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Abstract

We construct the solution of type IIB supergravity describing the integrable λ-deformation of the 
AdS3 × S3 supercoset. While the geometry corresponding to the deformation of the bosonic coset has 
been found in the past, our background is more natural for studying superstrings, and several interesting 
features distinguish our solution from its bosonic counterpart. We also report progress towards constructing 
the λ-deformation of the AdS5 × S5 supercoset.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Integrability is a remarkable property, which has led to a very impressive progress in un-
derstanding of string theory over the last two decades (see [1] for review). While initially 
integrability was discovered for isolated models, such as strings on AdSp × Sq [2], later larger 
classes of integrable backgrounds have been constructed by introducing deformations parameter-
ized by continuous variables. The first example of such family, known as beta deformation [3], 
has been found long time ago [4], but recently two new powerful tools for constructing inte-
grable string theories have emerged. One of them originated from studies of the Yang–Baxter 
sigma models [5–7], and it culminated in construction of new integrable string theories, which 
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became known as η-deformations [8–12]. The second approach originated from the desire to 
relate two classes of solvable sigma models, the Wess–Zumino–Witten [13] and the Principal 
Chiral [14] models, and it culminated in the discovery of a one-parameter family of integrable 
conformal field theories, which has WZW and PCM as its endpoints [15–17].1 This connection 
becomes especially interesting when the PCM point represents a string theory on AdSp × Sq

space, and the corresponding families, which became known as λ-deformations, have been sub-
jects of recent investigations [19–22]. A close connection between the η and λ deformations 
has been demonstrated in [20]. In this article we study the λ-deformation for AdS3 × S3 and 
AdS5 × S5.

While the metrics for the λ-deformation of AdSp × Sq have been constructed in [17,19], the 
issue of the fluxes supporting these geometries has not been fully resolved. Although the metric 
for the deformation can be uniquely constructed starting from the corresponding coset, there are 
two distinct prescriptions for the dilaton: one is based on a bosonic coset [17], and the other 
one uses its supersymmetric version [16]. In the first case the deformations for all AdSp × Sq

have been constructed in a series of papers [17,19], while in the second case, which is more 
natural for describing superstrings, only the result for AdS2 × S2 is known [22]. In this article 
we construct the geometry describing the λ-deformed AdS3 × S3 supercoset and report progress 
towards finding the deformed AdS5 × S5 solution.

This paper has the following organization. In section 2 we review the procedure for con-
structing the λ-deformation, which will be used in the rest of the paper. In section 3 we use this 
procedure to construct the metric and the dilaton for the deformed AdS3 × S3, but unfortunately 
construction of Ramond–Ramond fluxes requires a separate analysis. In section 3.3 we determine 
these fluxes by solving supergravity equations, and in sections 3.4–3.5 we find some interesting 
connections between the new background and solutions which exist in the literature. Section 4
reports progress towards constructing the λ-deformation for super-coset describing strings on 
AdS5 × S5. Specifically, we determine the metric and the dilaton, but unfortunately we were not 
able to compute the Ramond–Ramond fluxes. The λ-deformation of AdS2 × S2 constructed in 
[22] is reviewed in Appendix A, and its comparison with higher dimensional cases is performed 
throughout the article.

2. Brief review of the λ-deformation

We begin with reviewing the procedure for constructing the NS–NS fields for the λ-deformed 
cosets. Such deformation belongs to a general class of two-dimensional integrable systems with 
equations of motion in the form

∂μIμ = 0,

∂μIν − ∂νIμ + [Iμ, Iν] = 0, (2.1)

where currents Iμ take values in a semi-simple Lie algebra. Integrability of this system can be 
demonstrated by writing it as a zero-curvature condition for a linear problem2:

Dμ� = 0, Dμ(�) = ∂μ + �2

�2 − 1
Iμ + �

�2 − 1
εμρIρ,

[Dμ(�),Dν(�)] = 0 . (2.2)

1 See [18] for earlier work in this direction.
2 We denote that spectral parameter by � instead of the conventional λ to avoid confusion with a variable governing 

the deformation.
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Two well-known examples of the integrable systems described by equations (2.1) are the Princi-
pal Chiral Model (PCM) [14] and the Wess–Zumino–Witten model [13] for a group G:

SPCM(g̃) = −κ2

π

∫
Tr(g̃−1∂+g̃g̃−1∂−g̃), Iμ = g̃−1∂μg̃, (2.3)

SWZW(g) = − k

2π

∫
Tr

(
g−1∂+gg−1∂−g

)
+ ik

6π

∫
B

Tr(g−1dg)3, Iμ = g−1∂μg, (2.4)

and the λ-deformation interpolates between these systems. This deformation utilizes two im-
portant symmetries of (2.3) and (2.4): the global GL × GR symmetry of the PCM and the 
GL,cur × GR,cur symmetry of the current algebra of the WZW.

λ-deformation for groups. Let us review the construction introduced in [15], which allows one 
to interpolate between the systems (2.3) and (2.4) while preserving integrability. To find such 
λ deformation, one adds the PCM and WZW models (2.3), (2.4) for the same group G and 
gauges the GL × Gdiag,cur subgroup of global symmetries. This is accomplished by modifying 
the derivative in the PCM as

∂±g̃ → D±g̃ = ∂±g̃ − A±g̃, (2.5)

and by gauging the resulting WZW model. Integrating out the gauge fields A±, one arrives at the 
final action [15]3

S(g) = SWZW(g) + 1

π

k2

k + κ2

∫
J a+(1 − λ2D)−1

ab J b−, λ2 = k

k + κ2
, 0 ≤ λ ≤ 1, (2.6)

Dab = Tr(tag
−1tbg), J a± = −iTr(ta∂±gg−1) : J a+ = Ra

μ∂+Xμ, J a− = La
μ∂−Xμ .

Deformation (2.6) interpolates between the PCM (λ = 1) and the WZW model (λ = 0) while 
preserving integrability [15].

To extract the gravitational background describing the deformation, one rewrites (2.6) as

S(g) = SWZW(g) + k2

π

∫
(RT M−1L)μν∂+Xμ∂−Xν, M = (k + κ2)(1 − λ2D),

(2.7)

and compares the result with the action of the sigma model

S = 1

2

∫
(G + B)μν∂+Xμ∂−Xν . (2.8)

This leads to the metric and to the Kalb–Ramond field:

ds2 = k

2π
LT L + k2

2π
LT (DM−1 + [M−1]T DT )L (2.9)

B = 1

1 − λ4

(
B0 + λ2

2
LT

[
(DT − λ2)−1 − (D − λ2)−1

]
∧ L

)
,

where B0 is a Kalb–Ramond field of an undeformed WZW model with the field strength

H0 = −1

6
fabcL

a ∧ Lb ∧ Lc. (2.10)

3 We follow the conventions of [20,22], and the deformation parameter λ used in [15,17] is equal to λ2
our .
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Recalling the definition of M and the relation DT D = 1, one can rewrite the metric in terms of 
convenient frames:

ds2 = eaea, ea =
√

k(1 − λ4)(D − λ2)−1
ab Lb. (2.11)

Expressions for D and L are given in (2.6).

Dilaton for the λ-deformation. Although extraction of the metric and the Kalb–Ramond field 
for the lambda deformation is rather straightforward, the procedure for calculating the dilaton is 
controversial. The original proposal of [15] suggested the expression

e−2�B = e−2�0kdimGdet(λ−2 − D), (2.12)

which can be written as

e2�B = 1

det[(Adf − λ−2)|
f̂
] , (2.13)

where the determinant is taken in the algebra. In [16] it was argued that for supergroups and 
supercosets an alternative expression is more appropriate:

e2� = 1

sdet[(Adf − λ−2)|
f̂
] . (2.14)

Here the superdeterminant is computed in the full superalgebra f̂ . The difference between (2.13)
and (2.14) originates from difference in the gauge fields which have been integrated out.

Recalling that an element of a superalgebra can be written as

M =
[

A B

C D

]
, (2.15)

where (A, D) are even and (B, C) are odd blocks [23,24], the expression (2.14) becomes

e2� = det[(Adf − λ−2)|
f̂1⊕f̂3

]
det[(Adf − λ−2)|

f̂0⊕f̂2
] . (2.16)

Here f̂0 and f̂2 refer to the even subspaces A and D, while f̂1 and f̂3 refer to the odd subspaces 
B and C. In this article we will refer to (2.13) (which is equal to the denominator of (2.16)) as 
the bosonic prescription, and the numerator of (2.16) would be called the fermionic contribution
to the dilaton.

λ-deformation for cosets. The extension of the λ-deformation to cosets G/H is presented 
in [17]. Separating the generators T A of G into T a corresponding to H ⊂ G and T α corre-
sponding to the coset G/H , one finds the metric

ds2 = eαeα, eα = −
√

k(1 − λ4)

2λ4
(M−1)αBLB,

MAB =
[
(D − 1)ab Daβ

Dαb (D − λ−21)αβ

]
, DAB = Tr(TAg−1TBg), (2.17)

LA = −iTr(g−1dgT A), Tr(TATB) = δAB.
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The expression for the dilaton is given by the generalizations of (2.13) and (2.16) [17,16,20]:

e2�B = 1

det[(Adf − 1 − (λ−2 − 1)Pλ)] , (2.18)

e2� = det[(Adf − 1 − (λ−2 − 1)Pλ)|f̂1⊕f̂3
]

det[(Adf − 1 − (λ−2 − 1)Pλ)|f̂0⊕f̂2
] . (2.19)

Here Pλ is a projector which separates the generators of H and the coset G/H , and it has the 
form [16]

Pλ = P2 + λ

λ + 1
[P1 − λP3], P1 + P3 = 1. (2.20)

Here P2 is the projector in the bosonic sector, which can be written as

P2 =
[

0ab 0aβ

0αb 1αβ

]
. (2.21)

The action of fermionic projectors P1 and P3 is evaluated on a case-by-case basis, and we will 
address this question in the sections 3 and 4. Notice that P2 has already appeared in the matrix 
M defined in (2.17):

MAB = DAB − 1 − (λ−2 − 1)P2 = Adf − 1 − (λ−2 − 1)P2. (2.22)

We conclude this discussion with reviewing a very interesting observation made in [19]: fac-
torization of the λ-dependence in the determinant of MAB . This technical simplification becomes 
especially useful in the AdS5 × S5 case, where one has to deal with large matrices. Following 
[19], we write MAB as a product of two block-triangular matrices:

M =
[

A 0
C I

][
I A−1B
0 P

]
. (2.23)

As demonstrated in [19], matrix P has eigenvalues λ−2 ± 1, so the coordinate dependence of the 
bosonic dilaton (2.18) comes from det A. We find that direct evaluation of the determinant of M
is easier than construction of P, but our final results confirm that the coordinate dependence of 
detM is inherited from det A.

3. Deformation of AdS3 × S3

Let us apply the procedure reviewed in the last section to AdS3 × S3. The bosonic part of the 
sigma model is described by a product of two cosets

SU(2) × SU(2)

SU(2)diag

× SU(1,1) × SU(1,1)

SU(1,1)diag

, (3.1)

and the full string theory is described by a super-coset [25]4

PSU(1,1|2)2

SU(1,1) × SU(2)
. (3.2)

4 Various aspects of integrability of string on this background are further discussed in [26].
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In section 3.1 we construct the metric and the bosonic contribution to the dilaton for the cosets 
(3.1), (3.2). While this will give the full answer for (3.1), the dilaton for the supercoset (3.2) also 
receives a fermionic contribution, which will be evaluated in section 3.2. In section 3.3 we con-
struct the Ramond–Ramond fluxes supporting the λ-deformed supercoset (3.2), and properties 
of the new geometries are discussed in sections 3.4 and 3.5.

3.1. Metric and the bosonic dilaton

The metric is constructed using the bosonic coset (3.1), then S3 and AdS3 decouple, and they 
can be studied separately. We begin with analyzing the sphere, and deformation of AdS3 can be 
found by performing an analytic continuation.

Deformation of the sphere. To describe the coset SU(2)l×SU(2)r
SU(2)diag

, we use the algebraic parame-
terization introduced in [17]:

gl =
[

α0 + iα3 α2 + iα1
−α2 + iα1 α0 − iα3

]
, gr =

[
β0 + iβ3 β2 + iβ1

−β2 + iβ1 β0 − iβ3

]
, (3.3)

where variables αk , βk are subject to the determinant constraints∑
(αk)

2 = 1,
∑

(βk)
2 = 1. (3.4)

Gauging of the diagonal part of SU(2)l × SU(2)r makes the description (3.3) redundant, and 
to remove the unphysical degrees of freedom we impose a convenient gauge, which was also 
used in [17]. Acting on gl as gl → h−1glh, we can set α2 = α3 = 0, then the remaining U(1)

transformations h = exp[ixσ1] can be used to set β3 = 0:

α2 = α3 = β3 = 0. (3.5)

Following [17] we introduce a convenient coordinate γ and solve the constraints (3.4) to express 
all remaining components of g1 and g2 in terms of (α0, β0, γ ):

β1 ≡ γ√
1 − α2

0

, α1 =
√

1 − α2
0, β2 =

√
1 − β2

0 − γ 2

1 − α2
0

. (3.6)

To simplify notation, we will drop the subscripts of α0 and β0.
The elements of SU(2)l × SU(2)r can be represented as block-diagonal 4 × 4 matrices:

g =
(

gl 0
0 gr

)
, g†g = I, (3.7)

then the generators corresponding to the subgroup H and to the coset G/H can be written in 
terms of the Pauli matrices.5

H = SU(2)diag : Ta = 1

2

[
σa 0
0 σa

]
, a = 1,2,3;

G/H = SU(2)l × SU(2)r

SU(2)diag

: Tα = 1

2

[
σα−3 0

0 −σα−3

]
, α = 4,5,6. (3.8)

5 Recall that construction (2.17) is based on normalized generators, and factor 1/2 in (3.8) ensures that Tr(TATB) =
δAB .
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Substitution of (3.7)–(3.8), where gl, gr are given by (3.3), (3.5), into the defining relations 
(2.17)6 leads to the metric [17]

ds2 = k

2(1 − λ4)�
�μνdxνdxν, � = (1 − α2)(1 − β2) − γ 2,

�αα = 4(1 + λ2)2 − β2(3 + λ2)(1 + 3λ2), �αγ = −β(1 − λ2)2 (3.9)

�ββ = 4(1 + λ2)2 − α2(3 + λ2)(1 + 3λ2), �βγ = −α(1 − λ2)2

�γγ = (1 − λ2)2, �αβ = αβ(1 − λ2)2 + 4γ (1 + λ2)2.

Deformation of AdS3. The deformation of the AdS3 is constructed by performing an analytic 
continuation of (3.9). The defining relation for g ∈ SU(1, 1)l × SU(1, 1)r is

g =
[

gl 0
0 gr

]
, g†�4g = �4, �4 =

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦ , (3.10)

and it can be enforced by starting with an element of SU(2)l ×SU(2)r , renaming the coordinates 
as

α → α̃, β → β̃, γ → γ̃ , k → −k, (3.11)

and changing their range from

0 < α2 < 1, 0 < β2 < 1, γ 2 < (1 − α2)(1 − β2) (3.12)

to

1 < α̃2, 1 < β̃2, γ̃ 2 < (α̃2 − 1)(β̃2 − 1). (3.13)

To view this transition as a proper analytic continuation, one can introduce alternative coordinates 
(a, b, γ ) as

a2 = 1 − α2, b2 = 1 − β2. (3.14)

Then transition from (3.12) to (3.13) amounts to a continuation from real to imaginary (a, b). 
This changes the signature from (+ + +) to (− − +), and by changing the sign of k we recover 
(+ + −).

Analytic continuation (3.11) along with the replacement k → −k gives the metric for the 
λ-deformed AdS3

ds̃2 = k

2(1 − λ4)�̃
�̃μνdxνdxν, �̃ = (α̃2 − 1)(β̃2 − 1) − γ̃ 2,

�̃α̃α̃ = −4(1 + λ2)2 + β̃2(3 + λ2)(1 + 3λ2), �̃α̃γ̃ = β̃(1 − λ2)2 (3.15)

�̃β̃β̃ = −4(1 + λ2)2 + α̃2(3 + λ2)(1 + 3λ2), �̃β̃γ̃ = α̃(1 − λ2)2

�̃γ̃ γ̃ = −(1 − λ2)2, �̃α̃β̃ = −α̃β̃(1 − λ2)2 − 4γ̃ (1 + λ2)2.

6 Recall the ranges of indices in (2.17): a = {1, 2, 3}, α = {3, 5, 6}, B = {1, . . . , 6}.
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Dilaton and RR fields for the bosonic coset. The deformation of AdS3 × S3 constructed in 
[17] is described by the metric {(3.9), (3.15)} and the dilaton corresponding to the bosonic pre-
scription (2.18):

e−2�B = 2�(1 − λ2)2(1 + λ2)

λ6

2�̃(1 − λ2)2(1 + λ2)

λ6
= e−2�0��̃. (3.16)

This article also listed the corresponding Ramond–Ramond fields:

C2 = 4kλ

1 − λ2

[
β̃βdα̃ ∧ dα + 2β̃αdα̃ ∧ dβ − β̃dα̃ ∧ dγ + α̃αdβ̃ ∧ dβ − αdγ̃ ∧ dβ

]
.

(3.17)

However, as argued in [16,20,22], the dilaton (2.19) for the supercoset is more natural for de-
scribing superstrings, and in the next subsection we will find the appropriate expression and 
construct the corresponding Ramond–Ramond fluxes.

3.2. Fermionic contribution to the dilaton

In this subsection we will construct the dilaton for the supercoset (3.2) using the prescrip-
tion (2.19). Before focusing on (3.2), we will outline the procedure for applying (2.19) to a super-
matrix (2.15) constructed from extending an algebra of the bosonic coset (G1/H1) × (G2/H2).

A supersymmetric extension of av algebra g1 × g2 has the form

M =
[

g1 f12
f21 g2

]
, g1 ∈ g1, g2 ∈ g2, (3.18)

and to find the supercoset, we should fix the gauge corresponding to subalgebras h1, h2 and 
evaluate the relevant projectors Pλ. This can be done in five steps:

1. Find an automorphism J1 of algebra g1 which leaves invariant only the elements of h1. In 
other words, g ∈ g1 satisfies the condition

J−1
1 gJ1 = g (3.19)

if and only if g ∈ h1. Automorphism J2 in g2 is defined in a similar way.
2. Construct an automorphism of the super-algebra as

P =
[

J1 0
0 J2

]
, (3.20)

and project out the elements M which are left invariant under such automorphism7:

P−1MP =M . (3.21)

For bosonic generators this reduces to (3.19) and its counterpart for g2, while the projections 
for the fermionic matrices are

J−1
1 f12J2 = f12, J−1

2 f21J1 = f21. (3.22)

7 Sometimes this condition requires a modification: as we will see in section 4, in the case of AdS5 × S5 it must be 
replaced by P−1MP = MT .
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3. Construct the projector P2 acting on bosonic generators by requiring that [1 − P2] kills the 
same elements as (3.19) and its counterpart with J2. Such P2 projects on the bosonic part of 
the supercoset.

4. Construct projector P3 acting on fermionic generators by requiring that P3 keeps the same 
elements as (3.22). The fermionic projector complementary to P3 is P1 = 1 − P3.

5. Construct the projector Pλ using the definition (2.20). Substitution of this expression into 
(2.19) or (2.18) and evaluation of the resulting determinant gives the dilaton for the (super) 
coset.

To apply this procedure to the AdS3 × S3 coset (3.2), we observe that g1 represents the algebra 
of (3.7),

g ∈ g1 : g =
(

gl 0
0 gr

)
, gl ∈ su(2), gr ∈ su(2), (3.23)

while the elements of h1 = su(2)diag have the form[
g 0
0 g

]
, g ∈ su(2). (3.24)

This leads to two options for the automorphism J1:

J1 = ±
[

0 12×2
12×2 0

]
. (3.25)

Expression for J2 is constructed in a similar way, and putting these results together, we find two 
options for the automorphism P :

P =

⎡
⎢⎢⎣

0 12×2 0 0
12×2 0 0 0

0 0 0 12×2
0 0 12×2 0

⎤
⎥⎥⎦ or P =

⎡
⎢⎢⎣

0 12×2 0 0
12×2 0 0 0

0 0 0 −12×2
0 0 −12×2 0

⎤
⎥⎥⎦ .

(3.26)

The fermionic generators of PSU(1, 1|2) × PSU(1, 1|2) appearing in (3.18) obey the relation

f12 = −i�4(f21)
† (3.27)

with �4 given in (3.10), and projection (3.21) leads to further constraints. It is convenient to 
decouple f12 and f21 by working with holomorphic and anti-holomorphic coordinates. Relations 
(3.22) isolate 4 + 4 components of f12 and f21 killed by P1, while P3 kills the complementary 
4 + 4 components.8 Extraction of (P1, P2, P3), construction of Pλ via (2.20), and evaluation of 
superdeterminant (2.19) gives the same dilaton for both choices (3.26):

e� = Qe�B , e�B = 1√
[(1 − α2)(1 − β2) − γ 2][(α̃2 − 1)(β̃2 − 1) − γ̃ 2]

,

Q = (1 − λ2)4
[
γ + γ̃ − 4λ(1 + λ2)

(1 − λ2)2
(αβ̃ + α̃β) + λ4 + 6λ2 + 1

(λ2 − 1)2
(αβ + α̃β̃)

]2
. (3.28)

8 Recall that even though f12 and f21 are represented by 4 × 4 matrices, each of these objects has only 8 nonzero 
components. The details are discussed in the Appendix B, here we just refer to the explicit form of the psu(1, 1|2) ×
psu(1, 1|2) matrix (B.9), which clearly exhibits the non-vanishing elements.
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We conclude this section by analyzing the symmetries of the metric {(3.9), (3.15)} and the 
dilaton (3.28), which will be used for constructing the Ramond–Ramond fluxes. First, it is clear 
that neither the metric nor the dilaton has continuous symmetries, but all NS–NS fluxes are 
invariant under several discrete transformations:

S1 : α ↔ β, α̃ ↔ β̃ ;
S2 : α ↔ α̃, β ↔ β̃, γ ↔ β̃, k ↔ (−k) . (3.29)

These symmetries will be used in the next section to select a natural solution for the RR field C2.

3.3. Ramond–Ramond fluxes

Although the Ramond–Ramond fluxes for the lambda-deformed backgrounds can be extracted 
from the fermionic part of the sigma model, such problem is notoriously complicated [22]. When 
similar deformation were analyzed in the past, the RR fluxes were obtained by solving supergrav-
ity equations [9,10,22], and in this section we will follow the same route. We will demonstrate 
that under very weak assumptions, supergravity gives the unique expression for all fluxes.

Since the undeformed AdS3 ×S3 geometry is supported by the Ramond–Ramond three-form, 
we assume that the situation will remain the same after the deformation, so the relevant part of 
action for the type IIB supergravity reads

S =
∫

d6x
√−g

[
e2�(R + 4(∂�)2) − 1

12
FmnpFmnp

]
. (3.30)

This leads to the equations of motion

∇2e−2� = 0, (3.31)

∇mFmnk = 0, (3.32)

e−2�(Rmn + 2∇m∇n�) = 1

4

(
FmpqFn

pq − 1

6
gmnFspqF spq

)
(3.33)

and the first one is solved by metric (3.9), (3.15) and the dilaton (3.28).
To construct an expression for C2, we observe that the left-hand side of the Einstein’s equation 

(3.33) has the structure

P

Q2
, (3.34)

where Q is given by (3.28), and P is a polynomial in (α, β, γ, α̃, β̃, γ̃ ). This suggests a natural 
ansatz for C2:

C2 = 1

Q
C̃μνdxμ ∧ dxν, (3.35)

where all C̃μν are polynomials of degree two9 in (α, β, γ, α̃, β̃, γ̃ ). This ansatz leaves

6 × 5

2
×

[
1 + 6 + 6 + 6 × 5

2

]
= 420 (3.36)

9 The degree comes from counting powers in the left-hand side of the Einstein’s equations.
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undetermined coefficients. We then found the most general solution for C̃μν following these 
steps:

1. Solving equations (3.32)–(3.33) for λ = 0, when the metric and the dilaton are relatively 
simple, we reduced the number of undetermined coefficients to 43.

2. Solving equations (3.32)–(3.33) in the first order in λ, we reduced the number of undeter-
mined coefficients in the zeroth order to 42.

3. Eliminating the gauge freedom, we demonstrated that the solution at the zeroth order in λ is 
unique up to a gauge transformation.

Once uniqueness of the solution for λ = 0 is demonstrated, we can choose a convenient gauge 
which respects the discrete symmetries (3.29):

Cαα̃ = k

Q

[
2 − (β2 + β̃2)

]
, Cββ̃ = − k

Q

[
2 − (α2 + α̃2)

]
, (3.37)

Cαβ̃ = −Cβα̃ = k
γ̃ − γ

Q
, Cαγ̃ = −kβ̃

Q
, Cβγ̃ = kα̃

Q
, Cγ α̃ = −kβ

Q
, Cγ β̃ = kα

Q
.

This solution is odd under S1 and S2. The uniqueness of the solution in the zeroth order in λ
guarantees that, up to a gauge transformation, there is a unique gauge potential C2, at least in the 
perturbative expansion in powers of λ. Making a guess consistent with symmetries (3.29), we 
arrive at the final solution

Cαα̃ = k̂

Q

[
2 + c1ββ̃ − c3(β

2 + β̃2)
]
, Cαβ̃ = −Cβα̃ = k̂

Q
(γ̃ − γ ),

Cαγ̃ = k̂

Q
[c2β − β̃] Cββ̃ = − k̂

Q

[
2 + c1αα̃ − c3(α

2 + α̃2)
]
, Cβγ̃ = − k̂

Q
[c2α − α̃],

Cγ α̃ = − k̂

Q
[β − c2β̃], Cγ β̃ = k̂

Q
[α − c2α̃] (3.38)

c1 = 2c2c3, c2 = 2λ

1 + λ2
, c3 = λ4 + 6λ2 + 1

(λ2 − 1)2
, k̂ = k(1 + λ2)

1 − λ2
.

Notice that, unlike the solution (3.17) with the “bosonic dilaton”, the field (3.38) has a compli-
cated lambda dependence, and the situation is similar in the AdS2 × S2 case, which is reviewed 
in the Appendix A. In particular, while the field (3.17) vanishes at the WZW point (λ = 0), our 
solution for the supercoset (3.38) goes to a nontrivial limit, and, as we will see in section 4 and 
in the Appendix A, the same phenomenon persists for AdS2×S2 and AdS5 × S5.

To summarize, the λ-deformed version of AdS3 × S3 is described by the metric (3.9), (3.15), 
the dilaton (3.28), and the Ramond–Ramond two-form (3.38). In the next subsection we will 
analyze some special cases of this geometry.

3.4. Special cases

The solution (3.9), (3.15), (3.28), (3.38) simplifies in several special cases, and we will briefly 
discuss these interesting limits.
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The gauged WZW model is obtained by setting λ = 0:

ds2 = k

2�

[
4(1 − β2)dα2 + 4(1 − α2)dβ2 + 8γ dαdβ + (dγ − βdα − αdβ)2

]
+

+ k

2�

[
4(β̃2 − 1)dα̃2 + 4(α̃2 − 1)dβ̃2 − 8γ̃ dα̃dβ̃ + (dγ̃ − β̃dα̃ − α̃dβ̃)2

]
,

� = (1 − α2)(1 − β2) − γ 2, �̃ = (α̃2 − 1)(β̃2 − 1) − γ̃ 2 , (3.39)

e� = Q√
��̃

e�B , Q =
[
γ + γ̃ + αβ + α̃β̃

]2
,

C2 = k

Q

[
(α̃dβ − β̃dα) ∧ (dγ̃ + α̃dβ̃ + β̃dα̃) − (αdβ̃ − βdα̃) ∧ (dγ + αdβ + βdα)

+ (γ̃ − γ + α̃β̃ − αβ)(dα ∧ dβ̃ − dβ ∧ dα̃) + 2(dα ∧ dα̃ − dβ ∧ dβ̃)
]

.

This should be contrasted with bosonic gWZW, which has the dilaton

e� = 1√
��̃

(3.40)

and vanishing C2 (see (3.17)). A similar contrast is encountered in the AdS2 ×S2 and AdS5 ×S5

cases, which discussed in section 4 and in the Appendix A.
Note that the metric (3.39) for the SO(4)/SO(3) gWZW model has been discussed in [27,

11], where the element of the coset was defined as

g = g1(ϕ)g2(θ)g3(2t)g2(θ)g1(ϕ), (3.41)

gk(α) = exp(αTk,k+1), (Tk,k+1)
j
i = δk,iδ

j

k+1 − δk+1,iδ
j
k , k = 1,2,3.

The coordinates used in (3.39) are related to the Euler angles (3.41) as

α = cosϕ cos t cos θ + sinϕ sin t,

β = cosϕ cos t cos θ − sinϕ sin t, (3.42)

γ = − cos2 ϕ sin2 t + cos2 t (cos2 θ sin2 ϕ + sin2 θ).

Another interesting limit is obtained by setting λ = 1. However, this limit should be ap-
proached with a great care since denominators contain (λ2 − 1). We will follow the procedure 
discussed in [20] adopting it to our coordinates. To arrive at a sensible limit, we rescale the 
coordinates on the sphere as

α ∝ 1

ε
, β ∝ 1

ε
, γ ∝ 1

ε2
(3.43)

and send ε to zero. This gives the metric of the η-deformed S3 [9], and to see this, we introduce 
the standard coordinates (r, φ, ϕ) by

α = 1

ε

ei(ϕ+φ)r

(1 + λ2)
√

2(1 − r2)
, β = 1

ε

ei(ϕ−φ)r

(1 + λ2)
√

2(1 − r2)
,

γ = 1
2

e2iϕ(2(1 + λ2)2 − (1 − λ2)2r2)

4 2 2
, ε → 0. (3.44)
ε 2(1 − λ ) (1 − r )
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Performing a similar change of variables on AdS3 along with an analytic continuation

φ → ψ, ϕ → t, r → iρ, k → −k, (3.45)

and sending ε to zero, we arrive at the metric and the dilaton

ds2 = h

2

( 1

1 − κ2r2

[
(1 − r2)dϕ2 + dr2

1 − r2

]
+ r2dφ2

+ 1

1 + κ2ρ2

[
−(1 + ρ2)dt2 + dρ2

1 + ρ2

]
+ ρ2dψ2

)
, (3.46)

e� = (1 + λ̃2)4

[
2(1 − λ̃2)S2 cos(ϕ − t) − 4λ̃ρrS cos(φ − ψ)

]2

S2
√

(1 − λ̃2)2 + (1 + λ̃2)2ρ2
√

(1 − λ̃2)2 − (1 + λ̃2)2r2
,

S ≡
√

(1 + ρ2)(1 − r2), κ = 1 + λ̃2

1 − λ̃2
, h = (1 − λ̃2)2

k(1 + λ̃2)
, λ̃ = iλ .

This geometry describes the η-deformed AdS3 × S3 [9], and similar relations between λ- and 
η-deformations have been explored in [20].

3.5. Alternative parameterizations

In subsections 3.1–3.3 we derived the full supergravity solutions corresponding to the 
λ-deformed supercoset, but the metric for this geometry has already appeared in the literature 
[17,20]. We used the parameterization of [17], and in this subsection we will discuss the relation 
with the coordinates used in [20] and discuss one more parameterization which becomes useful 
for comparing AdS3 × S3 and AdS5 × S5 solutions.

To find the relation between our parameterization and the coordinates used in [20], we observe 
that the action by H = SU(2)diag changes components of gl and gr in (3.3), but three expressions 
remain invariant:

�α2 ≡
3∑

i=1

αiαi, �β2 ≡
3∑

i=1

βiβi, �α · �β ≡
3∑

i=1

αiβi . (3.47)

Although the gauge used in [20] was different from ours, we can find the map between two sets 
of coordinates by matching the expressions (3.47) in two descriptions. The authors of [20] used 
parameterization in terms of the Euler’s angles:

gtrig = exp[iϕσ3 ⊕ (−σ3)] exp[iζσ1 ⊕ σ1] exp[iφσ3 ⊕ σ3]. (3.48)

Evaluating the invariants (3.47) for parameterizations (3.5)–(3.6) and (3.48), and comparing the 
results, we arrive at the map10

α = cos(ϕ + φ) cos ζ, β = cos(ϕ − φ) cos ζ, γ = cos 2ϕ − cos 2ϕ + cos 2φ

2
cos2 ζ.

(3.49)

10 Recall that to simplify notation we introduced α = α0 and β = β0, and all our results were written in these variables.
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Another interesting coordinate system comes from parameterizing the coset SO(4)/SO(3)

in terms of a three-dimensional vector X and an anti-symmetric 3 × 3 matrix A [29,19]. Such 
parameterization of SO(n + 1)/SO(n) will be used in the next section for studying the de-
formed AdS5 × S5, so it is important to introduce similar coordinates in the present case to make 
comparisons. The detailed discussion of parameterization and the gauge fixing is presented in 
section 4.1, here we just write the result11:

g =
[

1 0
0 (1 + A)(1 − A)−1

][
b − 1 bXi

−bXi δ
j
i − bXiX

j

]
, (3.50)

A =
⎡
⎣ 0 a 0

−a 0 0
0 0 0

⎤
⎦ , b = 2

1 + (Y1)2 + (Y2)2
, �X = {Y1,0, Y2} .

The parameterizations (3.50) and (3.3), (3.7) correspond to different representations of SO(4), 
so to relate them we should compare quantities which don’t depend on the representation. We 
have already encountered such an object before:

DAB = Tr(TAg−1TBg). (3.51)

To establish the map between generators, we recall that the subgroup H = SU(2)diag corre-
sponds to

T
SU(2)×SU(2)
H = 1

2

[
xaσa 0

0 xaσa

]
, T

SO(4)
H = i√

2

⎡
⎢⎢⎣

0 0 0 0
0 0 x3 −x2
0 −x3 0 x1
0 x2 −x1 0

⎤
⎥⎥⎦ (3.52)

and the coset generators correspond to

T
SU(2)×SU(2)
coset = 1

2

[
yaσa 0

0 −yaσa

]
, T

SO(4)
coset = i√

2

⎡
⎢⎢⎣

0 y1 y2 y3
−y1 0 0 0
−y2 0 0 0
−y3 0 0 0

⎤
⎥⎥⎦ (3.53)

Evaluating (3.51) for (3.50) and {(3.3), (3.7)}, using appropriate generators, and matching the 
results, we arrive at the map

α = 1 − aY2√
1 + a2Y

, β = 1 + aY2√
1 + a2 Y

, γ = −Y 2
1 + a2(Y 2

1 − 1) + Y 2
2

(1 + a2)Y 2
, (3.54)

Y 2 = 1 + (Y1)
2 + (Y2)

2

and its inverse

a = −
√

2(1 + γ 2) − α2 − β2

α + β
, Y2 = α − β√

2(1 + γ ) − α2 − β2
,

Y1 = −
√

2[(1 − α2)(1 − β2) − γ 2]
[1 + αβ + γ ][2(1 + γ ) − (α2 + β2)] . (3.55)

11 We use variables Y1 and Y2 in (3.50) to make comparison with AdS5 ×S5 case easier: the variable Y1 is a counterpart 
of X1, and Y2 is a counterpart of X5 in (4.3).
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The AdS coordinates are obtained by the replacement

Y1 → iỸ1, Y2 → Y2, a → ã. (3.56)

In coordinates (Y1, Y2, a, Ỹ1, Ỹ2, ã) the dilaton becomes

e� = Qe�B , e�B =
√

1 + a2Y
√

1 + ã2Ỹ

16aãY1Ỹ1
, Y 2 = 1 + Y 2

1 + Y 2
2 , Ỹ 2 = 1 − Ỹ 2

1 + Ỹ 2
2 ,

Q = (1 − λ2)4
[
−Y 2

1 + a2(Y 2
1 − 1) + Y 2

2

(1 + a2)Y 2
+ Ỹ 2

1 + ã2(Ỹ 2
1 + 1) + Ỹ 2

2

(1 + ã2)Ỹ 2
(3.57)

− 8λ(1 + λ2)

(1 − λ2)2

1 − aãY2Ỹ2√
1 + a2

√
1 + ã2Y Ỹ

+ λ4 + 6λ2 + 1

(λ2 − 1)2

(
1 − a2Y 2

2

(1 + a2)Y 2
+ 1 − ã2Ỹ 2

2

(1 + ã2)Ỹ 2

)]2

.

In particular, for the gauged WZW model (λ = 0) we find

Q = 4

[
X2 + X̃2 − X2X̃2

X2X̃2

]2

. (3.58)

Notice that this expression does not depend on coordinates a and ã, and the same phenomenon 
is encountered in the AdS5×S5 case, see the last factor in (4.27).

4. Towards the deformation of AdS5 × S5

In this section we apply the procedure described in section 2 to construct the λ-deformed 
AdS5 × S5 supercoset. Our final result includes the metric and the dilaton, but since the latter 
looks rather complicated, we were not able to solve the equations for the Ramond–Ramond 
fluxes.

Superstrings on AdS5 × S5 are described by a sigma model on the supercoset [28]

PSU(2,2|4)

SO(4,1) × SO(5)
. (4.1)

The corresponding superalgebra is represented by 4 × 4 matrices, and an explicit parameteriza-
tion is presented in the Appendix B. The bosonic part of the supercoset (4.1) is given by

SU(2,2)

SO(4,1)
× SU(4)

SO(5)
= SO(4,2)

SO(4,1)
× SO(6)

SO(5)
, (4.2)

and, as in the AdS3 × S3 case, the two subgroups decouple in the metric (2.9) and in the bosonic 
contribution to the dilaton (2.18). While these objects have been computed in [19], to evaluate 
the fermionic contribution to the dilaton we will have to use a different parameterization, so we 
begin with specifying our coordinates, finding the metric and the bosonic dilaton for them, and 
comparing the results with [19]. The fermionic contribution to the dilaton will be evaluated in 
section 4.2.
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4.1. Metric and the bosonic dilaton

To apply the procedure outlined in section 2, we need an explicit form of the coset (4.2). 
The most natural way to parameterize the sphere S5 = SO(6)/SO(5) is to use the Euler angles, 
and such description has been used in [19], but unfortunately these coordinates make the evalu-
ation of the fermionic contribution to the dilaton nearly impossible. Thus we use the alternative 
coordinates introduced in [29,19], in which all expressions remain algebraic.12

Specifically, we write the element of SO(6) as

g =
[

1 0
0 hm

n

][
b − 1 bXj

−bXi δ
j
i − bXiX

j

]
, b = 2

1 + XmXm

, (4.3)

where Xi is a five-dimensional vector and hm
n is an element of SO(5). The defining condition 

for SO(5), hT h = I , can be solved by writing h in terms of an anti-symmetric matrix A as

hm
n = [(1 + A)(1 − A)−1]mn

. (4.4)

The SO(5) rotations act on A and X as

A → �A�−1, X → �X. (4.5)

To fix this gauge freedom, we follow the procedure discussed in [29]: first we rotate A to a block 
form13:

A =

⎛
⎜⎜⎜⎜⎝

0 a 0 0 0
−a 0 0 0 0
0 0 0 b 0
0 0 −b 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (4.6)

and then we use the remaining [SO(2)]2 rotations to set X2 = X4 = 0.
The so(6) algebra has 15 generators, first ten of them form so(5), while the last five corre-

spond to the coset. Specifically, in our parameterization, the coset generators are14

(Tα)mn = − i√
2

[
δm1δn(α−9) − δn1δm(α−9)

]
α = 11, . . .15. (4.7)

Application of the procedure (2.17) leads to the bosonic contribution to the dilaton (2.18)

e−2�B = 1024a2b2(a2 − b2)2X2
1X

2
3

(1 + a2)3(1 + b2)3X2

(1 − λ2)3(1 + λ2)2

λ10
, (4.8)

where we defined

X2 ≡ 1 + X2
1 + X2

3 + X2
5.

12 It appears that the authors of [19] used the same coordinates while computing the metric and rewrote the final answers 
in terms of the Euler’s angles. We find the algebraic coordinates more convenient.
13 Notice that there is a slight difference in gauge fixing between SO(n)/SO(n − 1) for odd and even n: matrix A has 
[(n − 1)/2] independent components, and there are [n/2] independent X.
14 Recall that throughout this article we use hermitian generator, so the element of a group is constructed as g =
exp[iT x].
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Note that the lambda dependence factorizes in (4.8), and this is a general feature of the bosonic 
dilaton, as discussed in the end of section 2. Specifically, in the present case, matrix P defined 
in (2.23) has the form

P =
⎡
⎣ W(a) 0 0

0 W(b) 0
0 0 1

⎤
⎦ , where W(x) ≡ (1 + x2)−1

[
1 −x

−x −1

]
. (4.9)

This matrix has eigenvalues λ−2 ± 1 and

det P = (1 − λ2)3(1 + λ2)2

λ10
. (4.10)

The metric for λ-deformation is constructed using (2.17), and the result reads

ds2
(λ) =

∑
α

(eα
(λ))

2, eα
(λ) =

√
k(1 − λ4)

2λ2
[P−1]αβe

β

(0), (4.11)

where eβ

(0) refer to the frames describing the gauged WZW model (λ = 0):

e6
(0) = a2(1 + b2)X2

3 + (a2 − b2)X2
5

a(1 + a2)(a2 − b2)X1
da + (1 + a2)bX1

(a2 − b2)(1 + b2)
db

+ 1

X2

[
−(X2 − X2

1)dX1 + X1X3dX3 + X1X5dX5

]
,

e7
(0) = da

X1(1 + a2)
, e9

(0) = db

X3(1 + b2)
, (4.12)

e10
(0) = − X5da

a(1 + a2)
− X5db

b(1 + b2)
+ 1

X2

[
X1X5dX1 + X3X5dX3 − (X2 − X2

5)dX5

]
,

e8
(0) = − a(1 + b2)X3da

(1 + a2)(a2 − b2)
− (1 + a2)b2X2

1 − (a2 − b2)X2
5

b(1 + b2)(a2 − b2)X3
db

+ 1

X2

[
X1X3dX1 − (X2 − X2

3)dX3 + X3X5dX5

]
.

The AdS5 counterparts of the metric and the dilaton are obtained by an analytic continuation

X1 → iX1, X3 → iX3, k → −k, (4.13)

and the corresponding frames are denoted by e1
(0),. . . ,e5

(0).

4.2. Fermionic dilaton: general discussion

Although the SO(6)/SO(5) representation (4.3) of the five-dimensional sphere is very in-
tuitive, the construction of the supercoset (4.1) requires embedding of SO(6) into SU(4) and 
identifying the fermionic degrees of freedom corresponding to the supercoset. We begin with 
finding the SU(4) matrices in parameterization (4.3).

The SU(4) matrices g describe a representation of SO(6), which acts on anti-symmetric 4 ×4
matrices A as

A → gAgT . (4.14)
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Specifically, starting with the fundamental representation of SO(6) acting on six-dimensional 
vectors (x1, x2, x3, y1, y2, y3), one can construct matrix A as

A =

⎡
⎢⎢⎣

0 x3 − iy3 −x2 + iy2 x1 + iy1
−x3 + iy3 0 x1 − iy1 x2 + iy2
x2 − iy2 −x1 + iy1 0 x3 + iy3

−x1 − iy1 −x2 − iy2 −x3 − iy3 0

⎤
⎥⎥⎦ . (4.15)

The generators of SU(4) are hermitian 4 ×4 matrices, and to proceed with the coset construction, 
we need to identify the elements tα corresponding to the generators (4.7). Comparing the action 
Tα on (x1, x2, x3, y1, y2, y3) and the action of g ∈ su(4) on (4.15), we find

T αcα = 1

2

⎡
⎢⎢⎣

c13 c14 + ic11 c15 + ic12 0
c14 − ic11 −c13 0 −c15 − ic12
c15 − ic12 0 −c13 c14 + ic11

0 ic12 − c15 c14 − ic11 c13

⎤
⎥⎥⎦ . (4.16)

All generators of SU(4), including (4.16), are hermitian, while generators of SU(2, 2) satisfy 
the modified hermiticity relation

(TA)† = �TA�, � =
[

0 σ3
σ3 0

]
. (4.17)

For example, the counterparts of the coset generators (4.16) are obtained by an analytic continu-
ation

c11 → ic̃11, c12 → ic̃12, c13 → ic̃13, c14 → ic̃14, c15 → c̃15. (4.18)

To proceed we need to construct an automorphism J1 which satisfies (3.19) for all generators 
g ∈ su(4) with the exception of (4.16). While it is easy to find this J1 for 6 × 6 matrices and 
coset generators (4.7) (specifically, J1 = ±diag(−1, 1, 1, 1, 1)), such matrix does not exist in the 
four-dimensional representation of so(6), and the closest analog of (3.19) is

J−1
1 gJ1 = gT , J1 =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎤
⎥⎥⎦ . (4.19)

This means that condition (3.21) will be modified as

P−1MP =MT , (4.20)

and such grading is a familiar feature of PSU(2, 2|4) (see, for example, [23] for a detailed 
discussion). In our parameterization,

P =
[

J1 0
0 J1

]
, (4.21)

and the detailed discussion of fermions projected out by (4.21) and relation to other conven-
tions used in the literature is presented in the Appendix B. Here we only mention that if 8 × 8
supercoset matrix is written as
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M =
[

A B

C D

]
, B ≡

[
b1 b2
b3 b4

]
,

C ≡
[

c1 c2
c3 c4

]
= −i

[
b

†
3σ3 b

†
1σ3

b
†
4σ3 b

†
2σ3

]
, (4.22)

then projector P3 entering Pλ (2.20) selects the components satisfying an additional relation 
(B.14):

C =
[ −[σ1b4σ1]T [σ1b2σ1]T

[σ1b3σ1]T [σ1b1σ1]T
]

. (4.23)

The last ingredient for constructing the fermionic contribution to the dilaton is the explicit 
expression for the element of SU(4)/SO(5) in the gauge (4.3), (4.6):

gS = 1

�S

⎡
⎢⎢⎣

1 b ab a

−b 1 a −ab

ab −a 1 −b

−a −ab b 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 − iX3 X1 −iX5 0
−X1 1 + iX3 0 iX5
−iX5 0 1 + iX3 X1

0 iX5 −X1 1 − iX3

⎤
⎥⎥⎦

(4.24)
�S =

√
1 + a2

√
1 + b2

√
1 + (X1)2 + (X3)2 + (X5)2 .

The element of SU(2, 2)/SO(4, 1) is obtained by making the analytic continuation (4.13) in the 
last expression. Notice that the symmetry

X1 ↔ X3, a ↔ b, (4.25)

which was obvious in the SO(6) parameterization (4.3), (4.6), is less explicit in (4.24).
Evaluation of the fermionic contribution to the dilaton involves a straightforward but tedious 

calculation of the determinant

det[(Adf − 1 − (λ−2 − 1)Pλ)|f̂1⊕f̂3
], (4.26)

and the results are rather complicated. We collect them and discuss some of their features in the 
next two subsections.

4.3. Dilaton for the gauged WZW model

Geometry with λ = 0 describes the gauged WZW model, and the solution in this case is given 
by the frames (4.12), along with their AdS5 counterpart and the dilaton

e−2� = 220 a2b2(a2 − b2)2X2
1X

2
3

(1 + a2)3(1 + b2)3X2

ã2b̃2(ã2 − b̃2)2X̃2
1X̃

2
3

(1 + ã2)3(1 + b̃2)3X̃2

[
X2X̃2

X2 + X̃2 − X2X̃2

]8

(4.27)

X2 = 1 + X2
1 + X2

3 + X2
5, X̃2 = 1 − X̃2

1 − X̃2
3 + X̃2

5 .

The bosonic contribution to the dilaton is obtained by dropping the expression in the brackets, and 
the bosonic coset does not require any Ramond–Ramond fluxes. The situation for the supercoset 
is different, as we have already seen in the AdS3 × S3 case: the Ramond–Ramond fluxes are 
turned on even at λ = 0. In the present case we were not able to construct the fluxes explicitly, 
but we verified that the solution (4.12)–(4.27) can be supported by F5.

Recall that the stress–energy tensor for the self-dual five-form,

Tmn = 1
FmabcdFn

abcd (4.28)

96
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satisfies the Rainich conditions [30]15:

Tm
m ≡ TrT = 0, TrT 3 = 0, TrT 5 = 0, TrT 7 = 0, TrT 9 = 0, (4.29)

and for geometry supported only by the dilaton and the metric the Tmn can be expressed as16

Tmn = Rmn + 2∇m∇n�. (4.30)

The right-hand side vanishes for the “bosonic” dilaton, while for the full solution (4.27) it gives 
a nontrivial result which satisfies the constraints (4.29). It would be very interesting to find the 
corresponding flux F5.

4.4. Special cases for λ �= 0

Although the dilaton for arbitrary values of λ can be computed by evaluating the appropriate 
determinants, unfortunately the results are not very illuminating. In this subsection we will col-
lect the answers for some special cases which give manageable expressions. Since the general 
expression for the bosonic dilaton is already given by (4.8), we will focus only on the fermionic 
contribution to (2.16):

e2�F = det[(Adf − 1 − (λ−2 − 1)Pλ)|f̂1⊕f̂3
] . (4.31)

First we observe that at λ = 0 the expression for e2�F depends only on Xk and X̃k . While this 
property does not hold for general values of λ, setting a = ã = b = b̃ we still find an interesting 
result:

e2�F

∣∣∣
a=ã=b=b̃=0

=
[

(1 − μXX̃)2 − (1 − X2)(1 − X̃2)

X2X̃2

]8

, μ ≡ 2λ

λ2 + 1
. (4.32)

In the opposite case, where all X are switched off, the expression is much more complicated, for 
example at λ = 1 it has the form

e2�F

∣∣∣
Xm=X̃m=0,λ=1

= F 12
[
8F − 2 + (FP−1 − 2)2 − 2(P1 − 1)2 + 2P2

]2
, (4.33)

F ≡ (a2 + 1)(b2 + 1)(ã2 + 1)(b̃2 + 1),

Pk ≡ (a2 + 1)k + (b2 + 1)k + (ã2 + 1)k + (b̃2 + 1)k.

In particular, we observe that the last expression is fully symmetric under interchanging the 
elements of the list (a, b, ã, b̃). This property persists for all values of λ, as long as Xm = X̃m = 0, 
but the general expression is not very illuminating, so we will not write it here.

The last two interesting cases correspond to looking only at the sphere or only at the AdS 
space:

15 For a recent discussion of the original Rainich conditions for electromagnetism and their generalizations to higher 
dimensions see, for example, [31,10].
16 In this paper we are working in the string frame.
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e2�F

∣∣∣
S

=
[
(AB − μX)2 + μ2[(AbX3)

2 + (aBX1)
2 − a2b2X2]

A2B2X2

]8

,

e2�F

∣∣∣
AdS

=
[

(ÃB̃ − μX̃)2 − μ2[(Ãb̃X̃3)
2 + (ãB̃X̃1)

2 + ã2b̃2X̃2]
Ã2B̃2X̃2

]8

, (4.34)

A =
√

1 + a2, B =
√

1 + b2, Ã =
√

1 + ã2, B̃ =
√

1 + b̃2 .

The complexity of our results beyond λ = 0 suggests that the full solution for the λ-deformation 
of AdS5 ×S5 cannot be constructed unless one finds better coordinates, and we leave this problem 
for future investigation.

5. Discussion

In this article we have constructed the supergravity background describing the λ-deformation 
of AdS3 ×S3 supercoset and reported some progress towards the analogous result for AdS5 ×S5. 
Our main result is summarized by equations (3.15), (3.9), (3.28), (3.38). In the AdS5 ×S5 case we 
have constructed the metric and the dilaton describing the supercoset, and while the results pre-
sented in section 4 are rather complicated, there are striking similarities with lower-dimensional 
cases. For example, at the WZW point, where the expression (4.27) for the ten-dimensional dila-
ton is rather simple, one finds a very close analogy with the six-dimensional case (3.58), and we 
hope that a further exploration of such analogies will lead to construction of full gravity solution 
for the deformed AdS5 × S5.
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Appendix A. λ-deformation for AdS2 × S2

For comparison with the results obtained in this article, we review the geometry of λ-deformed 
AdS2 × S2 constructed in [22]. We also extend the solution of [22] by one free parameter which 
makes the fluxes symmetric between the sphere and AdS space. Applying the procedure reviewed 
in section 2 to a coset SU(2)/U(1), the authors of [22] constructed the metric and the supercoset 
version of the dilaton (2.19)17:

ds2 = −dx2 + dy2

1 − κx2 + κ−1y2
+ dp2 + dq2

1 − κp2 − κ−1q2
,

e� = κ − x2 + y2 − p2 − q2 + 2
√

1 − κ2xp√−(1 − κx2 + κ−1y2)
√

1 − κp2 − κ−1q2
, (A.1)

where

κ = 1 − λ2

1 + λ2
. (A.2)

17 The solution corresponding to the bosonic dilaton (2.18) had been constructed earlier in [17].
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This background is supported by the Ramond–Ramond flux

A = c1

M
[ydx − (x −

√
1 − κ2p)dy] + c2

M
[qdp − (p −

√
1 − κ2x)dq], (A.3)

M = κ − x2 + y2 − p2 − q2 + 2
√

1 − κ2xp√−(1 − κx2 + κ−1y2)(1 − κp2 − κ−1q2)
, c2

1 + c2
2 = 4κ−1,

which solves the supergravity equations

Rmn + 2∇m∇n� = e2�

2
(FmpFn

p − 1

4
gmnFklF

kl),

∂n(
√−gFmn) = 0, ∇2e−2� = 0, (A.4)

and article [22] presented the answer (A.3) for c2 = 0.
It is interesting that the flux (A.3) has a free parameter which interpolates between the com-

ponents on the sphere and on AdS, while the AdS3 × S3 solution (3.38) has no freedom. This 
difference can already be seen for the undeformed AdSp × Sp , and it can be traced to the differ-
ent structure of “electric–magnetic” duality groups in four and six dimensions (U(1) in 4d vs Z2
in 6d).

Since in this article we use parameterization of cosets in terms of X, A coordinates introduced 
in (4.3), we will conclude this appendix by writing the relations between coordinate systems used 
in [17,22] and a three-dimensional version of (4.3)–(4.6) describing SO(3)/SO(2):

gso =
[

1 0
0 (1 + A)(1 − A)−1

]⎡
⎣ b − 1 bX 0

−bX 1 − bX2 −bX

0 −bX 1

⎤
⎦ , (A.5)

A =
[

0 a

−a 0

]
, b = 2

1 + X2
.

To compare this with the parameterization in terms of the Euler’s angles used in [17,20],

gtrig = exp[i(φ1 − φ2)σ3/2] exp(iωσ2) exp[i(φ1 + φ2)σ3/2] , (A.6)

we follow the procedure outlined in section 3.5. Specifically, computing the matrix D (3.51) and 
comparing the result with a general parameterization (4.3) applied to SO(3), we find

X1 = − 4(cos2 ω sin 2φ1 + sin2 ω sin 2φ2)

4 + cos[2(ω − φ1)] + cos[2(ω + φ1)] + 2 cos 2φ1 + 4 cos 2φ2 sin2 ω
,

X2 = − 4 sin 2ω sin(φ1 − φ2)

4 + cos[2(ω − φ1)] + cos[2(ω + φ1)] + 2 cos 2φ1 + 4 cos 2φ2 sin2 ω
,

a = cosφ2 tanω

cosφ1
. (A.7)

A U(1) gauge transformation relates this to (A.5) with

X = − 4
√

sin2(2φ1) + sin2(φ1 − φ2) sin2(2ω)

4 + cos[2(ω − φ1)] + cos[2(ω + φ1)] + 2 cos 2φ1 + 4 cos 2φ2 sin2 ω
,

a = cosφ2 tanω
. (A.8)
cosφ1
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The authors of [17] fixed the gauge by setting φ2 = 0, while the authors of [22] chose φ2 = φ1
and changed coordinates as

ω = arccos
√

κp2 + κ−1q2, φ1 = arccos

√
κp√

κp2 + κ−1q2
(A.9)

to arrive at (A.1).

Appendix B. Parametrization of psu(1, 1|2) and psu(2, 2|4)

In this appendix we briefly summarize the parameterization of psu(1, 1|2), psu(2, 2|4), and 
their cosets used in sections 3 and 4. We will mostly follow the notation of [23,24], although our 
parameterization of fermions differs from the one in [23], and we will comment on the difference.

The Lie superalgebras psu(n, n|2n) can be defined in terms of (4n) × (4n) supermatrices

M =
[

A B

C D

]
, (B.1)

with even (2n) × (2n) blocks A, D and odd (2n) × (2n) blocks B , C. The graded Lie bracket is 
defined as

[M,M′} =
[

AA′ + BC′ − A′A + B ′C AB ′ + BD′ − A′B − B ′D
CA′ + DC′ − C′A − D′C CB ′ + DD′ + C′B − D′D

]
. (B.2)

Matrix M is subject to the hermiticity condition[
A B

C D

]
=

[
�A†�−1 −i�C†

−iB†�−1 D†

]
, (B.3)

where � is a hermitian matrix of signature (n, n). Convention for su(n, n) represented by A fixes 
the matrix � and the parameterization of fermions B , C.

For psu(1, 1|2) we choose � = diag(1, −1). This leads to the relation

C = −iB†
[

1 0
0 −1

]
, (B.4)

or more explicitly

B =
[

b11 b12
b21 b22

]
, C =

[
−ib

†
11 ib

†
21

−ib
†
12 ib

†
22

]
. (B.5)

To construct the algebra for the coset

PSU(1,1|2)l × PSU(1,1|2)r

SU(1,1)diag × SU(2)diag

, (B.6)

we take two copies of psu(1, 1|2),

M′ =
[
M1 0

0 M2

]
, (B.7)

and project to the subgroup H by imposing the relation (3.21)

P−1M′P =M′ , (B.8)
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as discussed in section 3.2. Notice that AdS3 and S3 blocks are mixed in the matrix (B.7), and 
to make the separation more explicit we rearrange the components of the matrix M′ using the 
parameterization (B.1) for M1 and M2. Specifically we define

M =

⎡
⎢⎢⎣

A1 0 B1 0
0 A2 0 B2
C1 0 D1 0
0 C2 0 D2

⎤
⎥⎥⎦ . (B.9)

The top left block of this matrix describes AdS space, the bottom right block describes the sphere, 
and the matrix P corresponding to this supercoset is given by (3.26):

P =

⎡
⎢⎢⎣

0 12×2 0 0
12×2 0 0 0

0 0 0 12×2
0 0 12×2 0

⎤
⎥⎥⎦ . (B.10)

In particular, this matrix does not mix the Bi and Ci components, so in section 3.2 we com-
puted the fermionic contribution to the dilaton by treating the holomorphic and anti-holomorphic 
components (bij and b†

ij ) as independent variables.
Let us now discuss the psu(2, 2|4) superalgebra, which emerges in the description of strings 

on AdS5 × S5 [28]. In this case equation (B.3) involves 4 × 4 blocks, and we choose the matrix 
� involved in the hermiticity condition (B.3) to be

� =
[

0 σ3
σ3 0

]
(B.11)

This choice leads to a relation between 2 × 2 blocks of B and C in (B.1):

B ≡
[

b1 b2
b3 b4

]
, C ≡

[
c1 c2
c3 c4

]
= −i

[
b

†
3σ3 b

†
1σ3

b
†
4σ3 b

†
2σ3

]
. (B.12)

A choice of holomorphic and anti-holomorphic fermions is no longer convenient since the coset 
projection mixes them. As discussed in section 4.2, for the psu(2, 2|4) supercoset, the condition 
(3.21) is replaced by (4.20)

P−1MP =MT , (B.13)

with P given by (4.21). An explicit calculation shows that projection (B.13) chooses the elements 
which satisfy

B =
[

b1 b2
b3 b4

]
, C =

[ −[σ1b4σ1]T [σ1b2σ1]T
[σ1b3σ1]T [σ1b1σ1]T

]
(B.14)

in addition to (B.12). The coset corresponds to the generators included in (B.12), but not 
in (B.14). In other words, generators satisfying both (B.14) and (B.12) survive under projec-
tion P3, and P1 is defined as P1 = 1 − P3.

We conclude this appendix by relating our conventions with notation used in [23]. We chose 
a different embedding of the coset into SU(4) × SU(2, 2), and this led to a following relation 
between our generators and the ones used by Arutyunov and Frolov (AF) [23]:
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Tsu(4) = RT AF
su(4)R

−1, R =

⎡
⎢⎢⎣

i 0 0 0
0 0 0 i

0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ , (B.15)

Tsu(2,2) = R̃T AF
su(2,2)R̃

−1, R̃ = 1√
2

⎡
⎢⎢⎣

1 0 −1 0
0 1 0 1
1 0 1 0
0 −1 0 1

⎤
⎥⎥⎦ . (B.16)

While our generators are convenient for evaluating the λ-deformation, the generators of Aru-
tyunov and Frolov are better suited for imposing kappa symmetry. Specifically, elimination of 
this freedom in the notation of [23] gives

BAF =
[

0 b2
b3 0

]
, CAF =

[
0 c2

c3 0

]
(B.17)

while in our notation

B =
[

b1 b2
σ3b1σ3 −σ3b2σ3

]
, C =

[
iσ3b

†
1 ib

†
1σ3

−iσ3b
†
2 ib

†
2σ3

]
. (B.18)

The expressions for kappa symmetry are not used in this paper.
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