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Abstract

We study collective T-duality transformations along one, two and three directions of isometry for the three-
sphere with H -flux. Our aim is to obtain new non-geometric backgrounds along lines similar to the example 
of the three-torus. However, the resulting backgrounds turn out to be geometric in nature. To perform the 
duality transformations, we develop a novel procedure for non-abelian T-duality, which follows a route dif-
ferent compared to the known literature, and which highlights the underlying structure from an alternative 
point of view.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

String theory is a theory of extended objects, which distinguishes it from ordinary quantum 
field theories of point particles. In particular, string theory contains closed strings, for which two 
types of excitations can be found in the spectrum: left-moving and right-moving modes. When 
a closed string is probing a background in which these two sectors behave in the same way, 
roughly speaking, both sectors “see” the same geometry. Hence, one can give a geometric inter-
pretation of the background (at least in the large volume regime). However, in general the left-
and right-moving sectors do not need to be the same, but can detect the background differently. 
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In this case, no geometric description is available and the corresponding background is called 
non-geometric.

Usually, string theory is studied in the geometric regime for which a large variety of back-
ground spaces is known, however, in the non-geometric setting it is more difficult to obtain 
explicit examples. One of the strategies to construct backgrounds for the non-geometric case is 
to apply T-duality transformations to a known geometric space with non-vanishing NS–NS field 
strength H . The prime example for this approach [1] is the flat three-torus with H �= 0, leading 
to

Hxyz
Tz←→ fxy

z
Ty←→ Qx

yz Tx←→ Rxyz, (1.1)

where this chain of T-duality transformations can be explained as follows.

• The starting point is a flat three-torus with non-trivial H -flux, on which one performs a first 
T-duality transformation. This results in a twisted torus with vanishing field strength, where 
the topology is characterized by a so-called geometric flux f [2,3].

• A second T-duality transformation leads to a background with a locally-geometric descrip-
tion, which is however globally non-geometric [4]. The latter means that when considering 
a covering of the torus by open neighborhoods, the transition functions on the overlap of the 
charts are not solely given by diffeomorphisms, and hence such a manifold cannot be de-
scribed by Riemannian geometry. However, if in addition to diffeomorphisms one includes 
T-duality transformations as transition maps [5], this space can be globally defined. This 
construction is called a T-fold [6], and carries a so-called Q-flux [1]. The Q-flux is related 
to non-commutative features of this background, and non-commutativity in this context has 
been studied for instance in [7–16], and has been reviewed recently in [17].

• It has also been argued that formally a third T-duality transformation can be performed [1], 
but the resulting R-flux background is not even locally geometric and exhibits a non-
associative structure. These spaces have been studied from a mathematical point of view in 
[18,19], later in [20], and have been reconsidered in a series of papers [21–23,11,24,25,13,
15,26,27,16] more recently. A review from a mathematical perspective can be found in [28].

Another class of backgrounds showing non-geometric features are asymmetric orbifolds. In the 
context of non-geometry these have been studied for instance in [5,4,29–31,22,12,32], but they 
will not be the focus of this work.

There are a number of different approaches to investigate non-geometric backgrounds. In ad-
dition to the above-mentioned line of research, we note that non-geometric flux configurations 
have been studied from a doubled-geometry point of view in [6,33,34]. More recently, non-
geometric backgrounds have been investigated via field redefinitions for the ten-dimensional 
supergravity action in [35–42], and have been analyzed from a world-sheet point of view for 
instance in [30,43–45]. Also, there exists an extensive literature for non-geometry in the context 
of double-field theory, for which we would like to refer the reader to the reviews [46,47].

The main purpose of the present paper is to study the chain of T-duality transformations shown 
in (1.1) not for the three-torus, but for the three-sphere with H -flux. One of the appealing features 
of the latter is that, in contrast to the torus, the string equations of motion can be solved when the 
flux is appropriately adjusted. The main question we want to answer is the following:

When applying two T-duality transformations to the three-sphere with H -flux, does one obtain 
a non-geometric Q-flux background?
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In order to address this point, a proper understanding of T-duality transformations is required. 
More concretely, since the isometry group of the three-sphere is non-abelian, we would like to 
be able to perform non-abelian T-duality transformations. These have been studied extensively 
in the past and some of the corresponding references are [48–55]; more recently non-abelian 
T-duality has been discussed for instance in [56–59]. However, in this paper we are going to 
approach non-abelian T-duality from a slightly different point of view, which highlights some of 
the structure important for our purposes. Let us furthermore mention that some of the examples 
we will be discussing are related to results known in the literature; nevertheless, our investigation 
here is in view of the chain of T-duality transformations shown in Eq. (1.1).

This paper is organized as follows: in Sections 2 and 3 we develop a novel formalism for 
studying collective, and more generally non-abelian, T-duality transformations. Our approach is 
based on [60], which for instance does not require a gauge-fixing procedure and which is not 
based on Wess–Zumino–Witten models. Furthermore, we are able to make explicit a particular 
constraint, shown in Eq. (2.10), which explains some of the structure found in the context of 
non-geometric backgrounds.

In Section 4 we apply collective T-duality transformations to the well-known example of the 
three-torus, thereby illustrating and checking our formalism. In Section 5 we study the chain of 
T-dualities (1.1) for the example of the three-sphere with H -flux; we find that after two T-duality 
transformations not a non-geometric but a geometric background is obtained.

In Section 6 we summarize and discuss our findings, and in Appendix A we collect results on 
collective (and non-abelian) T-duality transformations for the twisted three-torus with H -flux.

2. Preliminaries: non-linear sigma-model

We begin our discussion by reviewing the sigma-model action for the NS-NS sector of the 
closed string, which encodes the dynamics of a target-space metric G, an anti-symmetric Kalb–
Ramond field B , and a dilaton φ. In the second part of this section, we study gaugings of this 
action, thereby generalizing some results of [61,62,50,63]

The action
The sigma model is usually defined on a compact two-dimensional manifold without bound-

aries, corresponding to the world-sheet of a closed string. However, in order to incorporate 
non-trivial field strengths H = dB �= 0 for the Kalb–Ramond field B , it turns out to be con-
venient to work with a Wess–Zumino term, which is defined on a compact three-dimensional 
Euclidean world-sheet � with two-dimensional boundary ∂�. In this case, the sigma-model ac-
tion takes the form

S = − 1

4πα′

∫
∂�

[
Gij dXi ∧ �dXj + α′Rφ � 1

]
− i

2πα′

∫
�

1
3!HijkdXi ∧ dXj ∧ dXk, (2.1)

where the Hodge-star operator � is defined on ∂�, and the differential is understood as 
dXi(σα) = ∂αXidσα with {σα} coordinates on ∂� and on �. The indices take values i, j ∈
{1, . . . , d} with d the dimension of the target space, and R denotes the curvature scalar corre-
sponding to the world-sheet metric hαβ on ∂�.
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Note that the choice of three-manifold � for a given boundary ∂� is not unique. However, 
if the field strength H is quantized, the path integral only depends on the data of the two-
dimensional theory [64]. In the above conventions, the quantization condition reads

1

2πα′

∫
�

H ∈ 2πZ. (2.2)

Symmetries of the world-sheet action
The classical world-sheet action (2.1) is invariant under the standard world-sheet diffeomor-

phisms, but it can also have pure target-space symmetries of the form

δεX
i = εαki

α(X) (2.3)

for εα constant, provided that three requirements are satisfied. First, kα with α = 1, . . . , N are 
Killing vectors of the metric G = GijdXi ∧ �dXj . Second, there exist one-forms vα such that 
ιkαH = dvα [61,62], and third, the Lie derivative of the dilaton φ in the direction of kα vanishes. 
In terms of equations, these three conditions can be summarized as

LkαG = 0, ιkαH = dvα, Lkαφ = 0, (2.4)

where the Lie derivative is given by Lk = d ◦ ιk + ιk ◦ d . We also note that the isometry algebra 
generated by the Killing vectors is in general non-abelian with structure constants fαβ

γ ,[
kα, kβ

]
L = fαβ

γ kγ . (2.5)

Gauging a symmetry
Let us now promote the global symmetries (2.3) to local ones, with εα depending on the 

world-sheet coordinates {σα}. To do so, we introduce world-sheet gauge fields Aα and replace 
dXi → dXi + ki

αAα for the term involving the metric. For the Wess–Zumino term dXi is kept 
unchanged, but additional scalar fields χα have to be introduced. The resulting gauged action 
reads

Ŝ = − 1

2πα′

∫
∂�

1
2Gij (dXi + ki

αAα) ∧ �(dXj + k
j
βAβ)

− i

2πα′

∫
�

1
3!HijkdXi ∧ dXj ∧ dXk

− i

2πα′

∫
∂�

[
(vα + dχα) ∧ Aα + 1

2

(
ιk[α vβ] + fαβ

γ χγ

)
Aα ∧ Aβ

]
, (2.6)

where we omitted the dilaton term, which does not get modified. Now, given this action, there 
are two slightly different ways to implement the local symmetry transformations:

1. In the first approach, developed in detail in the two papers [61,62], the scalar fields χα do not 
play a role; in fact, they are not mentioned at all. In the present context, the local symmetry 
transformations then read as follows

δ̂εX
i = εαki , δ̂εA

α = −dεα − εβAγ fβγ
α, δ̂εχ = 0, (2.7)
α
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which have to be supplemented by the constraints1

Lk[αvβ] = fαβ
γ vγ , ιk(α

vβ) = 0. (2.8)

2. In the second approach, the scalar fields χα participate in the local symmetry transforma-
tions and cannot be left out. For the abelian case, this realization first appeared in [50] (see 
also [63]), but here we present the generalization to the non-abelian case. To our knowledge, 
this has not appeared in the literature before.2 The local variations of the action (2.6) in the 
second approach read

δ̂εX
i = εαki

α, δ̂εA
α = −dεα − εβAγ fβγ

α,

δ̂εχα = −ιk(α
vβ)ε

β − fαβ
γ εβχγ . (2.9)

However, in this case the constraints are weaker as compared to (2.8). In particular, they read

Lk[αvβ] = fαβ
γ vγ , ιk[αfβγ ]δvδ = 1

3
ιkα ιkβ ιkγ H. (2.10)

Since the local variations (2.9) are in general less restrictive as compared to (2.7), in the following 
we focus on the second approach of implementing the symmetry transformations.

Global properties on the world-sheet
Let us now have a closer examination of the symmetry transformations (2.9), although we 

note that the same line of arguments applies to (2.7). When varying the action (2.6), besides 
trivial cancellations one is left with

δ̂ε Ŝ = − i

2πα′

∫
∂�

dεα ∧ (vα + dχα) − i

2πα′

∫
�

dεα ∧ dvα. (2.11)

In order to show that this variation is vanishing, we assume that dεα ∧ (vα + dχα) is globally 
defined on the world-sheet ∂�. We can then apply Stoke’s theorem for the first term in (2.11), 
canceling the second term, and leading to δ̂εŜ = 0. This assumption follows from a more general 
requirement, which will be needed later on. In particular,

We demand that the last line in the gauged action (2.6) is globally defined on the world-sheet 
∂�, such that Stoke’s theorem can be applied.

This condition imposes some constraints on the fields appearing in the gauged world-sheet 
action (2.6), however, a derivation of their global properties from first principles appears to be 
difficult. In the case of a single abelian isometry this can be done (see e.g. [65,49,50]), but for the 
general situation we were not able to perform a corresponding analysis. We thus leave the global 
properties of the world-sheet fields unspecified at this point.

Generalized geometry
Let us also give an interpretation of the constraints (2.10) in terms of generalized geometry. 

For the latter, the formal sum of a vector and a one-form is considered to be an element of 

1 Our convention is that the symmetrization and anti-symmetrization contains a factor of 1/n!.
2 We thank F. Rennecke for collaboration on this part.
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the generalized tangent space which, with M the target-space manifold, (locally) takes the form 
T M ⊕T ∗M .3 The algebraic structure of interest for us is the so-called H -twisted Courant bracket 
defined as follows[

kα + vα, kβ + vβ

]H
C

[
kα, kβ

]
L +Lkα vβ −Lkβ vα − 1

2 d
(
ιkα vβ − ιkβ vα

) − ιkα ιkβ H. (2.12)

Using then the relations in (2.4) and (2.5), and defining the generalized vectors Kα = kα + vα , 
the constraints (2.10) can be written as[

Kα,Kβ

]H
C = fαβ

γ Kγ , NijHC
(
Kα,Kβ,Kγ

) = 0. (2.13)

The Nijenhuis tensor for the H -twisted Courant bracket is expressed in terms of the inner product 
〈Kα, Kβ〉 = 1

2 (ιkα vβ + ιkβ vα) and reads [67]

NijHC
(
Kα,Kβ,Kγ

) = 〈[
K[α,Kβ

]H
C ,Kγ ]

〉
. (2.14)

To summarize, the constraints (2.10) for gauging the non-linear sigma model (2.1) by isometries 
of the target-space manifold are 1) that the H -twisted Courant algebra of generalized vectors 
Kα = kα + vα closes, and 2) that the corresponding Nijenhuis tensor vanishes.

Global symmetries of the gauged action
We finally discuss global symmetries of the gauged action. Suppose that only a subgroup 

H ⊂ Giso of the full isometry group Giso has been gauged in (2.6). We denote the Killing vectors 
corresponding to the gauged isometry group H by {kα̃}, and we denote the remaining Killing 
vectors by {Zα}. For this setting we find that the gauged action (2.6) is invariant under global 
symmetries parametrized by Zα if[

kα̃,Zβ

]
L = 0 and LZαvβ̃ = 0. (2.15)

Thus, the gauging procedure can break some of the remaining global symmetries in the gauged 
action.

3. Collective T-duality

In this section, we study collective T-duality transformations in detail. These have been dis-
cussed mainly in the context of non-abelian T-duality, for which some of the main references 
are [48–55]. However, collective T-dualities also include the case of multiple abelian duality 
transformations, which have been investigated for instance in [63].

As compared to the older references, we approach non-abelian T-duality from a slightly differ-
ent point of view, which for instance makes a particular constraint apparent, and which does not 
depend on a gauge-fixing procedure. In particular, when following Buscher’s procedure [69–71]
of gauging a sigma model and integrating out either the gauge fields or the Lagrange multiplies, 
it is known how to obtain the dual theory. However, to our knowledge, in the non-abelian case 
it is not known how to recover the original model without fixing a particular gauge. Here, we 
present a mechanism of how the original model can indeed be recovered, at least at the classical 
level, and we discuss the construction of the dual model in the formalism of [60].

3 For an introduction to generalized geometry, we would like to refer the reader to the original papers [66] and [67], 
and for instance to [68] for a discussion in the physics literature.
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3.1. Recovering the original model

Given the gauged action (2.6), one can ask how the original model can be recovered. Usually, 
this is achieved by using the equations of motion for the scalar fields χα , and for an abelian 
isometry algebra this has been discussed in [65,49,50] (see also [72–74] for previous as well as 
for related work on T-duality transformations), but for the non-abelian case we are not aware of 
results in the literature (without fixing a gauge).

Equations of motion for χα

We start by determining the equations of motion for the scalar fields χα . For the variation of 
the action (2.6) with respect to χα we obtain

δχ Ŝ = + i

2πα′

∫
∂�

δχα

(
dAα − 1

2fβγ
αAβ ∧ Aγ

)
, (3.1)

from which we can read off the equations of motion as

0 = dAα − 1
2fβγ

αAβ ∧ Aγ . (3.2)

Rewriting the action
We now want to recover the original theory (2.1) from the gauged version (2.6) by employing 

the equations of motion for χα . To this end, let us define

DXi = dXi + ki
αAα, (3.3)

and use Stoke’s theorem together with the equation of motion (3.2) and the constraints (2.10). 
After some manipulations we find

Ŝ = − 1

4πα′

∫
∂�

[
GijDXi ∧ �DXj + α′Rφ � 1

]
− i

2πα′

∫
�

1
3!HijkDXi ∧ DXj ∧ DXk. (3.4)

The structure of this action suggests that in order to obtain the original model, we should per-
form a field redefinition and identify DXi with the differentials of new coordinates Y i , that is 
DXi → dY i . However, in general the one-forms DXi are not closed, that is

d(DXi) = (
∂mki

α

)
DXm ∧ Aα, (3.5)

and therefore such a naive field redefinition would be inconsistent. An exception is the case of 
constant Killing-vector components ∂mki

α = 0, corresponding to an abelian isometry algebra, 
where the simple replacement DXi → dY i is indeed possible [65,49,50]. For the general case 
with non-constant Killing vectors, a more involved procedure has to be followed. Schematically, 
it consists of the following steps:

1. Perform a change of basis of the cotangent space, such that the exterior derivative d acting 
on {DXa} in the new basis forms a closed algebra with some structure constants Cbc

a

d(DXa) = −1

2
Cbc

aDXb ∧ DXc. (3.6)
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2. Identify the one-forms {DXa} with vielbeins Ea = Ea
idY i , expressed in terms of new local 

coordinates {Y i}. Note that the vielbeins {Ea} satisfy the algebra (3.6).
3. Perform an inverse change of basis and express the vielbeins {Ea} in terms of the new dif-

ferentials {dY i}. The action (3.4) then takes the same form as the original model (2.1).

Note that these steps are simply the generalization from the abelian to the non-abelian case. In 
the following paragraphs, the technical details of this procedure will be explained; the reader not 
interested in those can safely skip to page 266.

Change of basis
Before we begin our discussion, let us impose one technical requirement: we demand that the 

target-space manifold M under consideration has been split as

M = M0 × M1, (3.7)

where the Killing vectors {kα} appearing in the gauged action (2.6) form a basis of the tangent 
space of M0, but are not contained in T M1. Note that the separation (3.7) corresponds to choosing 
so-called adapted coordinates. Physically, it means that we perform a T-duality transformation 
only on M0 and leave M1 unchanged. In the remainder of this section, we only focus on M0.

In order to perform the field redefinition for a non-abelian isometry algebra, let us introduce 
a new basis for the tangent and co-tangent space by considering invertible matrices ea

i = ea
i(X)

with a, i = 1, . . . , d0, and d0 the dimension of M0. These matrices do not need to diagonalize the 
metric, but in the following we nevertheless refer to them as a vielbein basis. We then define

ea = ea
idXi, ea = ea

i∂i , (3.8)

where ea
i ≡ (e−1)a

i . The structure constants for the dual basis of vector fields {ea} will be 
denoted by Cab

c, and they appear in the commutator

[ea, eb]L = Cab
cec. (3.9)

Let us note that by requiring a torsion-free connection, we see that the one-forms {ea} satisfy the 
following algebra with respect to the exterior derivative

dea = −1

2
Cbc

aeb ∧ ec. (3.10)

We also mention that in regard to this basis the standard notation will be employed, that is indices 
are changed from {i, j, k, . . .} to {a, b, c, . . .} by appropriately contracting with ea

i or ei
a . Now, 

the main requirement for the vector fields {ea} defined in (3.8) is that they should commute with 
the Killing vector fields {kα}, that is[

kα, ea

]
L = 0. (3.11)

It is not clear whether a basis of vielbeins satisfying this condition can always be found, however, 
in Section 5 and in Appendix A we give two explicit examples where this condition is indeed 
satisfied.

Coordinate dependence of the metric, H -flux and dilaton
For the new basis introduced in the previous paragraph we can determine the exterior deriva-

tive of the one-forms DXa = ea
iDXi . Employing the equation of motion shown in (3.2), the 
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algebra (2.5), and the condition (3.11), we find that the one-forms {DXa} form a closed algebra 
under d

d(DXa) = −1

2
Cbc

aDXb ∧ DXc. (3.12)

Furthermore, using the condition (3.11) together with (2.4) and dH = 0, we observe that the 
components of the metric and H -flux in the vielbein basis satisfy

km
α ∂mGab = 0, km

α ∂mHabc = 0. (3.13)

Since the Killing vectors {kα} span T M0, Eqs. (3.13) imply that these components are constant 
on M0. Including then the condition km

α ∂mφ following from (2.4), in formulas we have that on 
M0

Gab = const., Habc = const., φ = const. (3.14)

Recovering the original model
We are now in the position to show how the original action (2.1) can be recovered from the 

gauged action (2.6). To do so, we first define the one-forms

Ea = DXa = ea + ka
αAα, (3.15)

which by definition satisfy the algebra shown in (3.12), that is

dEa = −1

2
Cbc

aEb ∧ Ec. (3.16)

We observe that this is the same algebra as in (3.10) which is obeyed by the original vielbein 
one-forms {ea}. It is therefore clear that a local basis {dY i} of the cotangent space T ∗M0 exists, 
for which we can write

Ea = Ea
idY i, (3.17)

with {Ea
i} invertible matrices. Now, since the dilaton and the components of the metric and 

H -flux are constant in the vielbein basis, cf. (3.14), we can rewrite for instance the metric term 
in the action (3.4) in the following way

GijDXi ∧ �DXj = GabDXa ∧ �DXb = GabE
a ∧ �Eb = GijdY i ∧ �dY j , (3.18)

where in the last step we performed the inverse change of basis. An analysis similar to that of the 
metric can be performed for the H -field and dilaton term, so that after the above field redefinition 
we recover from (3.4) the original action

S = − 1

4πα′

∫
∂�

[
GijdY i ∧ �dY j + α′Rφ � 1

]
− i

2πα′

∫
�

1
3!HijkdY i ∧ dY j ∧ dY k. (3.19)

This action may take a different form in the local coordinates {Y i} as compared to the action 
in the coordinates {Xi}. However, since both of these actions can be expressed in a vielbein 
basis with the same structure constants, shown in (3.10) and (3.16), both choices are related by 
a change of basis.
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3.2. Obtaining the dual model

Let us now turn to the dual model. As usual, it is obtained by using the equations of motion for 
the gauge fields Aα in the gauged action (2.6). This part of the duality is rather well-understood; 
here, we extend the formalism of [60] from the abelian to the non-abelian case.

Equations of motion for Aα

We begin by deriving the equations of motion for the gauge fields Aα from the gauged ac-
tion (2.6). Setting to zero the variation with respect to the gauge fields and solving for Aα , we 
find

Aα = −
([
G −DG−1D

]−1
)αβ(

1 + i �DG−1
)

β

γ
(
k + i � ξ

)
γ
, (3.20)

where we remind the reader that α, β, γ = 1, . . . , N label the isometries which have been gauged. 
In the expression shown in (3.20), we have employed the notation

Gαβ = ki
αGij k

j
β, ξα = dχα + vα,

Dαβ = ιk[αvβ] + fαβ
γ χγ , kα = ki

αGij dXj , (3.21)

and have assumed the matrix Gαβ to be invertible. In the case of a single Killing vector this 
corresponds to the usual requirement that |k|2 �= 0, and in formulas it reads

detG �= 0. (3.22)

Finally, for later purposes, let us define the symmetric and invertible matrix

M = G −DG−1D. (3.23)

Enlarged target-space
In order to obtain the dual model, we follow the procedure which has been described in detail 

in [60]. To do so, we first use the solution (3.20) to equations of motion for the gauge fields in 
the gauged action (2.6). We then obtain

Š = − 1

4πα′

∫
∂�

(
Ǧ + α′Rφ � 1

)
− i

2πα′

∫
�

Ȟ , (3.24)

where the tensor fields Ǧ and Ȟ are given by

Ǧ = G +
(

k

ξ

)T ( −M−1 −M−1DG−1

+M−1DG−1 +M−1

)
∧ �

(
k

ξ

)
,

Ȟ = H + 1
2d

[(
k

ξ

)T (+M−1DG−1 +M−1

−M−1 −M−1DG−1

)
∧

(
k

ξ

)]
. (3.25)

Here and in the following, matrix multiplication for the indices α, β, . . . is understood. We 
observe that these two tensor fields can be interpreted as being defined on an enlarged 
(d0 + N)-dimensional target space, which is locally described by the coordinates {Xi, χα} with 
i = 1, . . . , d0 and α = 1, . . . , N . For the enlarged cotangent space, a convenient basis of one-
forms is given by {dXi, ξα}.
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As observed in [60] for the abelian case, the component matrix ǦIJ of the enlarged metric 
tensor has null-eigenvectors. Indeed, consider the following vector in the basis dual to {dXi, ξβ}

ňα =
(

ki
α

Dαβ

)
, (3.26)

for which we find after a somewhat lengthy computation that

ιňα
Ǧ = 0, ιňα

Ȟ = 0. (3.27)

Note that the first of these conditions implies that the component matrix ǦIJ has N eigenvectors 
with vanishing eigenvalue. We also mention that the vectors (3.26) are Killing vectors for the 
enlarged metric Ǧ and enlarged field strength Ȟ . In particular, including the result for the dilaton, 
we find

Ľňα
Ǧ = 0, Ľňα

Ȟ = 0, Ľňα
φ = 0. (3.28)

Obtaining the dual model
In order to obtain the dual model from the enlarged target space, we proceed as in the abelian 

case. We do not repeat the general discussion of [60] for the non-abelian case here, but only want 
to outline the main idea.

• First, we note that since the metric Ǧ has N eigenvectors with vanishing eigenvalue, we can 
perform a change of basis such that

ǦIJ =
(

0 0

0 Ǧαβ

)
, (3.29)

with I , J collectively labeling {dXi, ξα}. As can be verified, the same change of basis results 
in vanishing components of the field strength Ȟ along one or more dXi directions, that is

ȞiJK = 0. (3.30)

This means, after the change of basis, in the action (3.24) no one-forms dXi with i =
1, . . . , d0 are appearing.

• Second, the components Ǧαβ and Hαβγ as well as the dilaton φ may still depend on the 
coordinates Xi . However, due to the isometries (3.28) of the enlarged target space, we may 
go to a convenient but fixed point in the Xi-space. Hence, also the components do not depend 
on Xi and we have arrived at the dual model.

Note that here we have only outlined the main idea of how the dependence on {Xi} and {dXi}
in the action (3.24) vanishes. However, in the next two sections we discuss explicit examples for 
this procedure.

Remark on isometries of the dual background
It is well known that non-abelian T-duality transformations can in general not be inverted. We 

do not want to address this question in detail in this paper, but only consider the case when part 
of the isometry group has been gauged in the action.

Let us therefore recall our discussion from page 262 about the remaining global symmetries 
after the gauging procedure. There, we saw that only those Killing vectors which satisfy (2.15)
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survive as global isometries in the gauged theory, in addition to the gauged Killing vectors. 
Hence, in general the isometry group for the dual background is reduced.

4. Examples I: three-torus

We now want to illustrate the formalism introduced in the last section with the example of 
the three-torus with H -flux. After performing one T-duality transformation, one arrives at the 
so-called twisted torus with vanishing field strength, for which the topology is characterized by 
a geometric flux f [2,3]. Two successive T-dualities result in a locally-geometric but globally 
non-geometric background which carries a Q-flux [4,1], and which is also called a T-fold [6]. 
Finally, three successive T-dualities have been argued to give a locally non-geometric background 
carrying so-called R-flux [18,1,20].

In this section, we re-derive these results not using successive but collective T-duality trans-
formations. In Section 5, we then turn to the example of the three-sphere, and in Appendix A the 
results for the twisted three-torus with H -flux have been summarized.

Setup
Let us start by introducing some notation. We consider a flat three-torus with non-trivial 

field strength H . The components of the metric tensor in the standard basis of one-forms 
{dX1, dX2, dX3} are chosen to be of the form

Gij =
⎛⎝ R2

1 0 0
0 R2

2 0
0 0 R2

3

⎞⎠ , (4.1)

and the topology is characterized by the identifications Xi � Xi + �s for i = 1, 2, 3. The com-
ponents of the field strength H = dB of the Kalb–Ramond field are taken to be constant, which, 
keeping in mind the quantization condition (2.2), leads to

H = hdX1 ∧ dX2 ∧ dX3, h ∈ �−1
s Z. (4.2)

The Killing vectors for this configuration in the basis {∂1, ∂2, ∂3}, dual to the above one-forms, 
can be chosen as

k1 =
⎛⎝ 1

0
0

⎞⎠ , k2 =
⎛⎝ 0

1
0

⎞⎠ , k3 =
⎛⎝ 0

0
1

⎞⎠ , (4.3)

which satisfy an abelian algebra, that is

[kα, kβ ]L = 0. (4.4)

The one-forms vα corresponding to (4.3) are defined through Eq. (2.4), and up to exact terms 
they can be written as

v1 = hα1X
2dX3 − hα2X

3dX2, α1 + α2 = 1,

v2 = hβ1X
3dX1 − hβ2X

1dX3, β1 + β2 = 1,

v3 = hγ1X
1dX2 − hγ2X

2dX1, γ1 + γ2 = 1. (4.5)

Note that here αm, βm and γm are constants which parametrize a gauge freedom. In general these 
one-forms are not globally defined on the torus, however, due to the equivalence vα � vα + d�
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for a function �, we can define the vα on local charts and cover the torus consistently (see for 
instance [63] for more details).

Constraints on gauging the sigma model
As we discussed in Section 2, in the presence of a non-vanishing field strength H there are 

restrictions on which isometries of the sigma model can be gauged, cf. Eq. (2.10). In the present 
situation, these imply

ιkα ιkβ ιkγ H = 0, (4.6)

so that for the example of the three-torus we can distinguish the following cases:

• For vanishing H -flux, one, two, or three isometries can be gauged. These situations are well 
known in the literature, and so in Section 4.3 we discuss briefly only the case of gauging all 
three isometries.

• For non-vanishing H -flux we deduce from (4.6) that at most two of the three isometries can 
be gauged. The gauging of only a single isometry is well known and will be reviewed in 
Section 4.1. The situation of gauging two isometries will be discussed in Section 4.2.

4.1. One T-duality

We begin by considering one T-duality transformation for the three-torus with non-vanishing 
H -flux. In the present formalism, this has been analyzed in detail in [60] and so we will be brief 
here.

Gauged action and original model
For simplicity, let us chose the isometry direction along which we perform the T-duality to 

correspond to the Killing vector k1 = ∂1. From the H -flux (4.2) we deduce the following one-
form

v = hαX2dX3 − h(1 − α)X3dX2, (4.7)

with α ∈ R. The gauged action is obtained from the general expression shown in Eq. (2.6) and 
reads (with the dilaton term omitted)

Ŝ = − 1

2πα′

∫
∂�

[
1
2R2

1(dX1 + A) ∧ �(dX1 + A) +
3∑

i=2

1
2R2

i dXi ∧ �dXi

]

− i

2πα′

∫
�

hdX1 ∧ dX2 ∧ dX3

− i

2πα′

∫
∂�

(v + dχ) ∧ A. (4.8)

The ungauged version is recovered by using the equation of motion dA = 0 as well as Stoke’s 
theorem for the last term, which agrees with the general form (3.4). Defining then dY 1 = dX1 +
A, dY 2 = dX2 and dY 3 = dX3, we arrive at the original action.
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Dual model
In order to obtain the dual theory, we first recall the general formulas shown in Eq. (3.21). For 

a non-vanishing field strength and one Killing vector we have

G = R2
1, ξ = dχ + v,

D = 0, k = R2
1 dX1,

(4.9)

from which we determine, using (3.25), the metric and field strength of the enlarged target space 
as follows

Ǧ = G − R2
1 dX1 ∧ �dX1 + 1

R2
1

ξ ∧ �ξ

= 1

R2
1

ξ ∧ �ξ + R2
2 dX2 ∧ �dX2 + R2

3 dX3 ∧ �dX3, (4.10)

Ȟ = H + d
[
dX1 ∧ ξ

]
= 0. (4.11)

Employing these expressions in the action (3.24), we have obtained the dual model (up to a trans-
formation of the dilaton). Note that the one-form ξ satisfies

dξ = hdX2 ∧ dX3. (4.12)

Hence, as expected, (4.10) and (4.11), together with (4.12), describe a twisted three-torus with 
vanishing field strength Ȟ = 0 [2,3].

4.2. Two T-dualities

Next, we turn to the case of two collective T-dualities for a three-torus with non-vanishing 
H -flux, and T-dualize along the directions of the Killing vectors k1 = ∂1 and k2 = ∂2.

Gauged action and original model
In this setting, the one-forms v1 and v2 corresponding to k1 and k2 are shown in (4.5). How-

ever, due to the first condition in (2.10), here reading Lk[αvβ] = 0, we find a restriction on the 
constants αm and βm in (4.5). In particular, for the one-forms vα we obtain

v1 = hαX2dX3 − h(1 − α)X3dX2,

v2 = h(1 + α)X3dX1 + hαX1dX3, (4.13)

with α ∈ R. Given these expressions, we can write down the gauged action following from (2.6)
as

Ŝ = − 1

2πα′

∫
∂�

[ 2∑
i=1

1
2R2

i

(
dXi + Ai) ∧ �

(
dXi + Ai) + 1

2R2
3dX3 ∧ �dX3

]

− i

2πα′

∫
�

hdX1 ∧ dX2 ∧ dX3

− i

2πα′

∫ [ 2∑
i=1

(vi + dχi) ∧ Ai + hX3A1 ∧ A2
]
. (4.14)
∂�
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The original ungauged model is again obtained via the procedure discussed in Section 3.1, which 
in the present case is similar to the example of one T-duality.

Dual model
In order to determine the dual model, let us recall Eq. (3.21) and evaluate the there-mentioned 

quantities. We find

Gαβ =
(

R2
1 0

0 R2
2

)
, ξα =

(
dχ1 + v1

dχ2 + v2

)
,

Dαβ =
(

0 +hX3

−hX3 0

)
, kα =

(
R2

1dX1

R2
2dX2

)
, (4.15)

and the matrix Mαβ defined in (3.23) takes the following form

Mαβ =
(

R2
1 + [

hX3

R2

]2 0

0 R2
2 + [

hX3

R1

]2

)
. (4.16)

The general formula for the metric of the enlarged target-space was given in Eq. (3.25), which in 
the basis {dXi, ξα} becomes

ǦIJ = 1

ρ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

[
R1hX3

]2 0 0 0 −R2
1hX3

0
[
R2hX3

]2 0 +R2
2hX3 0

0 0 ρR2
3 0 0

0 +R2
2hX3 0 R2

2 0

−R2
1hX3 0 0 0 R2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.17)

where for notational convenience we have defined the quantity

ρ = R2
1R2

2 + [
hX3]2

. (4.18)

Next, recall that the matrix (4.17) has eigenvectors with vanishing eigenvalue; the eigenvectors 
can therefore be used to perform a change of coordinates. Let us consider ǦAB = (T T ǦT )AB , 
where the matrix T is given by

T I
A =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 −hX3 0 1 0
+hX3 0 0 0 1

⎞⎟⎟⎟⎟⎠ . (4.19)

Explicitly evaluating the change of basis we find

ǦAB = (T T ǦT )AB = 1

ρ

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 ρR2

3 0 0

0 0 0 R2
2 0

0 0 0 0 R2
1

⎞⎟⎟⎟⎟⎠ . (4.20)

A similar analysis can be carried out for the field strength: from (3.25) we determine an expres-
sion for ȞIJK and we perform the above change of coordinates, that is
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ȞABC = ȞIJKT I
AT J

BT K
C. (4.21)

We then find that the only non-vanishing resulting component is

Ȟ3ξ1ξ2 = −h
R2

1R2
2 − [

hX3
]2

ρ2
. (4.22)

Finally, we have to determine how the basis one-forms {dXi} and {ξα} transform under the 
change of basis given by (4.19). A short computation leads to

e = T −1

⎛⎜⎜⎜⎜⎝
dX1

dX2

dX3

ξ1
ξ2

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
dX1

dX2

dX3

d
(
χ1 + hαX2X3

)
d
(
χ2 + hαX1X3

)

⎞⎟⎟⎟⎟⎠ , (4.23)

where the free parameter α ∈ R was defined in (4.13). For the dual the model we therefore have 
the following metric and field strength

Ǧ = 1

ρ

[
R2

1 dX̃1 ∧ �dX̃1 + R2
2 dX̃2 ∧ �dX̃2

]
+ R2

3 dX3 ∧ �dX3,

Ȟ = −h
R2

1R2
2 − [

hX3
]2

ρ2
dX̃1 ∧ dX̃2 ∧ dX3, (4.24)

with new local coordinates X̃1 = χ1 + hαX2X3 and X̃2 = χ2 + hαX1X3. We also remind the 
reader that the quantity ρ was defined in Eq. (4.18), and we observe that the metric and field 
strength shown in (4.24) describe the well-known torus-example of a Q-flux background [4,6].

4.3. Three T-dualities

We finally consider three collective T-dualities for the three-torus. As explained below 
Eq. (4.6), in this case the H -flux has to vanish and so the one-forms vα can be chosen to be 
zero. The gauged action (2.6) becomes

Š = − 1

2πα′

∫
∂�

3∑
i=1

[
1
2R2

i

(
dXi + Ai) ∧ �

(
dXi + Ai) + idχi ∧ Ai

]
, (4.25)

and the ungauged action is recovered from (4.25) by noting that the equations of motion for χα

read dAα = 0. Applying then Stoke’s theorem we observe that the last term in (4.25) vanishes. 
For the first terms we define new one-forms dY I = dXI +AI , and therefore recover the original 
model.

Dual model
To obtain the dual model, we recall our discussion from Section 3.2. For the present setting, 

the quantities defined in Eq. (3.21) take the following form

Gαβ = R2
αδαβ, ξα = dχα,

Dαβ = 0, kα = R2
αδαidXi. (4.26)

Using these expressions, we can determine the metric of the enlarged target-space from (3.25) as
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Ǧ = G +
(

k

dχ

)T (−G−1 0
0 +G−1

)
∧ �

(
k

dχ

)
=

3∑
i=1

1

R2
i

dχi ∧ �dχi, (4.27)

and for the field strength we find

Ȟ = 1
2d

[(
k

dχ

)T (
0 +G−1

−G−1 0

)
∧

(
k

dχ

)]
=

3∑
i=1

d
[
dXi ∧ dχi

]
= 0. (4.28)

Using these two results in the action (3.24), we see that it reduces to the dual theory specified by

Ǧαβ =

⎛⎜⎜⎝
1

R2
1

0 0

0 1
R2

2
0

0 0 1
R2

3

⎞⎟⎟⎠ , Ȟ = 0, (4.29)

where for the metric tensor the basis {dχα} with α = 1, 2, 3 has been employed. Hence, as ex-
pected, we find that a collective T-duality along all three directions of a three-torus (without 
H -flux) inverts the radii.

4.4. Summary

To close our discussion of collective T-duality transformations for the three-torus with H -flux, 
let us briefly summarize our results. First, we have seen that the procedure of performing collec-
tive T-duality transformations introduced in Section 3 leads to the known results in the case of 
the torus. Our discussion in this section therefore serves as a check of that formalism. Second, 
the examples we have studied can be summarized as follows:

• In the case of vanishing field strength H = 0, a T-duality transformation along any of the 
Killing vectors in (4.3) inverts the corresponding component in the metric. For three collec-
tive T-dualities we have discussed this situation in Section 4.3.

• For non-vanishing field strengths H �= 0, one T-duality leads to the so-called twisted torus. 
In the present formalism, this has been discussed in detail in [60], whose main results we 
reviewed in Section 4.1.

• The case of two collective T-dualities for H �= 0 has been discussed in Section 4.2. As ex-
pected, we arrive at a Q-flux background.

• Finally, due to the requirement (4.6), we have seen that for a non-vanishing H -flux three 
collective T-dualities cannot be performed within the formalism presented in Section 3.

Let us also mention that in Appendix A, an analysis similar to the three-torus has been performed 
for the twisted three-torus with H -flux. In this case, different variants of a twisted T-fold are 
obtained.

5. Examples II: three-sphere

In this section, we study collective T-duality transformations for the three-sphere with H -flux. 
Some of the results obtained below have partially appeared already in the literature; but here we 
discuss them in a unified manner similar to the example of the three-torus. Furthermore, we 
note that in contrast to the three-torus with H �= 0, the three-sphere with appropriately adjusted 
H -flux solves the string equations of motion.
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Setup
Let us begin by specifying the setting we will be working in. For the three-sphere, we choose 

the round metric in terms of Hopf coordinates which takes the following form

ds2 = R2
[
sin2 η (dζ1)

2 + cos2 η (dζ2)
2 + (dη)2

]
, (5.1)

where ζ1,2 = 0 . . .2π and η = 0 . . . π/2, and where R denotes the radius of the three-sphere. We 
also consider a non-trivial field strength for the Kalb–Ramond field B ,

H = h

2π2
sinη cosη dζ1 ∧ dζ2 ∧ dη, (5.2)

for which the quantization condition shown in Eq. (2.2) implies that h ∈ Z. Let us mention that 
this model solves the string equations of motion for a constant dilaton φ0, hence it is a proper 
string theory model, if the field strength H and the radius R of the three-sphere are related as

R2 = h

4π2
. (5.3)

Killing vectors
The isometry group of the three-sphere S3 is O(4), and so there are six linearly independent 

Killing vectors. Employing the basis of vector fields {∂ζ1, ∂ζ2 , ∂η}, the Killing vectors for the 
metric (5.1) can be expressed in the following way

k1 = 1

2

⎛⎝ +1
−1
0

⎞⎠ , k̃1 = 1

2

⎛⎝ +1
+1
0

⎞⎠ ,

k2 = 1

2

⎛⎝ − sin(ζ1 − ζ2) cotη
− sin(ζ1 − ζ2) tanη

cos(ζ1 − ζ2)

⎞⎠ , k̃2 = 1

2

⎛⎝ + sin(ζ1 + ζ2) cotη
− sin(ζ1 + ζ2) tanη

− cos(ζ1 + ζ2)

⎞⎠ ,

k3 = 1

2

⎛⎝ − cos(ζ1 − ζ2) cotη
− cos(ζ1 − ζ2) tanη

− sin(ζ1 − ζ2)

⎞⎠ , k̃3 = 1

2

⎛⎝ + cos(ζ1 + ζ2) cotη
− cos(ζ1 + ζ2) tanη

+ sin(ζ1 + ζ2)

⎞⎠ . (5.4)

Next, we note that so(4) ∼= su(2) × su(2), which implies that the above Killing vectors satisfy 
the following algebra (with α, β, γ ∈ {1, 2, 3} and εαβγ the Levi-Civita symbol)

[kα, kβ ]L = εαβ
γ kγ , [kα, k̃β ]L = 0, [k̃α, k̃β ]L = εαβ

γ k̃γ . (5.5)

Furthermore, the Killing vectors shown in (5.4) have constant non-vanishing norm, correspond-
ing to the fact that they are dual to the invariant one-forms on the three-sphere

|kα|2 = |k̃α|2 = R2

4
. (5.6)

Constraints on gauging the sigma model
After having introduced our notation, let us now investigate under which conditions the cor-

responding non-linear sigma model can be gauged. These constraints are governed by (2.10), 
however, in order to obtain the dual model we also have to check the condition (3.22). We con-
sider three different cases:
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• First, gauging a single isometry of the three-sphere has been discussed for instance in [75], 
and in the present formalism in [60]. In this case, the constraint (2.10) is always satisfied, 
and so we can allow for a non-trivial field strength H �= 0. Also, since all vectors in (5.4)
have constant norm, the condition (3.22) is satisfied.

• Second, for the case of two Killing vectors we have to choose one vector from {kα} and one 
from {k̃α} in order to obtain a closed algebra. Because these Killing vectors commute, the 
second constraint in (2.10) is always satisfied.
Without loss of generality, let us then take k1 = k1 and k2 = k̃1 and determine the metric Gαβ

defined in (3.21). We find that

Gαβ = R2

4

(
1 − cos(2η)

− cos(2η) 1

)
−→ detG = R4

16
sin2(2η), (5.7)

and thus (3.22) is not met at the two points η = 0 and η = π/2.
• Third, the most interesting case is to gauge three isometries. Due to the requirement of 

a closed algebra of Killing vectors, we choose the three vectors {kα}. For those we compute

Gαβ = R2

4
δαβ, (5.8)

and so the constraint (3.22) is satisfied. However, the conditions (2.10) require a vanishing 
field strength H = 0.

5.1. One T-duality

We start with one T-duality for the three-sphere with H -flux. In the present formalism, this 
situation has been analyzed in detail in [60], which we review briefly. For the Killing vector, we 
choose k = k1 from (5.4), that is

k = 1

2

⎛⎝ +1
−1
0

⎞⎠ (5.9)

in the basis {∂ζ1, ∂ζ2 , ∂η}. The corresponding one-form v is determined as

v = − h

8π2

[
α1ζ1dcos2η − β1cos2ηdζ1 + α2ζ2dcos2η − β2cos2ηdζ2

]
, (5.10)

with αm + βm = 1. The gauged action for this setting can be determined from the general 
form (2.6) using the metric G in (5.1) together with the one-form v in (5.10). The original model 
is recovered similarly to the example of the torus, as the components of k in (5.9) are constant. 
Alternatively, following the discussion in Section 3.1, we note that the relation (3.11) can be 
satisfied by choosing for e any vector from {k1, k̃α} shown in (5.4), which then obeys [k, e]L = 0.

Dual model
To obtain the dual model, we start by determining the quantities in (3.21) for the present 

setting:

G = R2

4
, ξ = dχ + v,

D = 0, k = R2 (
sin2 ηdζ1 − cos2 ηdζ2

)
; (5.11)
2
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the matrix M is given by M = G. The metric and field strength of the enlarged target space 
appearing in the action (3.24) are determined by the general expressions (3.25), which in the 
present case become

Ǧ = R2
[
dη ∧ �dη + 1

4
sin2(2η) (dζ1 + dζ2) ∧ �(dζ1 + dζ2)

]
+ 4

R2
ξ ∧ �ξ,

Ȟ = 2 sin(2η)(dζ1 + dζ2) ∧ dη ∧ ξ. (5.12)

If we now make the redefinitions η̃ = 2η and ζ̃ = ζ1 + ζ2, we can express the above metric and 
field strength as

Ǧ = R2

4

[
dη̃ ∧ �dη̃ + sin2 η̃ dζ̃ ∧ �dζ̃

]
+ 4

R2
ξ ∧ �ξ,

Ȟ = sin η̃ dζ̃ ∧ dη̃ ∧ ξ. (5.13)

Noting then furthermore that

dξ = − h

16π2
sin η̃ dη̃ ∧ dζ̃ , (5.14)

we conclude that the metric Ǧ in (5.13) corresponds to a circle of radius 2
R

which is fibered over 
a round two-sphere of radius R

2 , with the twisting characterized by (5.14) [50,75] (see also [76,
77] for related work). Note that the dual model solves again the string equations of motion for a 
constant dilaton.

5.2. Two T-dualities

Next, we turn to the three-sphere with non-trivial H -flux (5.2) and perform two duality trans-
formations along the Killing vectors

k1 = k1 = 1

2

⎛⎝ +1
−1
0

⎞⎠ , k2 = k̃1 = 1

2

⎛⎝ +1
+1
0

⎞⎠ , (5.15)

which are written in the basis {∂ζ1, ∂ζ2 , ∂η}. The corresponding one-forms are again specified by 
the second equation in (2.4), and take the form

v1 = h

8π2

[
−α1ζ1dcos2η + β1cos2ηdζ1 − α2ζ2dcos2η + β2cos2ηdζ2

]
,

v2 = h

8π2

[
+α3ζ1dcos2η − β3cos2ηdζ1 − α4ζ2dcos2η + β4cos2ηdζ2

]
. (5.16)

However, in order to satisfy the constraint (2.10), the constants αm and βm have to be restricted 
as β1 + β2 + β3 + β4 = 4. The original model can be recovered along the lines discussed in 
Section 3.1 by choosing vector fields {ea} = {k1, k̃1}, which satisfy the relation (3.11).

Dual model
In order to determine the dual model, we first compute the quantities shown in (3.21) for the 

present example. From the above data we obtain
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Gαβ = R2

4

(
1 − cos(2η)

− cos(2η) 1

)
, ξα = dχα + vα,

D12 = − h

8π2
cos2 η, kα = R2

2

(
sin2 ηdζ1 − cos2 ηdζ2

sin2 ηdζ1 + cos2 ηdζ2

)
. (5.17)

The general form of the dual world-sheet action is again (3.24), where the corresponding metric 
and field strength are determined by (3.25). Employing (5.17), we find a rather complicated 
expression for the enlarged metric, which we do not present here. However, after a change of 
basis characterized by

T I
A =

⎛⎜⎜⎜⎜⎜⎝
+ 1

2 + 1
2 0 0 0

− 1
2 + 1

2 0 0 0
0 0 1 0 0

0 −D12 0 + 1
2 + 1

2
+D12 0 0 + 1

2 − 1
2

⎞⎟⎟⎟⎟⎟⎠ , (5.18)

we obtain for the metric tensor in the new basis

ǦAB = (T T ǦT )AB =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 R2 0 0

0 0 0 Ǧ11 0
0 0 0 0 Ǧ22

⎞⎟⎟⎟⎟⎠ , (5.19)

where the two components Ǧ11 and Ǧ22 are given by

Ǧ11 = 1

R2

[
sin2 η +

(
h

4π2R2

)2

cos2 η

]−1

,

Ǧ22 = 1

R2

[
cos2 η +

(
h

4π2R2

)2 cos4 η

sin2 η

]−1

. (5.20)

The one forms in the transformed basis take the following general form

eA = T −1

⎛⎜⎜⎜⎜⎝
dζ1
dζ2
dη

ξ1
ξ2

⎞⎟⎟⎟⎟⎠ , (5.21)

and we note that eξ1 and eξ2 are exact, so we can introduce new coordinates ζ̃1 and ζ̃2 via 
eξ1 = dζ̃1 and eξ2 = dζ̃2. A similar analysis can be performed for the dual field strength: using 
the expression shown in (3.25) and performing the change of basis characterized by (5.18), we 
find that the only non-vanishing component of ȞABC reads

Ȟηξ1ξ2 = −8hπ2(h2 − 16π2R4) sinη cosη[
16π2R4 sin2 η + h2 cos2 η

]2
. (5.22)
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Summary and discussion
The expressions for the components of the dual metric and field strength were given in 

Eqs. (5.19) and (5.22), which we summarize as

Ǧ = R2dη ∧ �dη + 1

R2

dζ̃1 ∧ �dζ̃1

sin2 η +
[

h

4π2R2

]2
cos2 η

+ 1

R2

dζ̃2 ∧ �dζ̃2

cos2 η +
(

h

4π2R2

)2 cos4 η

sin2 η

,

Ȟ = −8hπ2(h2 − 16π4R4) sinη cosη[
16π2R4 sin2 η + h2 cos2 η

]2
dη ∧ dζ̃1 ∧ dζ̃2. (5.23)

These formulas are rather complicated, and it appears to be difficult to extract properties of the 
dual space. However, if we use the condition (5.3) for solving the string equations of motion of 
the original model, the above formulas simplify considerably. In particular, we find

G = R2dη ∧ �dη + 1

R2

[
dζ̃1 ∧ �dζ̃1 + tan2 η dζ̃2 ∧ �dζ̃2

]
,

H = 0, (5.24)

which describes a non-compact but geometric background. This is in contrast to the example of 
the three-torus with H -flux discussed in Section 4.2, where after two T-dualities a non-geometric 
Q-flux background was obtained.

Let us also note that the dual configuration (5.24) solves again the string equations of motion 
if we transform the dilaton via the standard relation of the Buscher rules [69–71] as

φ = − log
(
R2 cosη

) + φ0. (5.25)

Note furthermore, this backgrounds is related to Witten’s black hole [78], that is the group man-
ifold SL(2, R)/U(1), via analytic continuation.

5.3. Three T-dualities

We finally consider the situation of gauging three (non-abelian) isometries of the three-sphere. 
As explained in the beginning of this section, in this case the constraints in (2.10) require a van-
ishing field strength H = 0. Thus, we have

H = 0 −→ vα = 0. (5.26)

For the Killing vectors, we can choose either of the sets {kα} or {k̃α}; for definiteness we consider 
the first in the following.

Gauged action and original model
The gauged action can again be inferred from the general form shown in Eq. (2.6). Using 

coordinates {X1, X2, X3} = {ζ1, ζ2, η}, we find

Ŝ = − 1

2πα′

∫
∂�

1
2Gij (dXi + ki

αAα) ∧ �(dXj + k
j
βAβ)

− i

2πα′

∫ [
dχα ∧ Aα + 1

2fαβ
γ χγ Aα ∧ Aβ

]
, (5.27)
∂�
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where now the gauge fields are non-abelian. To recover the original ungauged model, we use the 
equations of motion (3.2) for Aα and rewrite the action as in Section 3.1. In particular, from (3.4)
we obtain

Ŝ = − 1

4πα′

∫
∂�

GijDXi ∧ �DXj , (5.28)

where DXi = dXi + ki
αAα . However, we note that d(DXi) �= 0, and so we cannot make the 

replacements DXi → dY i as before. The way to proceed has been described in Section 3.1. We 
first need to find a set of vector fields {ea} which commute with {kα} and thus satisfy Eq. (3.11). 
For the three-sphere we have an obvious candidate, namely {k̃α},

ea
i = k̃α

i = 1

2

⎛⎝ 1 1 0
+ sin(ζ1 + ζ2) cotη − sin(ζ1 + ζ2) tanη − cos(ζ1 + ζ2)

+ cos(ζ1 + ζ2) cotη − cos(ζ1 + ζ2) tanη + sin(ζ1 + ζ2)

⎞⎠ . (5.29)

The metric (5.1) can then be transformed via

Gab = ea
iGij (e

T )j b = R2

4
δab, (5.30)

and for DXa in the new basis we compute

d(DXa) = −1

2
εa

bcDXb ∧ DXc. (5.31)

Hence, the one-forms {DXa} behave like a non-holonomic basis of the co-tangent space. Since 
the corresponding metric (5.30) is constant, we can define new vielbeins Ea = DXa , and express 
them in a local basis dY i as

Ea = ea
idY i, (5.32)

where we also performed the obvious relabeling Xi → Y i in the matrix ea
i . Using this form, we 

then arrive at the original ungauged action

S = − 1

4πα′

∫
∂�

R2
[
sin2 η dζ1 ∧ �dζ1 + cos2 η dζ2 ∧ �dζ2 + dη ∧ �dη

]
. (5.33)

Dual model
In order to determine the dual model, we fist specify the quantities in Eq. (3.21) as follows

Gαβ = R2

4
δαβ, ξα = dχα,

Dαβ = εαβ
γ χγ , kα = ki

αGij dXj , (5.34)

where we did not spell out the expression for the one-forms kα corresponding to the Killing 
vectors. Using then the general formulas shown in (3.25), the metric and field strength of the 
enlarged target-space can be determined. These expressions become quite involved, and so we 
only display the quantities after a change of basis given by the null-eigenvectors (3.26) has been 
performed and after a field redefinition. In a basis {dχ̃1, dχ̃2, dχ̃3} we obtain
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Gαβ = 4

R2

1
R4

16 + χ̃2
1 + χ̃2

2 + χ̃2
3

⎛⎜⎝ R4

16 + χ̃2
1 χ̃1χ̃2 χ̃1χ̃3

χ̃1χ̃2
R4

16 + χ̃2
2 χ̃2χ̃3

χ̃1χ̃3 χ̃2χ̃3
R4

16 + χ̃2
3

⎞⎟⎠ ,

H123 = 16
3R4

16 + χ̃2
1 + χ̃2

2 + χ̃2
3

R4

16 + χ̃2
1 + χ̃2

2 + χ̃2
3

. (5.35)

Performing now a further change to spherical coordinates {ρ, φ1, φ2} with ρ ≥ 0 and φ1,2 =
0, . . . , 2π , we find

G = 4

R2
dρ ∧ �dρ + R2

4

ρ2

ρ2 + R4

16

[
dφ1 ∧ �dφ1 + sin2(φ1) dφ2 ∧ �dφ2

]
,

H = ρ2(
ρ2 + R4

16

)2

[
ρ2 + 3

R4

16

]
sin(φ1) dρ ∧ dφ1 ∧ dφ2. (5.36)

This configuration can be interpreted as a two-sphere (parametrized by φ1 and φ2) whose radius 
depends on the ray-variable ρ. (The same result has been obtained in [50] and [55], and related 
expressions can be found in [57].) Note that the volume of the two-sphere as well as the H -flux 
vanish at ρ = 0, but stay finite in the limit ρ → ∞.

5.4. Summary

In this section we have considered collective T-duality transformations for the three-sphere 
with H -flux. One of the features of this background is that it solves the string equations of 
motion if the flux is adjusted properly, cf. (5.3). The main purpose of studying this example was 
to investigate whether results similar to the three-torus with H -flux can be obtained.

• After a single T-duality for the three-sphere with H -flux, we arrived at the background of 
a circle fibered over a two-sphere. This is a well-defined geometric background with geo-
metric flux, which agrees with the result for the torus obtained in Section 4.1.

• After two collective T-dualities for the three-sphere we obtained at a rather complicated-
looking background, shown in Eq. (5.23). However, when imposing the condition (5.3) for 
the original model to be conformal, the background simplified considerably. In particular, 
despite being non-compact, the dual background is geometric. This is in contrast to our dis-
cussion in Section 4.2, where two T-dualities for the three-torus lead to a non-geometric
background.

• Finally, for three collective T-duality transformations we found that the H -flux has to vanish. 
The corresponding dual background shown in Eq. (5.36) is again geometric but non-compact.

6. Summary and conclusions

In this paper, we have studied T-duality transformations along one, two, and three directions of 
isometry for the three-sphere with H -flux. The question we wanted to answer was, whether after 
two T-dualities a non-geometric Q-flux background similarly to the example of the three-torus 
appears.

In order to perform the duality transformations, in Section 3 we have developed a novel for-
malism for collective, and in general non-abelian, T-duality. Our approach is different compared 
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to the known literature, as we do not rely on a gauge fixing procedure nor on the specific struc-
ture of Wess–Zumino–Witten models. Furthermore, we derived a constraint, shown in Eq. (2.10), 
which restricts the allowed transformations in the case of non-vanishing H -flux. For the three-
torus and three-sphere this implied that for H �= 0 at most two T-dualities can be performed.

In Section 4 we illustrated our formalism with the example of the three-torus and reproduced 
the known results; this analysis served as a check of our procedure. In addition, in Appendix A
we studied collective T-duality transformations for the twisted torus with H -flux, for which we 
found a new twisted T-fold background.

In Section 5 we investigated collective T-duality transformations for the three-sphere with 
H -flux. In contrast to the torus, this background solves the string equations of motion if the flux 
is properly adjusted. For one T-duality, we reproduced the known result, namely the dual back-
ground is a circle fibered over a two-sphere. In view of the duality chain (1.1), this configuration 
would correspond to a geometric-flux background. After applying two collective T-dualities, 
we obtained a rather complicated background, which resembled the form of the torus T-fold. 
However, if the radius of the three-sphere is appropriately related to the H -flux, making the orig-
inal model conformal, the dual background simplified considerably. In particular, one obtains 
a two-sphere fibered over a line segment, which is a geometric but non-compact space. Finally, 
as mentioned above, for three T-dualities the restrictions (2.10) require a vanishing H -flux. We 
therefore chose H = 0 and obtained after a non-abelian T-duality transformation a two-sphere 
fibered over a ray.

Let us compare our results for two collective T-duality transformations on the three-torus and 
on the three-sphere with H -flux. For the torus we reviewed that one obtains a non-geometric 
Q-flux background, or more generally a T-fold. Note however, the torus with H �= 0 does not 
solve the string equations of motion and therefore is, strictly speaking, not a proper string 
background. For the three-sphere, without requiring the model to be conformal, we found a back-
ground of a form similar to the torus T-fold. But, after requiring the original model to solve the 
string equations of motion, the dual background simplified. In particular, the dual space is geo-
metric but non-compact.

Our findings in this paper therefore challenge the simple picture of T-duality transformations 
shown in (1.1). Namely, applying two T-duality transformations to a geometric background with 
H -flux does not necessarily lead to a non-geometric Q-flux background. However, we also want 
to emphasize that the two examples studied in this paper have drawbacks: the torus example does 
not solve the string equations of motion, and the three-sphere leads to a non-compact background. 
We therefore cannot draw general conclusions about the origin of non-geometry, but have to 
consider further examples in the future.
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Appendix A. Examples III: twisted three-torus

As a generalization of the three-torus with H -flux, in this appendix we discuss the twisted 
three-torus found in Section 4.1 together with a non-vanishing H -flux.

Setup
The components of the metric tensor of the twisted three-torus in a coordinate basis 

{dX1, dX2, dX3} are chosen as

Gij =

⎛⎜⎜⎝
R2

1 0 R2
1f X2

0 R2
2 0

R2
1f X2 0 R2

3 + R2
1

[
f X2

]2

⎞⎟⎟⎠ , (A.1)

where f denotes the geometric flux, and we allow for a non-vanishing field strength of the 
Kalb–Ramond field

H = hdX1 ∧ dX2 ∧ dX3, h ∈ �−1
s Z. (A.2)

The Killing vectors for the above metric in the basis {∂1, ∂2, ∂3} are given by

k1 =
⎛⎝ 1

0
0

⎞⎠ , k2 =
⎛⎝ −f X3

1
0

⎞⎠ , k3 =
⎛⎝ 0

0
1

⎞⎠ , (A.3)

which satisfy a non-abelian isometry algebra with commutation relations[
k1, k2

]
L = 0,

[
k2, k3

]
L = f k1,

[
k3, k1

]
L = 0. (A.4)

Furthermore, the topology of the twisted torus is specified by the identifications

1) X1 → X1 + �s,

2) X2 → X2 + �s,

3) X3 → X3 + �s, X1 → X1 + �sf X2. (A.5)

One T-duality
As it is well known [75,79,80], a single T-duality along the Killing vector k1 results in 

a twisted torus with the replacements

f ←→ h, R1 −→ 1

R1
. (A.6)

However, a T-duality along the Killing vectors k2 or k3 leads to a twisted T-fold. More concretely, 
after performing a T-duality transformation along the Killing vector k2, we find for the dual 
metric and H -field the expressions

Ǧ = 1

1 + [
R1
R2

f X3
]2

(
R2

1dX1 ∧ �dX1 + 1

R2
2

ξ ∧ �ξ

)
+ R2

3dX3 ∧ �dX3,

Ȟ = −f
R2

1

R2
2

1 − [
R1
R2

f X3
]2(

1 + [
R1 f X3

]2
)2

dX1 ∧ ξ ∧ dX3, (A.7)
R2
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where the one form ξ is not closed,

dξ = −hdX1 ∧ dX3. (A.8)

The result for a T-duality along k3 leads to the same expression but with the replacements X2 ↔
−X3 and R2 ↔ R3.

Two T-dualities
When performing two collective dualities for the twisted torus, there are two combinations 

of Killing vectors which lead to a closed isometry algebra, namely {k1, k2} and {k1, k3}. Both 
choices result in a twisted T-fold:

• For a T-duality along Killing vectors {k1, k2}, the dual metric and H -flux are given by (A.7)
and (A.8), with the replacements h ↔ f and R1 → 1/R1.

• For a T-duality along Killing vectors {k1, k3}, the expressions are similar but now again with 
the additional changes X2 ↔ −X3 and R2 ↔ R3.

Three T-dualities
The case of three collective T-dualities for the twisted torus is interesting since here the isome-

try algebra is non-abelian. However, due to the constraints (2.10), the H -flux has to vanish. After 
applying the same formalism as above and performing the field redefinitions

χ̃1 = χ1, χ̃2 = χ2 + f χ1X
3, χ̃3 = χ3 − f χ1X

2, (A.9)

we arrive at the following dual T-fold background

Ǧ = 1

R2
1

dχ̃1 ∧ �dχ̃1 + 1

1 + [ f
R2R3

χ̃1
]2

(
1

R2
2

dχ̃2 ∧ �dχ̃2 + 1

R2
3

dχ̃3 ∧ �dχ̃3

)
,

Ȟ = − f

R2
1R2

2

1 − [ f
R2R3

χ̃1
]2(

1 + [ f
R2R3

χ̃1
]2

)2
dχ̃1 ∧ dχ̃2 ∧ dχ̃3. (A.10)

Let us finally recall our discussion in Section 3.1 about recovering the original model from the 
gauged action. We found that in the non-abelian case a change of basis characterized by a matrix 
ea

i has to be performed. In the present case, this matrix takes the form

ea
i =

⎛⎝ 1 0 −f X2

0 1 0
0 0 1

⎞⎠ . (A.11)
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