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Abstract

For any closed oriented surface �g of genus g¿ 3, we prove the existence of foliated �g-bundles over
surfaces such that the signatures of the total spaces are non-zero. We can arrange that the total holonomy
of the horizontal foliations preserve a prescribed symplectic form ! on the 3ber. We relate the cohomology
class represented by the transverse symplectic form to a crossed homomorphism F̃lux : Symp �g → H 1(�g;R)
which is an extension of the 5ux homomorphism Flux : Symp0 �g → H 1(�g;R) from the identity component
Symp0 �g to the whole group Symp�g of symplectomorphisms of �g with respect to the symplectic form !.
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1. Introduction and statement of the main results

Let �g be a closed oriented surface of genus g. It is a classical result of Kodaira [19] and Atiyah
[1] that, for any g¿ 3, there exist oriented �g-bundles over closed oriented surfaces such that the
signatures of the total spaces are non-zero. In this paper, we prove the existence of such bundles
which, in addition to having non-zero signature, are 5at, or foliated. This means that there exist
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codimension two foliations complementary to the 3bers, which is equivalent to the existence of lifts
of the holonomy homomorphisms from the mapping class group to the diGeomorphism group of the
3ber. We will further show that such lifts can be chosen to preserve a prescribed area form, or
equivalently a symplectic form !, on the 3ber. More precisely, we prove the following result.

Theorem 1. For any g¿ 3, there exist foliated oriented �g-bundles � :E → B over closed oriented
surfaces B such that the total holonomy group is contained in the symplectomorphism group
Symp�g with respect to a prescribed symplectic form ! on �g, and sign E �= 0.

Recall that due to Thurston’s results [36,37] Hae5iger’s classifying space B K	2 is known to be
3-connected, which implies that the tangent bundle along the 3bers of any surface bundle over
a surface is homotopic to the normal bundle of a codimension two foliation on the total space.
However, it is impossible to determine whether this foliation can be made everywhere transverse to
the 3bers.

Theorem 1 raises the question how two naturally de3ned cohomology classes, the transverse
symplectic class and the Euler class of the vertical bundle, compare on the total space of a foliated
bundle with total holonomy in the symplectomorphism group of the 3ber. Let � :E → B be a foliated
oriented �g-bundle as in Theorem 1, so that sign E �= 0 and the image of the total holonomy
homomorphism

�1B → DiG+ �g

is contained in the symplectomorphism subgroup Symp�g ⊂ DiG+�g with respect to !. Since the
total holonomy preserves the symplectic form ! on �g, the pullback of this form to the product
�g × B̃ descends to E=(�g × B̃)=�1B as a globally de3ned closed 2-form !̃ of rank 2 which restricts
to ! on the 3ber. Hence we have the corresponding cohomology class

v = [!̃] ∈H 2(E;R)

which we call the transverse symplectic class. At the universal space level, this cohomology class v
can be considered as an element of H 2(ESymp��g;R), where the discrete group ESymp��g is de3ned
as follows. Let Mg and Mg;∗ denote the mapping class group of �g, respectively, the mapping class
group relative to a base point. Then we have the universal extension �1�g → Mg;∗ → Mg. If we
pull back this extension by the natural projection Symp��g → Mg, where the symbol � indicates the
discrete topology, we obtain an extension

1 → �1�g → ESymp� �g → Symp� �g → 1:

Thus, ESymp� �g is the universal model for the fundamental groups of the total spaces of foliated
�g-bundles with area-preserving holonomy. On the other hand, we have the Euler class e∈H 2(E;Z)
of the tangent bundle along the 3bers of �. This bundle is the normal bundle of the horizontal
foliation on E. The two cohomology classes v and e are proportional on the 3ber, and if we
normalize ! so that∫

�g

! = 2g − 2

then e + v restricts to 0 on the 3ber. However, we cannot have the equality v = −e, because of the
following reason. Clearly, we have v2 = 0 (since !̃2 vanishes identically), while e2 �= 0 since its
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3ber integral is nothing but the 3rst Mumford–Morita–Miller class e1 ∈H 2(B;Z) which represents
the signature of the total space (see [1,26,29]). Therefore, we would like to identify the diGerence
between v and −e. We shall do this by making use of certain basic facts in symplectic topology.

Let Symp0 �g denote the identity component of Symp�g. Then there is a well-de3ned surjective
homomorphism

Flux : Symp0 �g → H 1(�g;R);

called the 5ux homomorphism. We refer to the book [25] by McDuG and Salamon for generalities
of symplectic topology, including the 5ux homomorphism as well as the Calabi homomorphism used
in the proof of Theorem 3 below.

Theorem 2. For all g¿ 2, there is a unique cohomology class

[F̃lux] ∈H 1(Symp� �g;H 1(�g;R))

which extends [Flux] ∈H 1(Symp�
0 �g;H 1(�g;R)) to the whole symplectomorphism group.

Furthermore, in the cohomology spectral sequence of the extension

1 → �1�g → ESymp� �g → Symp� �g → 1;

the class

e + v∈Ker(H 2(ESymp� �g;R) → H 2(�g;R))

projects to [F̃lux].

Note that because Symp� �g, acts non-trivially on H 1(�g;R), a representing cocycle for this co-
homology class is not a homomorphism, but a crossed homomorphism

F̃lux : Symp�g → H 1(�g;R)

with respect to this action. We will actually determine the group H 1(Symp� �g;H 1(�g;R)) com-
pletely, see Proposition 9. Furthermore, in Section 6 we generalize Theorem 2 to a certain class of
closed symplectic manifolds of higher dimensions; see also [18].

Theorem 1 can be reformulated and extended in the context of the Mumford–Morita–Miller classes
(see [34,28,27]). Let Mg be the mapping class group of �g as before and let ei=�∗ei+1 ∈H 2i(Mg;Q)
be the ith Mumford–Morita–Miller class with rational coeNcients de3ned by integration over the
3ber in the universal �g-bundle.

Let DiG+ �g be the group of orientation-preserving diGeomorphisms of �g. Then Mg can be
considered as the group of path components of DiG+ �g and we have an extension

1 → DiG0 �g → DiG+ �g
p→Mg → 1;

where DiG0 �g is the identity component of DiG+ �g and p is the natural projection. It follows from
the Bott vanishing theorem for the characteristic classes of the normal bundles of foliations that

p∗(ei) = 0 ∈H 2i(BDiG �
+ �g;Q)

for all i¿ 3, see [29] and also [32]. (Here, as before, � indicates the discrete topology, so that
the space BDiG �

+ �g is the classifying space of foliated oriented �g-bundles.) More precisely, the
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Bott vanishing theorem applied to the horizontal foliation shows that ei = 0 ∈H 2i(BEDiG �
+ �g;Q)

for all i¿ 4, where EDiG �
+ �g is de3ned as in the case of symplectomorphism groups considered

above. On the other hand, Theorem 1 shows that e2 ∈H 4(BEDiG �
+ �g;Q) and its 3ber integral

e1 ∈H 2(BDiG �
+ �g;Q) are non-zero.

It remains to determine whether other polynomials in e1 and e2 are trivial in H ∗(BDiG �
+ �g;Q),

or not. By extending Theorem 1, we can give a partial answer to this question. Namely, we show
the non-triviality of any power ek1 ∈H 2k(BDiG �

+ �g;Q) of the 3rst characteristic class e1. In fact, we
can prove the following stronger non-vanishing result for the subgroup Symp�g ⊂ DiG+ �g.

Theorem 3. Let Symp� �g denote the group of symplectomorphisms of (�g; !) equipped with the
discrete topology. Then, for any k¿ 1, the power ek1 ∈H 2k(BSymp� �g;Q) of the ;rst Mumford–
Morita–Miller class e1 is non-trivial for all g¿ 3k.

Thus, we are left with the following open problem.

Problem 4. Determine whether the second Mumford–Morita–Miller class e2 is non-trivial in
H 4(BDiG �

+ �g;R) (or in H 4(BSymp� �g;R)).

More generally, one can ask about polynomials in e1 and e2.

2. Proof of Theorem 1

In this section we prove Theorem 1 by constructing foliated surface bundles with non-zero sig-
natures. In fact, we prove more than was stated in Theorem 1, in that we show that any surface
bundle over a surface can be made 5at by 3ber summing with a trivial bundle.

First we treat the case where there is no constraint on the total holonomy group in DiG+ �g. Let
� :E → �h be any oriented �g-bundle over a closed oriented surface of genus h, for example one
with sign E �= 0. Such bundles are classi3ed by their monodromy homomorphisms

� : �1�h → Mg:

Choose a standard system �1; : : : ; �h, �1; : : : ; �h of generators for �1�h with a unique relation

[�1; �1] · · · [�h; �h] = 1

and set

�̃i = any lift of �(�i) ∈Mg to DiG+ �g;

�̃i = any lift of �(�i) ∈Mg to DiG+ �g:

Then clearly we have

� = [�̃1; �̃1] · · · [�̃h; �̃h] ∈DiG0 �g:

According to a special case of a deep theorem of Thurston [37], the group DiG0 �g is perfect
(and simple). Hence the above element � can be written as a product of commutators of elements
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of DiG0 �g:

� = [’1;  1] · · · [’h′ ;  h′] (’i;  i ∈DiG0 �g):

By considering the surface �h+h′ of genus h + h′ as the connected sum �h]�h′ , we can de3ne a
homomorphism

�̃ : �1�h+h′ → DiG+ �g

by using �̃i and �̃i on �h \ D2 and the elements ’i;  i ∈DiG0 �g on �h′ \ D2. Let

�̃ : Ẽ → �h+h′

be the corresponding foliated �g-bundle. Topologically, if we ignore the horizontal foliation, this
new bundle is nothing but the 3ber sum of the original bundle and the product �g-bundle �h′ ×�g.
Hence, by Novikov additivity we have

sign Ẽ = sign E �= 0:

This proves Theorem 1 in the case when we do not impose any constraint on the holonomy of the
horizontal foliation.

Next we prove that, in the above construction, we can replace the group DiG+ �g by the subgroup
Symp�g with respect to a symplectic or area form ! on �g. It is elementary to see that any Dehn
twist on �g can be represented by an area-preserving diGeomorphism. Since the mapping class group
is generated by Dehn twists, it follows that the natural map Symp�g → Mg is surjective. In fact,
Moser’s celebrated result [33] on isotopy of volume-preserving diGeomorphisms implies the stronger
assertion that the inclusion

Symp�g ⊂ DiG+ �g

is a weak homotopy equivalence. It follows that Symp�g ∩ DiG+ �g = Symp0 �g, and we have an
extension

1 → Symp0 �g → Symp�g → Mg → 1:

Remark 5. Earle and Eells [9] proved that DiG0 �g is contractible for any g¿ 2. Hence Symp0 �g

is also contractible by Moser’s result mentioned above, and we have isomorphisms

H ∗(BSymp�g) ∼= H ∗(BDiG+ �g) ∼= H ∗(Mg):

Thus there is no diGerence between the characteristic classes of smooth surface bundles and those
of symplectic surface bundles, and they are all detected by the cohomology of the mapping class
group. However, if we endow the groups DiG+ �g and Symp�g with the discrete topology, then the
situation is completely diGerent. This is the main concern of the present paper.

Now going back to the construction above, we replace DiG+ �g by Symp�g and set

�̃i = any lift of �(�i) ∈Mg to Symp�g;

�̃i = any lift of �(�i) ∈Mg to Symp�g:
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Then the element

� = [�̃1; �̃1] · · · [�̃h; �̃h]

belongs to Symp0 �g, not just to DiG0 �g. But now, the group Symp0 �g is not perfect. In fact, it is
known that there is a surjective homomorphism

Flux : Symp0 �g → H 1(�g;R)

called the 5ux homomorphism, whose kernel is the subgroup Ham�g consisting of Hamiltonian
symplectomorphisms of �g. Fortunately, Ham�g is known to be perfect by a general result of
Thurston [35] on the group of volume-preserving diGeomorphisms of closed manifolds (which was
generalized to the case of closed symplectic manifolds by a theorem of Banyaga [4]. See also the
books [5,25] for these well-known results.) Thus, we have an extension

1 → Ham�g → Symp0 �g
Flux→ H 1(�g;R) → 1:

In our situation, if Flux(�) = 0, then � belongs to the perfect group Ham�g and we are done. In
general, we cannot expect this and we have to kill Flux(�) ∈H 1(�g;R) in some way. Since Ham�g

is perfect, it is easy to see that the 5ux homomorphism gives an isomorphism

H1(Symp�
0 �g;Z) ∼= H 1(�g;R):

The natural action of Symp�g on H1(Symp�
0 �g;Z) by outer conjugation factors through that of the

mapping class group Mg because any inner automorphism of a group acts trivially on its integral
3rst homology, i.e. its abelianization.

Lemma 6. The <ux homomorphism Flux : Symp0 �g → H 1(�g;R) is equivariant with respect to
the natural actions of Mg. In other words, for any two elements ’∈Symp�g and  ∈Symp0 �g,
we have the identity

Flux(’  ’−1) = K’(Flux( ));

where K’∈Mg denotes the mapping class of ’ and Mg acts on H 1(�g;R) from the left by the rule
K’(w) = ( K’−1)∗(w) (w∈H 1(�g;R)).

Proof. Recall that the 5ux homomorphism (for the case �g (g¿ 2)) can be de3ned as follows. For
any element  ∈Symp0 �g, choose an isotopy  t ∈Symp0 �g such that  0 = Id and  1 =  . Then

Flux( ) =
∫ 1

0
i ̇ t

! dt ∈H 1(�g;R):

The assertion follows easily from this.

As usual, let H 1(�g;R)Mg denote the group of co-invariants of H 1(�g;R) with respect to the
action of Mg. This is the quotient of H 1(�g;R) by the subgroup generated by the elements of the
form ’(w) − w (’∈Mg; w∈H 1(�g;R)). Notice that we have to consider H 1(�g;R) as an abelian
group, rather than as a vector space, so that the action of Mg on it is far from being irreducible.
However, we have the following simple fact.

Lemma 7. For any g¿ 1, we have H 1(�g;R)Mg = 0.
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Proof. Let u∈H1(�g;Z) be the homology class represented by any oriented non-separating simple
closed curve on �g. Then it is easy to see that there exist elements ’∈Mg and v∈H1(�g;Z) such
that u=’(v)−v (consider the Dehn twist along a non-separating simple closed curve which intersects
u transversely and at only one point). The assertion follows easily from this fact. Moreover, it can
be shown that any element in H 1(�g;R) can be represented as the sum of at most 2g elements of
the form ’(w) − w.

With the above preparation, we can now 3nish the proof of Theorem 1. By Lemma 7, there exist
elements ’i ∈Mg, wi ∈H 1(�g;R) (16 i6 2g) such that

Flux(�) =
2g∑
i=1

(’i(wi) − wi): (1)

On the other hand, since the 5ux homomorphism is surjective, for any i there exists an element
 i ∈Symp0 �g such that Flux( i) = wi. By Lemma 6

Flux(’̃i i’̃−1
i ) = ’i(Flux( i)) = ’i(wi);

where ’̃i ∈Symp�g is any lift of ’i. Since Flux is a homomorphism, we can conclude

Flux([’̃i;  i]) = Flux(’̃i i’̃−1
i ) + Flux( −1

i ) = ’i(wi) − wi: (2)

Now consider the element

� = [’̃1;  1] · · · [’̃2g;  2g] ∈Symp0 �g: (3)

It follows from equalities (1) and (2) that

Flux(�) = Flux(�):

Hence, Flux(��−1) = 0 so that we have ��−1 ∈Ham�g. Since Ham�g is perfect, ��−1 can be rep-
resented as a product of commutators of elements of Ham�g. Let h′ be the number of commutators
needed for this. Then a similar argument as before yields a homomorphism

�1�h+2g+h′ → Symp�g

such that the corresponding foliated �g-bundle �̃ : Ẽ → �h+2g+h′ has total holonomy group in
Symp�g. Now the part of Ẽ over �h is the same as E and the part of Ẽ over �h′ is topolog-
ically trivial. The remaining part of Ẽ over �2g may be non-trivial topologically. However, its
monodromy homomorphism to the mapping class group factors through a free group because the
mapping class of  i is trivial for any i, and so its signature vanishes because a free group has no
second cohomology to accommodate the signature cocycle, or 3rst Mumford–Morita–Miller class.
Hence Novikov additivity implies that sign Ẽ =sign E �= 0. This completes the proof of Theorem 1.

2.1. Interpretation of Theorem 1 in terms of group homology

Theorem 1 can be translated into algebraic terms in the context of group homology. The extension

1 → DiG0 �g → DiG+ �g → Mg → 1
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gives rise to the 5-term exact sequence

H2(DiG �
+ �g) → H2(Mg) → H1(DiG �

0 �g)Mg → H1(DiG �
+ �g) → H1(Mg) → 0

of integral homology groups of discrete groups. From Thurston’s theorem [37] that DiG0 M is perfect
for any closed manifold M , we see that H1(DiG �

0 �g)=0. Therefore, the exact sequence implies two
things. Firstly, for all g¿ 3, the group DiG+ �g is perfect. Secondly, the map H2(DiG �

+ �g) →
H2(Mg) is surjective. We know from work of Harer that H2(Mg) ∼= Z for any g¿ 4 and that the
generator is detected by the 3rst Mumford–Morita–Miller class e1 ∈H 2(Mg;Z), see [26,14,15,20].
This also holds for g = 3, except that H2(M3) may have an additional torsion summand. Hence we
conclude that the homomorphism

H2(DiG �
+ �g) → Z

given by the cap product with e1 is non-trivial for any g¿ 3. This is equivalent to the existence of
foliated �g-bundles with non-zero signatures.

Next consider the extension

1 → Symp0 �g → Symp�g → Mg → 1

and the associated 5-term exact sequence

H2(Symp� �g) → H2(Mg) → H1(Symp�
0 �g)Mg → H1(Symp� �g) → H1(Mg) → 0:

As mentioned above, the 5ux homomorphism yields an isomorphism H1(Symp�
0 �g) ∼= H 1(�g;R).

Hence Lemma 7 implies that H1(Symp�
0 �g)Mg vanishes. We can now conclude that the homomor-

phism

H2(Symp� �g) → H2(Mg)

is surjective and that there is an isomorphism H1(Symp� �g) ∼= H1(Mg). The former fact is equiva-
lent to the existence of foliated �g-bundles with area-preserving total holonomy and with non-zero
signatures as in Theorem 1. The latter fact implies that the natural projection Symp�g → Mg induces
an isomorphism on the 3rst integral homology groups. In particular, the group Symp�g is perfect
for all g¿ 3.

3. The transverse symplectic class and the #ux homomorphism

In this section, we prove Theorem 2. In particular, we show that the 5ux homomorphism

Flux : Symp0 �g → H 1(�g;R)

can be extended to a crossed homomorphism

F̃lux : Symp�g → H 1(�g;R)

in an essentially unique way.
If we consider the 5ux homomorphism as an element of H 1(Symp�

0 �g;H 1(�g;R)), then Lemma
6 implies that it is invariant under the canonical actions of Mg. In other words, we can write

Flux ∈H 1(Symp�
0 �g;H 1(�g;R))Mg : (4)
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Now, we consider the cohomology class e+v∈H 2(ESymp��g;R) mentioned in Section 1. As we
noted there, this class restricts to 0 on the 3ber of the extension �1�g → ESymp� �g → Symp� �g.
Hence, in the spectral sequence {Ep;q

i } for its real cohomology, we have the natural projection

p: Ker(H 2(ESymp� �g;R) → H 2(�g;R)) 
 e + v → p(e + v) ∈E1;1
∞ ⊂ H 1(Symp� �g;H 1(�g;R)):

To prove Theorem 2, we 3rst show the following: if we pull back p(e + v) to

H 1(Symp�
0 �g;H 1(�g;R)) ∼= Hom(Symp0 �g; H 1(�g;R))

then we have the equality

p(e + v) = Flux : Symp0 �g → H 1(�g;R): (5)

To see this, it suNces to prove the following:

Lemma 8. Let I = [0; 1]. For any ’∈Symp0 �g let � :M’ → S1 be the foliated �g-bundle over S1

with monodromy ’. It is the quotient space of �g×I by the equivalence relation (p; 0) ∼ (’(p); 1).
By assumption, there is an isotopy ’t ∈Symp0 �g such that ’0=Id and ’1=’. Let f :M’ → �g×S1

be the induced di1eomorphism given by the correspondence

M’ 
 (p; t) �→ (’−1
t (p); t) ∈ �g × S1:

Then the transverse symplectic class v∈H 2(M’;R) is equal to

(2g − 2)$ + Flux(’) ⊗ %∈H 2(�g × S1;R) ∼= H 2(�g;R) ⊕ (H 1(�g;R) ⊗ H 1(S1;R))

under the above isomorphism, where $∈H 2(�g;R) and %∈H 1(S1;R) denote the fundamental co-
homology classes of �g and S1, respectively.

Proof. The foliation on M’ is induced from the trivial foliation {�g × {t}} on �g × I . Hence the
transverse symplectic class v is represented by the form p∗! on �g × I , where p :�g × I → �g

denotes the projection to the 3rst factor. It is clear that the H 2(�g;R)-component of v is equal to
(2g−2)$ so that we only need to prove that for any closed oriented curve & ⊂ �g, the value of v on
the cycle f−1(& × S1) ⊂ M’ is equal to Flux(’)([&]) where [&] ∈H1(�g;Z) denotes the homology
class of &. Now on �g × I , the above cycle is expressed as the image of the map

& × I 
 (q; t) �→ (’t(q); t) ∈�g × I

because f−1(q; t) = (’t(q); t) ((q; t) ∈�g × S1). Hence the required value is equal to the symplectic
area of the image of the mapping

& × I 
 (q; t) �→ ’t(q) ∈�g:

But this is exactly equal to the value of Flux(’) on the homology class represented by the cycle
& ⊂ �g. This completes the proof.

Now we can 3nish the proof of Theorem 2 as follows. The extension

1 → Symp0 �g → Symp�g → Mg → 1
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gives rise to the exact sequence

0 →H 1(Mg;H 1(�g;R)) → H 1(Symp� �g;H 1(�g;R))

→H 1(Symp�
0 �g;H 1(�g;R))Mg → H 2(Mg;H 1(�g;R)) → (6)

Eqs. (4) and (5) show that the element p(e + v) ∈H 1(Symp� �g;H 1(�g;R)) is mapped to Flux ∈
H 1(Symp�

0 �g;H 1(�g; R))Mg in the above sequence (6). In other words, the 5ux homomorphism can
be lifted to a crossed homomorphism

F̃lux : Symp�g → H 1(�g;R):

On the other hand, it was proved in [30] that H 1(Mg;H 1(�g;Z)) = 0 for any g¿ 1. It follows that
H 1(Mg;H 1(�g;R)) = 0 for any g¿ 1. The exact sequence (6) now shows that the above lift is
essentially unique. This completes the proof of Theorem 2.

The cohomology group H 1(Symp� �g;H 1(�g;R)) can be completely determined as follows.

Proposition 9. For any g¿ 2, there exists an isomorphism

H 1(Symp� �g;H 1(�g;R)) ∼= HomQ(R;R);

where the right-hand side denotes the Q-vector space consisting of all Q-linear mappings R → R.
Under this isomorphism, the element

[F̃lux] ∈H 1(Symp� �g;H 1(�g;R))

corresponds to Id ∈HomQ(R;R).

Proof. Consider the exact sequence (6). As mentioned above, we know that

H 1(Mg;H 1(�g;R)) = 0 (g¿ 1):

On the other hand, we have the vanishing result

H 2(Mg;H 1(�g;Q)) = 0 (g¿ 1; g �= 4; 5):

This is a special case of a general result of Looijenga [22] (for a stable range g¿ 6), while the
case g¿ 9 was already mentioned in [31]. (See also Proposition 21 of [13]. The proof there should
be modi3ed to use Harer’s result [16] on the third homology group of the moduli spaces as well
as results of Igusa [17] and Looijenga [21] for low genera g = 2; 3, instead of Harer’s earlier result
[14] on the second homology. This correction forces us to exclude g = 4 or 5 for now.)

Thus we have an isomorphism

H 1(Symp� �g;H 1(�g;R)) ∼= H 1(Symp�
0 �g;H 1(�g;R))Mg ; (7)

except possibly for g = 4, 5 for the moment.
Now the 5ux homomorphism gives rise to an isomorphism

Flux :H1(Symp�
0 �g;Z) ∼= H 1(�g;R):

Hence we can write

H 1(Symp�
0 �g;H 1(�g;R)) ∼= Hom(H 1(�g;R); H 1(�g;R))
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and under this isomorphism, the 5ux homomorphism clearly corresponds to the identity. On the
other hand, an analysis of the action of Mg on the right-hand side yields an isomorphism

Hom(H 1(�g;R); H 1(�g;R))Mg ∼= HomQ(R;R): (8)

More precisely, if we choose a Hamel basis {a(}( for R considered as a vector space over Q, then
we have an isomorphism

H 1(�g;R) ∼= ⊕
(
H 1(�g; a(Q):

It is easy to see that any endomorphism f :H 1(�g;R) → H 1(�g;R), which is equivariant with
respect to the natural action of Mg must send any summand H 1(�g; a(Q) to a direct sum of 3nitely
many such summands by some scalar multiplication in each factor. The isomorphism (8) follows
from this.

We can eliminate the possible exceptions for (7) by a stabilization argument using the simple
behavior of the 5ux homomorphisms under the inclusions

Sympc
0 �

0
g ⊂ Symp0 �g; Sympc

0 �
0
g ⊂ Sympc

0 �
0
g+1:

Here �0
g = �g \ D2 and Sympc

0 �
0
g denotes the group of symplectomorphisms of �0

g with compact
supports (see the next section for the 5ux homomorphism for the group Sympc

0 �
0
g).

Thus isomorphism (7) holds for any g¿ 2 and the required result follows.

Remark 10. Kawazumi kindly pointed out the following simple argument which avoids the use of
the vanishing result for H 2(Mg;H 1(�g;Q)). Any element in

H 1(Symp�
0 �g;H 1(�g;R))Mg ∼= Hom(H 1(�g;R); H 1(�g;R))Mg

is obtained from the 5ux homomorphism (= the identity) by applying some endomorphism to the
coeNcients H 1(�g;R) which is equivariant under the action of Mg. Since we already proved that
the identity can be lifted, any other element can also be lifted simply by applying an Mg-equivariant
change of coeNcients.

4. The symplectomorphism groups of open surfaces

In this section, we prepare a few facts concerning the symplectomorphism groups of open surfaces.
These will be used in the proof of Theorem 3 given in the next section.

Let D2 ⊂ �g be a closed embedded disk and �0
g the open surface �g \D2. We consider the group

Sympc �0
g of symplectomorphisms of �0

g with compact supports. Let Sympc
0 �

0
g denote the identity

component of Sympc �0
g. In this context, we again have a 5ux homomorphism

Flux : Sympc
0 �

0
g → H 1

c (�0
g;R);

where H 1
c (�0

g;R) denotes the 3rst real cohomology group of �0
g with compact supports. It is easy

to see that the inclusion �0
g ⊂ �g induces an isomorphism H 1

c (�0
g;R) ∼= H 1(�g;R), and that the
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following diagram is commutative:

Sympc
0 �

0
g

Flux−−−→H 1
c (�0

g;R)� � ∼=
Symp0 �g

Flux−−−→H 1(�g;R): (9)

It is known that the kernel of the 5ux homomorphism is equal to the subgroup Hamc �0
g consisting

of Hamiltonian symplectomorphisms with compact supports. Thus we have an extension

1 → Hamc �0
g → Sympc

0 �
0
g

Flux→ H 1
c (�0

g;R) → 1:

In contrast to the case of closed surfaces, the group Hamc �0
g is not perfect. In fact, there is a

surjective homomorphism

Cal : Hamc �0
g → R;

called the (second) Calabi homomorphism, see [8]. The kernel of this homomorphism is known to
be simple, and hence perfect, by a result of Banyaga [4,5].

The 5ux and the Calabi homomorphisms can be de3ned for any non-compact symplectic manifold.
Here we only consider the case of exact symplectic manifolds, assuming the existence of a 1-form
( such that ! = −d(. The open surface �0

g which we are concerned with is an exact symplectic
manifold.

For any exact symplectic manifold (M;!) of dimension 2n, the 5ux and the Calabi homomor-
phisms can be expressed as

Flux(’) = [( − ’∗(] ∈H 1
c (M ;R) (’∈Sympc

0 M)

and

Cal(’) = − 1
n + 1

∫
M
’∗( ∧ ( ∧ !n−1 (’∈HamcM); (10)

respectively (see [25, Lemmas 10.14 and 10.27]). The formula (10) above can be used for any
’∈Sympc

0 M , not necessarily in Hamc M . It de3nes a map

Cal : Sympc
0 M → R (11)

and a straightforward calculation shows that

Cal(’ ) = Cal(’) + Cal( ) +
1

n + 1

∫
M

Flux(’) ∧ Flux( ) ∧ !n−1

for any two elements ’;  ∈Sympc
0 M . Hence the map (11) above is a homomorphism if and only

if the pairing

H 1
c (M ;R) ⊗ H 1

c (M ;R) 
 ([�]; [�]) �→
∫
M
� ∧ � ∧ !n−1 (12)

is trivial. This is the case if dimM = 2n¿ 4, because then the integrand is exact (and compactly
supported). However, in our case of an open surface M = �0

g, the pairing (12) is non-trivial, and
even non-degenerate. De3ne the Heisenberg group H to be the central extension

0 → R → H → H 1
c (�0

g;R) → 1

corresponding to the cup product pairing H 1
c (�0

g;R)⊗H 1
c (�0

g;R) → R. Now we obtain the following
fact:
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Proposition 11. For any g¿ 2, the mapping Cal + Flux de;nes a surjective homomorphism

Cal + Flux : Sympc
0 �

0
g → H:

Corollary 12. The <ux homomorphism induces an isomorphism

Flux :H1(Sympc
0 �

0
g;Z) ∼= H 1

c (�0
g;R):

Furthermore for any real number r ∈R, there exist two elements ’;  ∈ Sympc
0 �

0
g such that the

commutator � = [’;  ] ∈Hamc �0
g satis;es Cal(�) = r.

Proof. The 3rst statement follows from Proposition 11 together with the fact that Ker Cal ⊂ Hamc �0
g

is perfect. The second statement follows easily from the above argument.

5. Proof of Theorem 3

In this section we prove Theorem 3, which shows the non-triviality of any power ek1 ∈
H 2k(BSymp� �g;R) of the 3rst Mumford–Morita–Miller class whenever g¿ 3k.

We 3rst treat the case where the total holonomy group is in DiG+ �g, rather than in Symp�g. As
in the previous section, 3x a closed embedded disk D2 ⊂ �g. We denote by DiG(�g; D2) the group
of diGeomorphisms of �g which are the identity on some open neighborhoods of D2. This is the
same as the group DiG c �0

g of diGeomorphisms with compact supports of the open surface �0
g.

Let � :E → �h be any �g-bundle over �h, for example one with sign E �= 0. Then we can apply
the same argument as in Section 2 to this bundle replacing the group DiG+ �g by DiG(�g; D2).
Fortunately Thurston’s theorem (see [37,5]) is also valid for this relative case, giving that the identity
component DiG0(�g; D2) is simple and hence perfect. Thus for some h′, we obtain a homomorphism

�1�h+h′ → DiG(�g; D2)

such that the signature of the total space of the associated foliated �g-bundle over �h+h′ is equal to
sign E �= 0. This implies the non-triviality

e1 �= 0 ∈H 2(BDiG �(�g; D2);Q):

To prove the non-triviality of higher powers ek1, consider a genus kg surface �kg;1 = �kg \ Int D2

with one boundary component as the boundary connected sum

�kg;1 = �g;1“ · · · “�g;1

of k copies of �g;1 = �g \ Int D2. This induces a homomorphism

fk : DiG(�g; D2) × · · · × DiG(�g; D2) → DiG(�kg; D2) (13)

from the direct product of k copies of the group DiG(�g; D2) to DiG(�kg; D2). It can be shown that

f∗
k (e1) = e1 × 1 × · · · × 1 + · · · + 1 × · · · × 1 × e1;

see [27,29] or [32]. It follows that

f∗
k (ek1) = e1 × · · · × e1 + other terms;
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where the other terms belong to various summands of

H ∗(BDiG �(�g; D2);Q) ⊗ · · · ⊗ H ∗(BDiG �(�g; D2);Q)

other than

H 2(BDiG �(�g; D2);Q) ⊗ · · · ⊗ H 2(BDiG �(�g; D2);Q):

Since e1 × · · · × e1 �= 0, we can now conclude that f∗
k (ek1) �= 0. This proves the non-triviality

ek1 �= 0 ∈H 2k(BDiG+ �g;Q) for any g¿ 3k:

Next we consider the case where the total holonomy is contained in Symp�g. We apply the same
argument as in Section 2, but replacing the group Symp�g by Sympc �0

g. At the 3nal stage, we
must use the second statement of Corollary 12 to kill the value of the Calabi homomorphism. To
summarize, we kill the value of the 5ux homomorphism by adding 2g commutators in Sympc �0

g
as in Section 2 and then kill the value of the Calabi homomorphism by adding one commutator
in Sympc

0 �
0
g. Then we can use the perfection of the subgroup Ker Cal ⊂ Sympc

0 �
0
g to show the

non-triviality

e1 �= 0 ∈H 2(BSympc;� �0
g;Q):

Finally we consider the homomorphism

hk : Sympc �0
g × · · · × Sympc �0

g → Sympc �0
kg

which is de3ned similarly to the fk in (13) and apply the same argument as above to show the
non-triviality of the power ek1.

This completes the proof of Theorem 3.

6. Further results

6.1. Symplectic pairs

A symplectic pair on a smooth manifold is a pair of closed two-forms !1, !2 of constant and
complementary ranks, for which !1 restricts as a symplectic form to the leaves of the kernel foliation
of !2, and vice versa. This de3nition is analogous to that of contact pairs and of contact-symplectic
pairs discussed by Bande [2,3].

Manifolds with symplectic pairs are always symplectic, but they satisfy much stronger topological
restrictions than general symplectic manifolds. For example, a four-manifold with a symplectic pair
admits symplectic structures for both choices of orientation, because !1 + !2 and !1 − !2 are
symplectic forms inducing opposite orientations.

Theorem 1 implies:

Corollary 13. There exist smooth closed oriented four-manifolds of non-zero signature which admit
symplectic pairs.

The signature vanishes for all other four-manifolds which we know to admit symplectic pairs.
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6.2. Perfect versus uniformly perfect groups

Combining our discussion in 2.1 with the main result of [10], we obtain the following.

Corollary 14. Let G=DiG+ �g or Symp�g. For all g¿ 3 the group G is perfect but not uniformly
perfect.
Moreover, if ’∈G represents the Dehn twist along any homotopically non-trivial simple closed

curve on �g, then the commutator length of ’k in G grows linearly with k, for all g¿ 2.

Proof. We saw in 2.1 that H1(G�) = H1(Mg) for all g¿ 2. For g¿ 3, the mapping class group is
known to be perfect, see for example [15].

The projection G → Mg is surjective, and the commutator length of ’k is bounded below by that
of its image in Mg. Thus the main result of [10] gives the conclusion, compare also [7].

For a perfect group G not being uniformly perfect is equivalent to the statement that the com-
parison map c :H 2

b (G�) → H 2(G�) from the second bounded cohomology to the usual cohomology
with real coeNcients is not injective. If we denote the kernel of c by K(G�), it is easy to see that
K(Mg) injects into K(G�) for G=DiG+ �g or Symp�g. The result of [10] to the eGect that K(Mg)
is non-zero has been generalized by Bestvina and Fujiwara [6] to show that it is in3nite-dimensional.
Thus, K(G�) is also in3nite-dimensional.

Note that because the Mumford–Morita–Miller class e1 ∈H 2(Mg) is a bounded class, i.e. in the
image of c, the same is true for e1 ∈H 2(G�) and its powers ek1. Thus Theorem 3 shows in particular
that the comparison map c is non-trivial on H 2k

b (G�) for g¿ 3k¿ 3 and G = DiG+ �g or Symp�g.
The groups DiG0 �g; DiG0(�g; D2), Ham�g and Ker Cal ⊂ Hamc �0

g are perfect by the results of
Thurston [35,37] and Banyaga [4], compare also [5]. In parallel to our work on this paper, Gambaudo
and Ghys [12] have proved that Ham�g is not uniformly perfect. Their arguments also apply to
the group Ker Cal ⊂ Hamc �0

g, although they do not state this in [12]. The result of Gambaudo–
Ghys implies that in our proof of Theorem 1 one cannot control the base genus of the trivial
3bration which we 3ber sum to a given surface bundle to obtain a 5at bundle with total holonomy
in Symp�g.

Note that Entov and Polterovich [11] recently proved that HamM is not uniformly perfect if M
belongs to a certain subclass of the spherically monotone symplectic manifolds which includes S2

and many high-dimensional manifolds, but not the surfaces of positive genus.
Whether or not DiG0 �g and DiG0(�g; D2) are uniformly perfect remains a very interesting open

question.

6.3. The crossed <ux homomorphism in higher dimensions

Let (M;!) be any closed symplectic manifold and M! its symplectic mapping class group de3ned
to be the quotient of Symp(M;!) by its identity component Symp0(M;!), so that we have an
extension

1 → Symp0(M;!) → Symp(M;!) → M! → 1: (14)
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In view of Theorem 2, it appears to be an interesting problem to determine whether the 5ux homo-
morphism

Flux : Symp0(M;!) → H 1(M ;R)=	! (15)

can be extended to a crossed homomorphism on the whole group Symp(M;!) or not. Here 	!

denotes the 5ux subgroup corresponding to the 5ux of non-trivial loops in Symp0(M;!). (This has
to be divided out to make the 5ux well-de3ned, see [25].) Extension (14) yields an exact sequence

0 → H 1(M!;H 1(M ;R)=	!) → H 1(Symp(M;!);H 1(M ;R)=	!)

→ H 1(Symp0(M;!);H 1(M ;R)=	!)M! �→H 2(M!;H 1(M ;R)=	!) →
It is easy to generalize Lemma 6, which treats the case of surfaces, to the case of closed symplectic
manifolds. Hence we can write

Flux ∈H 1(Symp0(M;!);H 1(M ;R)=	!)M!

and we may ask whether the element �(Flux) is trivial or not. This is equivalent to asking whether
the extension

1 → H 1(M ;R)=	! → Symp(M;!)=Ham(M;!) → M! → 1 (16)

splits or not. If this is the case, then the 5ux extends and the group H 1(M!;H 1(M ;R)=	!) measures
the diGerences between the possible extensions.

As a partial answer to this problem, we have the following. Assume that the cohomology class
[!] ∈H 2(M ;R) is a multiple of the 3rst Chern class c1(M) ∈H 2(M ;Z). (This is a variant of the
monotonicity assumption.) Then it was proved by McDuG [24] and by Lupton–Oprea [23] that the
5ux subgroup 	! is trivial. We can extend this result as follows, thereby also reproving the triviality
of 	! from our point of view.

Proposition 15. Let (M;!) be a closed symplectic manifold and assume that the cohomology class
[!] ∈H 2(M ;R) is a multiple of the ;rst Chern class c1(M) ∈H 2(M ;Z). Then the <ux subgroup
	! is trivial and the <ux homomorphism Flux : Symp0(M;!) → H 1(M ;R) can be extended to a
crossed homomorphism

F̃lux : Symp(M;!) → H 1(M ;R):

Proof. We modify the argument in the proof of Theorem 2, given in Section 3, as follows. Ob-
serve 3rst that the Euler class e∈H 2(ESymp� �g;Z) considered there is nothing but the 3rst Chern
class of the tangent bundle along the 3bers of the universal surface bundle over BSymp� �g. Let
BSymp�(M;!) be the classifying space of the discrete group Symp�(M;!) and let

� : ESymp�(M;!) → BSymp�(M;!)

be the universal foliated M -bundle over BSymp�(M;!) with total holonomy group in Symp(M;!).
Then we have the 3rst Chern class

c1(�) ∈H 2(ESymp�(M;!);Z);
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where � denotes the tangent bundle along the 3bers of �. By assumption, there exists a non-zero
real number r such that [!] = rc1(M). Now consider the cohomology class

u = v − rc1(�) ∈H 2(ESymp�(M;!);R);

where v denotes the transverse symplectic class represented by the global 2-form !̃ on ESymp�(M;!)
which restricts to ! on each 3ber. The restriction of u to the 3ber vanishes so that, in the spectral
sequence {Ep;q

r } for the real cohomology, we have

p(u) ∈E1;1
∞ ⊂ H 1(BSymp�(M;!);H 1(M ;R)):

Now we consider the composition of homomorphisms

H 1(BSymp�(M;!);H 1(M ;R)) → H 1(BSymp�
0(M;!);H 1(M ;R))

→ H 1(BSymp�
0(M;!);H 1(M ;R)=	!) ∼= Hom(Symp0(M;!); H 1(M ;R)=	!);

where the 3rst homomorphism is induced by the restriction to the subgroup Symp0(M;!) ⊂
Symp (M;!) while the second one is induced by the natural projection H 1(M ;R) → H 1(M ;R)=	!.
Let

p(u) ∈Hom(Symp0(M;!); H 1(M ;R)=	!)

be the image of p(u) under the above composition. Then we have the equality

p(u) = Flux : Symp0(M;!) → H 1(M ;R)=	!: (17)

This can be shown by suitably adapting Lemma 8 to the case of a general closed symplectic manifold
M instead of �g. Thus we see that the 5ux homomorphism can be extended to a homomorphism
from Symp0(M;!) to the whole of H 1(M ;R) (rather than its quotient by 	!). On the other hand,
Banyaga’s result [4] that Ker Flux=Ham(M;!) is perfect (and simple) implies that the abelianization
of Symp0(M;!) is equal to H 1(M ;R)=	!. We can now conclude that the 5ux subgroup 	! is trivial
and further that the 5ux homomorphism can be extended canonically to a crossed homomorphism
on the whole group Symp(M;!). This completes the proof.

Example 16. The above proof does not apply to the torus T 2 with the standard symplectic form
!0 because the 3rst Chern class is trivial in this case. In fact, the 5ux subgroup is isomorphic
to H 1(T 2;Z), which is non-trivial. However, the 5ux homomorphism does extend canonically to a
crossed homomorphism

F̃lux : Symp(T 2; !0) → H 1(T 2;R)=H 1(T 2;Z):

This is because the mapping class group M1
∼= SL(2;Z) acts on T 2 linearly by symplectomorphisms

and hence the extension (16) splits canonically.

Remark 17. In forthcoming joint work with KPedra [18] we further generalize Theorem 2 and Propo-
sition 15 to other situations.

Remark 18. After this paper was written, the problem of exhibiting explicit crossed homomorphisms
representing the extended 5ux was raised by R. Kasagawa, by D. McDuG, and by an anonymous
referee. We shall return to this problem elsewhere.
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