ER[w](s) = 1

2

∫
BR

ρ|∇w|2 dy − 1

6

∫
BR

ρw2 dy −
∫
BR

λρf (a)

w
dy. (3.5)

Taking R(s) = s, the same calculations as in (2.30) give

− d

ds
Es[w](s) =

∫
Bs

ρ(y)|ws |2 dy − K(s) (3.6)

with

K(s) =
∫

∂Bs

ρws

∂w

∂ν
dS + 1

2s

∫
∂Bs

ρ|∇w|2(y · ν)dS

− 1

s

∫
∂Bs

ρ

(
1

6
w2 + λf (a)

w

)
(y · ν)dS

+ λ

∫
Bs

ρws[f (a) − f (a + ye−s/2)]
w2

dy.

We note that the expression K(s) can be estimated as s � 1. Essentially, since f (x) ∈ Cα(Ω̄) for
some α ∈ (0,1], using (3.4) and applying the same estimates as in Lemma 2.10 one can deduce
that

K(s) − 1

2

∫
Bs

ρw2
s dy � G(s) := C1s

Ne− s2
4 + C2e

− α
2 s for s � 1. (3.7)

Together with (3.7), integrating (3.6) in time yields an energy inequality

1

2

b∫
a

∫
Bs

ρ|ws |2 dy ds � Ea[w](a) − Eb[w](b) +
b∫

a

G(s) ds, (3.8)

whenever a < b.
We now use (3.8) to prove that w∞ is independent of s. We set a = sj + m and b = sj+1 + m

in (3.8) to obtain
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1

2

m+sj+1−sj∫
m

∫
Bsj +s

ρ|wjs |2 dy ds

� Esj +m[wj ](m) − Esj+1+m[wj+1](m) +
sj+1+m∫
sj +m

G(s) ds (3.9)

for any integer m, where we use wj(y, s) = w(y, s + sj ). Since ∇wj(y,m) is bounded and
independent of j , and since we have assumed that ∇wj(y,m) → ∇w∞(y,m) a.e. as j → ∞,
the dominated convergence theorem shows that

∫
ρ(y)

∣∣∇wj(y,m)
∣∣2

dy →
∫

ρ(y)
∣∣∇w∞(y,m)

∣∣2
dy as j → ∞.

Arguing similarly for the other terms we can deduce that

lim
j→∞Esj +m[wj ](m) = lim

j→∞Esj+1+m[wj+1](m) := E[w∞]. (3.10)

On the other hand, because m + sj → ∞ as j → ∞, (3.7) assures that the term involving G

in (3.9) tends to zero as j → ∞. Therefore, the right side of (3.9) tends to zero as j → ∞. It
now follows from sj+1 − sj → ∞ that

lim
j→∞

M∫
m

∫
Bsj +s

ρ|wjs |2 dy ds = 0 (3.11)

for each pair of integers m < M . Further, since (3.4) implies |wjs(y, s)| � C(1 + |y|) with C

independently of j , one can deduce that wjs converges weakly to w∞s . Because ρ decreases
exponentially as |y| → ∞, the integral of (3.11) is lower semi-continuous, and hence

M∫
m

∫
RN

ρ|w∞s |2 dy ds = 0,

where m and M are arbitrary, which shows that w∞ is independent of the choice of s.
We now notice from (3.5) that (3.10) defines E[w∞] by

E[v] = 1

2

∫
RN

ρ|∇yv|2 dy − 1

6

∫
RN

ρ|v|2 dy −
∫

RN

λρf (a)

v
dy.

We claim that E[w∞] is independent of the choice of the sequence {sj }. If this is not the case,
then there is another {s̄j } such that E[w∞] �= E[w̄∞], where w̄∞ = limj→∞ w̄j with w̄j (y, s) =
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w(y, s + s̄j ). Relabeling and passing to a sequence if necessary, we may suppose that E[w∞] <

E[w̄∞] with sj < s̄j . Now the energy inequality (3.8), with a = sj and b = s̄j , gives that

1

2

s̄j∫
sj

∫
Bs

ρ|ws |2 dy ds � Esj [wj ](0) − Es̄j [w̄j ](0) +
s̄j∫

sj

G(s) ds. (3.12)

Since Esj [wj ](0) − Es̄j [w̄j ](0) → E[w∞] − Ew̄∞[w̄∞] < 0 and
∫ s̄j
sj

G(s) ds → 0 as j → ∞,
the right side of (3.12) is negative for sufficiently large j . This leads to a contradiction, because
the left side of (3.12) is non-negative. Hence E[w∞] = E[w̄∞], which implies that E[w∞] is
independent of the choice of the sequence {sj }.

Therefore, we conclude that w(y, s) → w∞(y) as s → ∞ uniformly on |y| � C, where C is
any bounded constant, and w∞(y) is a bounded positive solution of (3.3). �
3.1. Refined touchdown profiles for N = 1

In this subsection, we establish refined touchdown profiles for the deflection u = u(x, t)

in one-dimensional case. We begin with the discussions on the solution w∞(y) of (3.3). For
one-dimensional case, Fila and Hulshof proved in Theorem 2.1 of [2] that every non-constant
solution w(y) of

wyy − 1

2
ywy + 1

3
w − 1

w2
= 0 in (−∞,∞)

must be strictly increasing for all |y| sufficiently large, and w(y) tends to ∞ as |y| → ∞. So it
reduces from Lemma 3.1 that it must have w∞(y) ≡ const. Therefore, by scaling we conclude
that

lim
s→∞w(y, s) ≡ (

3λf (a)
) 1

3

uniformly on |y| � C for any bounded constant C. This gives the following touchdown rate.

Lemma 3.2. Assume f satisfies (1.2) on a bounded domain Ω ⊂ R
1, and suppose u is a unique

touchdown solution of (1.1) at finite time T . Assume touchdown set for u is a compact subset
of Ω . If x = a is a touchdown point of u, then we have

lim
t→T − u(x, t)(T − t)−

1
3 ≡ (

3λf (a)
) 1

3

uniformly on |x − a| � C
√

T − t for any bounded constant C.

We next determine the refined touchdown profiles for one-dimensional case. Our method is
based on the center manifold analysis of a PDE that results from a similarity group transforma-
tion of (1.1). Such an approach was used in [15] for the uniform permittivity profile f (x) ≡ 1.
A closely related approach was used in [3] to determine the refined blow-up profile for a semi-
linear heat equation. We now briefly outline this method and the results that can be extended to
the varying permittivity profile f (x).



Y. Guo / J. Differential Equations 244 (2008) 2277–2309 2301
Continuing from (3.2) with touchdown point x = a, for s � 1 and |y| bounded we have
w ∼ w∞ + v, where v � 1 and w∞ ≡ (3λf (a))1/3 > 0. Keeping the quadratic terms in v, we
obtain for N = 1 that

vs − vyy + y

2
vy − v = w∞

3

[
1 − f (a + ye−s/2)

f (a)

]
+ 2[f (a + ye−s/2) − f (a)]

3f (a)
v

− 3λf (a + ye−s/2)

w4∞
v2 + O

(
v3)

≈ −(
3λf (a)

)− 1
3 v2 + O

(
v3 + e− α

2 s
)

(3.13)

for s � 1 and bounded |y|, due to the assumption (1.2) that f (x) ∈ Cα(Ω̄) for some 0 < α � 1.
As shown in [3] (see also [15]), the linearized operator in (3.13) has a one-dimensional nullspace
when N = 1. By projecting the nonlinear term in (3.13) against the nullspace of the linearized
operator, the following far-field behavior of v for s → +∞ and |y| bounded is obtained (see (1.7)
of [3]):

v ∼ − (3λf (a))
1
3

4s

(
1 − |y|2

2

)
, N = 1. (3.14)

The refined touchdown profile is then obtained from w ∼ w∞ + v, (3.1) and (3.14), which is for
t → T −,

u ∼ [
3λf (a)(T − t)

] 1
3

(
1 − 1

4| log(T − t)| + |x − a|2
8(T − t)| log(T − t)| + · · ·

)
, N = 1. (3.15)

Combining Lemma 3.2 and (3.15) completes the proof of Theorem 1.3(1).
We finally remark that applying formal asymptotic methods, when N = 1 the refined touch-

down profile of (1.1) was also established in (4.11) of [15]. By making a binomial approxima-
tion, it is easy to compare that (3.15) agrees asymptotically with (4.11) of [15].

3.2. Refined touchdown profiles for N � 2

For obtaining refined touchdown profiles in higher dimension, in this subsection we assume
that f (r) = f (|x|) is radially symmetric and Ω = BR(0) is a bounded ball in R

N with N � 2.
Then the uniqueness of solutions for (1.1) implies that the solution u of (1.1) must be radially
symmetric. We study the refined touchdown profile for the special touchdown point r = 0 of u at
finite time T . In this situation, the fact that the solution u of (1.1) is radially symmetric implies
the radial symmetry of w(y, s) in y, and hence the radial symmetry of w∞(y) (cf. [14]). Note
that w∞(y) is a radially symmetric solution of

wyy +
(

N − 1 − y
)

wy + 1
w − λf (0)

2
= 0 for y > 0, (3.16)
y 2 3 w
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where wy(0) = 0 and f (0) > 0. For this case, applying Theorem 1.6 of [7] yields that every non-
constant radial solution w(y) of (3.16) must be strictly increasing for all y sufficiently large, and
w(y) tends to ∞ as y → ∞. It now reduces again from Lemma 3.1 that

lim
s→∞w(y, s) ≡ (

3λf (0)
) 1

3

uniformly on |y| � C for any bounded constant C. This gives the following touchdown rate.

Lemma 3.3. Assume f (r) = f (|x|) satisfies (1.2) on a bounded ball BR(0) ⊂ R
N with N � 2,

and suppose u is a unique touchdown solution of (1.1) at finite time T . Assume touchdown set
for u is a compact subset of Ω . If r = 0 is a touchdown point of u, then we have

lim
t→T − u(r, t)(T − t)−

1
3 ≡ (

3λf (0)
) 1

3

uniformly for r � C
√

T − t for any bounded constant C.

For completing Theorem 1.3(2), the rest is to derive the refined touchdown profile (1.10).
Similar to one-dimensional case, indeed we can establish the refined touchdown profiles for
varying permittivity profile f (|x|) defined in higher dimension N � 2. Specially, applying a
result from [3], the refined touchdown profile for N = 2 is given by

u ∼ [
3λf (0)(T − t)

]1/3
(

1 − 1

2| log(T − t)| + |x − a|2
4(T − t)| log(T − t)| + · · ·

)
, N = 2.

Remark 3.1. Applying analytical and numerical techniques, next section we shall show that
Theorem 1.3(2) does hold for a larger class of profiles f (r) = f (|x|).

Before concluding this section, it is interesting to compare the solution of (1.1) with that of the
ordinary differential equation obtained by omitting �u. For that we focus on one-dimensional
case, and we compare the solutions of

ut − uxx = −λf (x)

u2
in (−a, a), (3.17a)

u(±a, t) = 1, u(x,0) = 1, (3.17b)

and

vt = −λf (x)

v2
in (−a, a), (3.18a)

v(±a, t) = 1, v(x,0) = 1, (3.18b)

where f is assumed to satisfy (1.2) and (1.4). The ordinary differential equation (3.18) is ex-
plicitly solvable, and the solution touches down at finite time

v(x, t) = (
1 − 3λf (x)t

) 1
3 , (3.19)
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which shows that touchdown point of v is the maximum value point of f (x). In the partial
differential equation (3.17), there is a contest between the dissipating effect of the Laplacian uxx

and the singularizing effect of the nonlinearity f (x)/u2; when u touches down at x = x0 in finite
time T , then the nonlinear term dominates. (Essentially, for some special cases, touchdown point
x0 of u is also the maximum value point of f (x), see Theorem 1.4 for details.)

However, we claim that a smoothing effect of the Laplacian can be still observed in the differ-
ent character of touchdown. Indeed, letting f (y0) = max{f (x): x ∈ (−a, a)}, then f ′(y0) = 0
and f ′′(y0) � 0. And (3.19) gives the finite touchdown time T0 for v satisfying T0 = 1/[3λf (y0)].
Furthermore, we can get from (3.19), together with the Taylor series of f (x),

lim
t→T −

0

(T0 − t)−
1
3 v

(
y0 + (T0 − t)

1
2 y, t

)

= (
3λf (y0)

) 1
3

[
1 − f ′′(y0)

2f 2(y0)
|y|2

] 1
3

�
(
3λf (x0)

) 1
3 . (3.20)

And our Theorem 1.3(1) says that for such u we have

lim
t→T −(T − t)−

1
3 u

(
x0 + (T − t)

1
2 y, t

) = (
3λf (x0)

) 1
3 . (3.21)

Comparing (3.20) with (3.21), we see that the touchdown of the partial differential equa-
tion (3.17) is “flatter” than that of the ordinary differential equation (3.18).

4. Set of touchdown points

This section is focused on the set of touchdown points for (1.1), which may provide useful
information on the design of MEMS devices. In Section 4.1, we consider the radially symmetric
case where f (r) = f (|x|) with r = |x| is a radial function and Ω is a ball BR = {|x| � R} ⊂ R

N

with N � 1. In Section 4.2, numerically we compute some simulations for one-dimensional
case, from which we discuss the compose of touchdown points for some explicit permittivity
profiles f (x).

4.1. Radially symmetric case

In this subsection, f (r) = f (|x|) is assumed to be a radial function and Ω is assumed to be a
ball BR = {|x| � R} ⊂ R

N with any N � 1. For this radially symmetric case, the uniqueness of
solutions for (1.1) implies that the solution u = u(x, t) of (1.1) must be radially symmetric. We
begin with the following lemma for proving Theorem 1.4:

Lemma 4.1. Suppose f (r) satisfies (1.2) and f ′(r) � 0 in BR , and let u = u(r, t) be a touch-
down solution of (1.1) at finite time T . Then ur > 0 in {0 < r < R}× (t0, T ) for some 0 < t0 < T .

Proof. Setting w = rN−1ur , then (1.1) gives

ut − 1
wr = −λf (r)

, 0 < t < T . (4.1)

rN−1 u2
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Differentiating (4.1) with respect to r , we obtain

wt − wrr + N − 1

r
wr − 2λf

u3
w = −λf ′rN−1

u2
� 0, 0 < t < T, (4.2)

since f ′(r) � 0 in BR . Therefore, w cannot attain negative minimum in {0 < r < R} × (0, T ).
Since w(0, t) = w(r,0) = 0 and ut < 0 for all t ∈ (0, T ), we have w = rN−1ur > 0 on
∂BR × (0, T ). So the maximum principle shows that w � 0 in {0 < r < R} × (0, T ). This gives

wt − wrr + N − 1

r
wr � 0 in {0 < r < R} × (t1, T ),

where t1 > 0 is chosen so that w(r, t1) �≡ 0 in {0 < r < R}.
Now compare w with the solution z of

zt − zrr + N − 1

r
zr = 0 in {0 < r < R} × (t1, T )

subject to z(r, t1) = w(r, t1) for 0 � r � R, z(R, t) = w(R, t) > 0 and z(0, t) = 0 for t1 � t < T .
The comparison principle yields w � z in {0 < r < R} × (t1, T ). On the other hand, for any
t0 > t1 we have z > 0 in {0 < r < R} × (t0, T ). Consequently we conclude that w > 0, i.e.
ur > 0 in {0 < r < R} × (t0, T ). �
Proof of Theorem 1.4. For w = rN−1ur , we set J (r, t) = w − ε

∫ rθ

0 f (s) ds, where θ � N and
ε = ε(θ) > 0 are constants to be determined. We calculate from (4.1) and (4.2) that

Jt − Jrr + N − 1

r
Jr = b1J + 2λεf

∫ rθ

0 f (s) ds

u3
− λf ′rN−1

u2
+ θεrθ−1f ′

� b1J − rN−1(λ − θεrθ−N
)
f ′ � b1J,

provided ε is sufficiently small, where b1 is a locally bounded function. Here we have applied

the assumption f ′(r) � 0 and the relations ur = w/rN−1 and w = J + ε
∫ rθ

0 f (s) ds. Note that
J (0, t) = 0, and hence it follows that J cannot obtain negative minimum in BR × (0, T ).

We next observe that J cannot obtain negative minimum on {r = R} provided ε is sufficiently
small, which comes from the fact

Jr(R, t) = wr − θεRθ−1f (R) = λRN−1f (R)

u2
− θεRθ−1f (R)

� RN−1f (R)
[
λ − θεRθ−N

]
� 0

for sufficiently small ε > 0, where (4.1) is applied. We now choose some 0 < t0 < T such that
w(r, t0) > 0 for 0 < r � R in view of Lemma 4.1. This gives ur(r, t0) > 0 for 0 < r � R. Since
ur(0, t0) = 0, there exists some α > 0 such that

urr(0, t0) = lim
ur(r, t0)

α
= lim

w(r, t0)

N+α−1
> 0.
r→0 r r→0 r



Y. Guo / J. Differential Equations 244 (2008) 2277–2309 2305
We now choose θ = max{N,N + α − 1}, from which one can further deduce that J (r, t0) � 0
for 0 � r < R provided ε = ε(t0, θ) > 0 is sufficiently small.

It now concludes from the maximum principle that J � 0 in BR × (t0, T ) provided
ε = ε(t0) > 0 is sufficiently small. This leads to

u(r, t) � u(r, t) − u(0, t) � ε

r∫
0

∫ sθ

0 f (μ)dμ

sN−1
ds. (4.3)

Given small C0 > 0, then the assumption of f (r) implies that there exists 0 < r0 = r0(C0) � R

such that f (r) � C0 on [0, r0]. Denote rm = min{r0, r}, and then (4.3) gives

u(r, t) � ε

rm∫
0

∫ sθ

0 f (μ)dμ

sN−1
ds � ε

rm∫
0

C0s
θ

sN−1
ds

= 1

θ − N + 2
εC0r

θ−N+2
m , where θ − N + 2 � 2,

which implies that r = 0 must be the unique touchdown point of u. �
Before ending this subsection, we now present a few numerical simulations on Theorem 1.4.

Here we apply the implicit Crank–Nicholson scheme (see §3.2 of [15] for details). In the fol-
lowing simulations 1 ∼ 3, we always take λ = 8 and the number of meshpoints N = 1000, and
consider (1.1) in the following symmetric slab or unit disk domains:

Ω: [−1/2,1/2] (slab), Ω: x2 + y2 � 1 (unit disk). (4.4)

Simulation 1. f (|x|) = 1 − |x|2 is chosen as a permittivity profile. In Fig. 2(a), u versus x is
plotted at different times for (1.1) in the symmetric slab domain. For this touchdown behavior,
touchdown time is T = 0.044727 and the unique touchdown point is x = 0. In Fig. 2(b), u versus
r = |x| is plotted at different times for (1.1) in the unit disk domain. For this touchdown behavior,
touchdown time is T = 0.0455037 and the unique touchdown point is r = 0.

Simulation 2. f (|x|) = e−|x|2 is chosen as a permittivity profile. In Fig. 3(a), u versus x is
plotted at different times for (1.1) in the symmetric slab domain. For this touchdown behavior,
touchdown time is T = 0.044675 and the unique touchdown point is x = 0. In Fig. 3(b), u versus
r = |x| is plotted at different times for (1.1) in the unit disk domain. For this touchdown behavior,
touchdown time is T = 0.0450226 and the unique touchdown point is r = 0 too.

Simulation 3. f (|x|) = e|x|2−1 is chosen as a permittivity profile. In Fig. 4(a), u versus x is
plotted at different times for (1.1) in the symmetric slab domain. For this touchdown behavior,
touchdown time is T = 0.147223 and touchdown point is still uniquely at x = 0. In Fig. 4(b),
u versus r = |x| is plotted at different times for (1.1) in the unit disk domain. For this touchdown
behavior, touchdown time is T = 0.09065363, but touchdown points are at r0 = 0.51952, which
compose into the surface of Br0(0). This simulation shows that the assumption f ′(r) � 0 in
Theorem 1.4 is just sufficient, not necessary.
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Fig. 2. Left figure: plots of u versus x at different times with f (x) = 1 − x2 in the slab domain, where the unique
touchdown point is x = 0. Right figure: plots of u versus r = |x| at different times with f (r) = 1 − r2 in the unit disk
domain, where the unique touchdown point is r = 0 too.

Fig. 3. Left figure: plots of u versus x at different times with f (x) = e−x2
in the slab domain, where the unique touch-

down point is x = 0. Right figure: plots of u versus r = |x| at different times with f (r) = e−r2
in the unit disk domain,

where the unique touchdown point is r = 0 too.

4.2. One-dimensional case

For one-dimensional case Ω = [−a, a], Theorem 1.4 already gives that touchdown points
must be unique if the permittivity profile f (x) is uniform. In the following, we choose some
explicit varying permittivity profiles f (x) to perform two numerical simulations. Here we apply
the implicit Crank–Nicholson scheme again.

Simulation 4. Monotone function f (x). We take λ = 8 and the number of meshpoints N = 1000,
and we consider (1.1) in the slab domain Ω defined in (4.4). In Fig. 5(a), the monotonically
decreasing profile f (x) = 1/2 − x/2 is chosen, and u versus x is plotted for (1.1) at different
times. For this touchdown behavior, the touchdown time is T = 0.09491808 and the unique
touchdown point is x = −0.10761. In Fig. 5(b), the monotonically increasing profile f (x) =
x + 1/2 is chosen, and u versus x is plotted for (1.1) at different times. For this touchdown
behavior, the touchdown time is T = 0.0838265 and the unique touchdown point is x = 0.17467.
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Fig. 4. Left figure: plots of u versus x at different times with f (x) = ex2−1 in the slab domain, where the unique

touchdown point is still at x = 0. Right figure: plots of u versus r = |x| at different times with f (r) = er2−1 in the unit
disk domain, where the touchdown points satisfy r = 0.51952.

Fig. 5. Left figure: plots of u versus x at different times with f (x) = 1/2 − x/2 in the slab domain, where the unique
touchdown point is x = −0.10761. Right figure: plots of u versus r = |x| at different times with f (x) = x + 1/2 in the
slab domain, where the unique touchdown point is x = 0.17467.

Simulation 5. “M”-form function f (x). In this simulation, we consider (1.1) in the slab do-
main Ω defined in (4.4). Here we take λ = 8 and the number of the meshpoints N = 2000, and
the varying dielectric permittivity profiles satisfy

f [α](x) =
⎧⎨
⎩

1 − 16(x + 1/4)2, if x < −1/4,

α + (1 − α)| sin(2πx)|, if |x| � 1/4,

1 − 16(x − 1/4)2, if x > 1/4,

(4.5)

with α ∈ [0,1], which has “M”-form. In Fig. 6, u versus x is plotted at different times for (1.1)

for different α, i.e. for different permittivity profiles f [α](x). In Fig. 6(a): when α = 0.5, the
touchdown time is T = 0.05627054 and two touchdown points are at x = ±0.12631. In Fig. 6(b):
when α = 1, the touchdown time is T = 0.0443323 and the unique touchdown point is at x = 0.
In Fig. 6(c): when α = 0.785, the touchdown time is T = 0.04925421 and touchdown points
are observed to compose into a closed interval [−0.0021255,0.0021255]. In Fig. 6(d): local
amplified plots of (c) at touchdown time t = T . This simulation shows for dimension N = 1 that
the set of touchdown points may be composed of finite points or finite compact subsets of the
domain, if the permittivity profile is ununiform.
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Fig. 6. Plots of u versus x at different times in the slab domain, for different permittivity profiles f [α](x) given by
(4.5). Top left (a): when α = 0.5, two touchdown points are at x = ±0.12631. Top right (b): when α = 1, the unique
touchdown point is at x = 0. Bottom left (c): when α = 0.785, touchdown points are observed to consist of a closed
interval [−0.0021255,0.0021255]. Bottom right (d): local amplified plots of (c).

5. Conclusion

We have analyzed finite-time touchdown (i.e. quenching) behavior of the electrostatic deflec-
tion of an elastic membrane, in terms of a spatially variable dielectric permittivity profile f (x).
Suppose the domain of the membrane is convex, we have derived in Proposition 2.1 the compact-
ness of touchdown set under the assumption (1.4), which implies the impossibility of touchdown
near the boundary of the membrane in MEMS devices. An interesting open problem is to ad-
dress whether the assumption (1.4) of Proposition 2.1 can be removed for the compactness of
touchdown set.

Under the compactness of touchdown set, some a priori estimates of finite-time touchdown
behavior have been discussed in Section 2. In particular, it was proved in Proposition 2.2 that
any finite-time touchdown point cannot be the zero point of the profile f (x), which was firstly
observed in [15]. This shows that touchdown cannot occur at the location where the dielectric
permittivity ε2(x) of the membrane is largest, which gives useful information on the actual design
of MEMS devices. Interestingly, we recently proved in [10] that touchdown must occur near the
maximum point of profile f (x) for sufficiently large voltage λ. Based on a priori estimates of
Section 2, refined touchdown profiles have been obtained in Section 3, which allow us to gain
information on how snap-through of MEMS devices occurs.

Touchdown points were analyzed and simulated in Section 4, which is also great practical
interest in the actual construction of the dielectric membrane for MEMS devices. When f (|x|)
is nonincreasing in |x|, the analytic and numerical results of Section 4.1 show that touchdown
only occurs at the center of the membrane, provided that the domain Ω of the membrane is
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radially symmetric. However, when f (|x|) is nondecreasing in |x|, we observed in Fig. 4 that all
touchdown points of u compose into the surface of Br0(0) for some 0 � r0 < R, provided that
the domain Ω of the membrane is also radially symmetric. Other different shapes of touchdown
set were also observed in Section 4.2 for different classes of profiles f (x). It may be interesting
to analyze these simulations observed in Section 4.

Acknowledgments

The author is grateful to Professor M.J. Ward for introducing him to PDE models of electrosta-
tic MEMS devices. The author specially thanks his PhD supervisor, Professor Nassif Ghoussoub,
for his helpful conversations that led to many improvements. This work was partly supported by
a UBC Graduate Fellowship.

References

[1] P. Esposito, N. Ghoussoub, Y. Guo, Compactness along the branch of semi-stable and unstable solutions for an
elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math. 60 (2007) 1731–1768.

[2] M. Fila, J. Hulshof, A note on the quenching rate, Proc. Amer. Math. Soc. 112 (2) (1991) 473–477.
[3] S. Filippas, R.V. Kohn, Refined asymptotics for the blow up of ut − �u = up , Comm. Pure Appl. Math. 45 (7)

(1992) 821–869.
[4] A. Friedman, B. Mcleod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34

(1985) 425–447.
[5] G. Flores, G.A. Mercado, J.A. Pelesko, Dynamics and touchdown in electrostatic MEMS, in: Proceedings of IC-

MENS 2003, 2003, pp. 182–187.
[6] J.S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation, J. Math. Anal. Appl. 151 (1)

(1990) 58–79.
[7] J.S. Guo, On the semilinear elliptic equation �w + 1

2 y · ∇w + λw − w−β = 0 in Rn , Chinese J. Math. 19 (1991)
355–377.

[8] N. Ghoussoub, Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM
J. Math. Anal. 38 (2007) 1423–1449.

[9] N. Ghoussoub, Y. Guo, On the partial differential equations of electrostatic MEMS devices II: Dynamic case,
NoDEA Nonlinear Differential Equations Appl. (2008), in press.

[10] N. Ghoussoub, Y. Guo, Estimates for the quenching time of a parabolic equation modeling electrostatic MEMS
(2007), submitted for publication.

[11] Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38
(1985) 297–319.

[12] Y. Giga, R.V. Kohn, Characterizing blow-up using similarity variables, Indiana Univ. Math. J. 36 (1987) 1–40.
[13] Y. Giga, R.V. Kohn, Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989)

845–884.
[14] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math.

Phys. 68 (1979) 209–243.
[15] Y. Guo, Z. Pan, M.J. Ward, Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric

properties, SIAM J. Appl. Math. 66 (1) (2005) 309–338.
[16] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, Transl.

Math. Monogr., vol. 23, Amer. Math. Soc., 1968.
[17] J.A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl.

Math. 62 (3) (2002) 888–908.
[18] J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS, Chapman Hall/CRC Press, 2002.


