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ABSTRACT 

Continuous descriptor systems Ei = Ax + Bu, y = Cx, where E is a possibly 

singular matrix, are symbolically analyzed by means of digraphs. Starting with four 
different digraph characterizations of square matrices and determinants, the author 
favors the Cauchy-Coates interpretation. Then, an appropriate digraph representation 
of the matrix pencil (sE - A) is given, which is followed by a digraph interpretation of 

det(sE - A) and the transfer-function matrix C(sE - A)-‘B. Next, a graph-theoretic 
procedure is derived to reveal a possibly hidden factorizability of the determinant 
det(sE - A). This is very important for large-scale systems. Finally, as an application 

of the derived results, an electrical network is analyzed symbolically. 

1. INTRODUCTION 

Since the nineteen sixties, the state-space theory has been widely ac- 
cepted as so-called “modem control theory” by the control engineers’ com- 
munity. Unfortunately, due to cumbersome matrix manipulations which are 
typical of this approach to plant analysis and controller synthesis, control 
engineers lose desirable “feeling” and visual insight. The numerical results 
may be greatly sensitive to small variations of the numerical values for the 
matrix entries. The practicing engineer, however, has to cope with more or 
less uncertain parameters. 

The graph-theoretic approach has been developed as an attempt to 
overcome the disadvantages of the numerically oriented state-space theory 
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(see the monographs of Franksen, Falster, and Evans, 1979; Siljak, Pichai, 
and Sezer, 1982; Andrei, 1985; Murota, 1987; Reinschke, 1988; Trave, Titli, 
and Tarras, 1989; Wend, 1993). Moreover, especially for large-scale systems, 
the state-space description in standard form 

x =Ax + Bu, y = cx (1) 

may not be considered to be a natural system description. In many applica- 
tions it is rather difficult and expensive to transform a given natural system 
description which appears as a mixture of differential equations and purely 
algebraic constraints into state-space equations (1). A system description of 
the form 

Ei(t) = Ax(t) + h(t), y(t) = Cx(t), (2) 

where E is allowed to be a singular matrix, is much better suited. Here the 
vectors x E Iw”, u E 1w”, y E [w’ denote the descriptor variables, input 
variables, and output descriptor systems (2)-synonymous terms: semistate 
systems, generalized state-space systems, implicit systems, differential-alge- 
braic equations, singular systems-have attracted the increasing interest of 
many researchers (e.g. Luenberger, 1977; van Dooren, Verghese, and Kailath, 
1979; Campbell, 1980; Yip and Sincovec, 1981; van der Weiden, 1983; Cobb, 
1984; Yamada and Luenberger, 1985; Willems, Kitapci, and Silverman, 1986; 
Griepentrog and Marz, 1986; Bender and Laub, 1987; Murota, 1987; Gear, 
1988; Shyaman, 1988; Fahmy and O’Reilly, 1989; Dai, 1989; Reinschke, 
1989; Hairer, Lubich, and Roche, 1989; Brenan, Campbell, and Petzold, 
1989; Mehrmann and Krause, 1989; Bunse-Gerstner, Mehrmann, and Nichols, 
1991; Hairer and Wanner, 1991). 

In most real-world applications, the numerical parameters influencing the 
nonzero entries of the matrices E, A, B, and C are more or less uncertain. 
That is why both theorists and practicing engineers are interested in methods 
which enable them to analyze descriptor systems (21 symbolically. The 
graph-theoretic approach paves the way for the symbolic analysis of descrip- 
tor systems. 

2. DIGRAPH CHARACTERIZATIONS OF SQUARE MATRICES 
AND DETERMINANTS 

Let Q be a square matrix of order n, 

Q = (9ij) for i,j = 1,2 > *..> 12, (3) 
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where the matrix elements 9ij are real numbers. There are several possibili- 
ties of constructing weighted digraphs that have a one-to-one correspondence 
with a given square matrix Q; see Reinschke (1988, Chapter A1.3). For 
example, consider a matrix Q of order 3, 

(4 

In Figure 1, the example matrix (4) has been characterized graph-theoreti- 
cally in four different manners. 

Characterization Z (e.g. KGnig, 1916, 1936, Ford and Fulkerson, 1962). 
There is a one-to-one correspondence between the given square matrix (3) 

and a bipartite graph, where 

I 
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2 
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-911 
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-432 

FIG. 1. Four different digraph characterizations. 
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(1) each row of Q corresponds to one of the vertices ur, ug, . . . 1 u,; 
(2) each column of Q corresponds to one of the vertices or, v2,. . . , v,; 
(3) each entry 9ij # 0 corresponds to an edge from vj to ui with the weight 

9ij* 

Characterization ZZ (Cauchy, 1815; Coates, 1959). There is a one-to-one 
correspondence between the square matrix (3) and a weighted digraph G(Q) 
which has n vertices v,, vl,. . . , v, and a directed edge from the initial vertex 
vj to the final vertex vi if the matrix element 9ij does not vanish (i, j = 
1,2,. . . ) n). The edge weight is equal to the value of 9ij. 

Characterization ZZZ (Mason, 1953, 1956). There is a one-to-one corre- 
spondence between the square matrix (3) and a weighted digraph which has 
n vertices v1,v2,..., v,, and, for i z j, a directed edge from v. to vi with 
weight 9ij if 9ij # 0, and, for i = j, a self-cycle at vi with werg .h t 9ii + 1 if 
9ii # -1. 

Characterization IV (Kirchhoff, 1847; Reinschke, 1985). There is a 
one-to-one correspondence between the square matrix (3) and a weighted 
digraph G’(A) which has n + 1 vertices vr, v2,. . . , v,, g and, for i + j = 
1,2,. . .) n, an edge from vj to vi with weight 9ij if 9ij # 0, and, for 

j = 1,2,. . . , n, an edge from V~ to g with weight 

provided that i 9ij f 0. 
i=l 

The determinant det Q of an n x n matrix Q may be defined by 

det Q = C *figit, - 5 ,IJ!qit., 
ew3n 

permutations permutations 

(5) 

where {t,, t,, . . . , t,) is a permutation of {1,2, . . . , n). For the example matrix 
(4) one obtains 

det Q = 913921932 - 9119~3932. (6) 

Each of the four characterizations of a square matrix Q introduced above 
may be used as a starting point for a graph-theoretic interpretation of the 
determinant det 0. The main problem is how to interpret the nonvanishing 
expressions 

91t,92t, *** 9$ 

graph-theoretically. 
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INTERPRETATION I. Each summand (7) of det Q corresponds to a set of 
R edges incident with all the 2n vertices of the bipartite graph. (A subgraph 
of this kind was called a factor of first degree by D. KSnig.1 

For the example (41, the bipartite digraph of Figure 1 contains two factors 
of first degree, which are shown in Figure 2. 

In the following, a few graph-theoretic concepts are needed: path, length, 
cycle, cycle family, and grounded tree. A path is a sequence of edges 

(e,,e,,... } such that the initial vertex of each succeeding edge is the final 
vertex of the preceding edge. The number of edges contained in the 
sequence {e,, e2, . . . } is called the length of the path. The initial vertex of 
the first edge and the final vertex of the last edge of {el, e2, . . . } are called the 
initial vertex of the path and final vertex of the path, respectively. A closed 
path is a path whose initial and final vertices are the same. 

A closed path is said to be a cycle if, going along the path, one reaches no 
vertex, other than the initial-final vertex, more than once. 

A set of vertex disjoint cycles is said to be a cycle family. 
A tree is a connected subgraph whose number of edges is one less than 

the number of vertices. 
A grounded tree is a tree that has a ground vertex to which there is a 

unique path from every other vertex. 
Now, the remaining three graph-theoretic interpretations of determinants 

may be easily formulated. 

INTERPRETATION II. Each summand (7) of det Q corresponds to a cycle 
family of length n in the weighted digraph G(Q). The value of (7) is given by 
the products of the weights of the n edges involved. If this cycle family 

FIG. 2. Factors of first degree representing the determinant (6). 
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consists of d disjoint cycles, then the sign factor of (7) to be taken into 
account in (5) is (- l)nPd. 

For the example (4) the digraph G(Q) ( see Figure 1, characterization II) 
contains two cycle families of length n = 3. The sign factor of the cycle 
family drawn on the left of Figure 3 is (- 1)3-2 = - 1, whereas the cycle 
family on the right has a sign factor ( - 1)3P ’ = ( - 1)’ = 1. 

INTERPRETATION III. Mason’s rule for evaluating the determinant of a 
square matrix (3) says: 

det Q = (-1)” + 2 ( -l)“-kS(k), 
k=l 

(3) 

where Sck) denotes the sum of weights of all the subgraphs (within the 
digraph introduced as characterization III) consisting of k vertex disjoint 
cycles. 

For the example matrix (4), the digraph characterization III (compare 
Figure 1) contains the five individual cycles shown in Figure 4. From this 
figure it is immediately seen that 

s(1) = (9~ + l) + (922 + l) + 1 + 923932 + 912921932) 

s(2) = (911 + l)[(922 + l) + 1 + 9239321 + (921 + l). 1, 

sC3’ = (9ii + l)(9s2 + 1) * 1, 

whence 

det Q = - 1 + $1) _ 92) + ‘$3) 

= 913921932 - 9119230932. 

FIG. 3. Cycle families representing the determinant (6). 
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63&y 
%+’ 22 

“2 
%!a 432 

8 “3 

q21 

5 v2 v 413 932 

“3 

FIG. 4. Cycles contained in digraph III of Figure 1. 

INTERPRETATION IV. The determinant det( - Q> can be determined in 
the digraph introduced by characterization IV as the sum of the weights of all 
grounded trees. 

For the example matrix (4), there exist nine grounded trees, shown in 
Figure 5. One obtains 

+ 921932( -913 - 923) 

+ 921( -922 - 932H -913 - 923) 

+ 921923t -922 - 932) 

+ d -411 - 921)( -922 - 932) 

+ 923hll - 921)( -922 - 932) 

+ 932( -411 - 421x -913 - 923) 

+ ( -Q11 - 921)( -913 - 923x -922 - 932) 

= -932921913 + 911923932’ 

From the mathematical point of view, each of the four representations 
could be used with the same propriety. In the analysis of real systems, 
however, special matrix structures may be typical of the applications under 
consideration. Depending on the given matrix structure, different representa- 
tions may be more or less suited. For example, the nodal analysis of electrical 
networks leads to matrices for which representation IV may often be re- 
garded as most natural. As for control systems, due to the influence of 
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FIG. 5. Grounded trees contained in digraph IV of Figure 1. 

popular textbooks, many control engineers favor representation III. Control 
systems are characterized by feedback loops and a rather general matrix 
structure. Therefore, representation II, which is based on the concept of 
cycle families in the simplest manner, seems to be yet more advantageous. In 
the sequel, we shall restrict ourselves to digraph representation II. Other 
authors prefer other digraph representations; see, for example, Murota 
(1987). The decomposition algorithm in Section 5 gives a representation-II 
version of the decomposition idea published by Dulmage and Mendelsohn 
for representation I as early as in 1959. In a more general setting, recent 
results in combinatorial approaches to dynamical systems have been obtained 
by Murota (1989). 

3. DIGRAPH INTERPRETATION OF det(sE - A) 

For descriptor systems (2), the matrix pencil 

SE -A, where s E c, (9) 

plays a crucial role. Based on the graph-theoretic characterization II of square 
matrices, the matrix pencil (9) may be interpreted graphically as follows: 
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There is a one-to-one correspondence between the matrix pencil (9) and a 
digraph G(sE - A) th a consists of n vertices denoted by 1,2,. . . , n, and t 
edges from vertex j to vertex i with weight -aij if aij # 0 as well as edges 
from j to i with weight seij if eij z 0, where i, j = 1,2,. . . , n. 

For short, in drawing G(sE - A) we can use full lines for nonvanishing 
A-entries and dotted lines for nonvanishing E-entries. Then, the complex 
scalar s may be omitted in the drawings. For example, let 

n = 3, E= 0 e. ‘1 

\ 

;z r/, A = [ :;: ;; ;). (10) 

All the information contained in (10) is reflected by the digraph G(sE - A) 

shown in Figure 6. 
Based on the Cauchy-Coates interpretation of determinants (compare 

Section 2, characterization II), the characteristic polynomial 

det(sE - A) = 2 pisndi 
i=O 

(11) 

may be interpreted graph-theoretically. 

THEOREM 1. The coefficients pi (0 < i < n) of the characteristic polyno- 

mial (11) are determined by those cycle families of length n in G(sE - A) 

which involve exactly i A-edges (or, equivalently, n - i E-edges): Each such 

cycle family corresponds to a summund of pis’lPi. The value of the summand 

results from the product of weights of edges involved in the cycle family, 

G (SE-A): 

FIG. 6. Digraph G(sE - A) belonging to the example system (10). 
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multiplied by a sign factor (- I)“-~-“, where d denotes the number of 

individual cycles forming the cycle family under consideration. 

For the example system (lo), all cycle families of length n = 3, and the 
corresponding sign factors have been drawn in Figure 7. In this case we get 
the coefficients pi (i = 0, 1,2,3) as 

p, = 0, p, = 0, P, = e13a32a21 - e23a23a32a11) 

P3 = -a13a32a21 + a11a23a32’ 

Theorem 1 implies interesting consequences for all descriptor systems (2) 
with the same structure determined by the boolean structure matrices 

[AI, [El. 

DEFINITION (See Reinschke, 1988). The elements of a boolean structure 

matrix [Q] are either fixed at zero or indeterminate values which are assumed 
to be independent of one another. 

A numerical matrix Q is called an admissible numerical realization of [Q] 
(for short, Q E [Q]) if Q can be obtained by fixing all indeterminate entries 
of [Q] at some particular values. 

Two matrices Q’ and Q” are said to be structurally equivalent if both 
Q’ E [Q] and Q” E [Q]. 

Now, many structural properties of (2) may be checked graphically by 
looking at the digraph G(sE - A). 

COROLLARIES TO THEOREM 1. The given descriptor system (2) is struc- 

turally degenerate, i.e., 

det(sE -A) = 0 Vs E @, A E [A], E E [E], 

iff there exists no cycle family of length n in G(sE - A). 

(12) 

1 2 “p ‘k 

6 3 

sign: (-1) ‘-’ = 1 

A cu 1 2 c? 4 

3’ 

1 2 

?i? 
3 

Q) 1 2 

8 
3 

(_l)x -1 (-l)@'- -1 (-lp2- 1 

FIG. 7. Cycle families of length 3 contained in the digraph G(sE - A) of Fig- 

ure 6. 
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The matrix E is structurally singular, i.e., 

term-rank[ E ] < n, 

ifl there exists no cycle family of length n consisting of E-edges only. 

The matrix A is structurally singular, i.e., 

term-rank[ A] < n, 

i;ff there exists no cycle family of length n consisting of A-edges only. 

The generic degree g of the polynomical (ll), i.e. 

g = generic degree of det( SE - A), 

(13) 

(14) 

(15) 

is given by the maximal number of E-edges occurring in a cycle family of 

length n. 

4. DIGRAPH INTERPRETATION OF THE TRANSFER-FUNCTION 
MATRIX 

The r X m transfer-function matrix is defined by 

T(s) = C(sE -A))%. (16) 

The entry tji(s) is the transfer function from the ith input to the jth output: 

tji( s) = c(i( sE - A) -‘bi = 
c~(sE - A)adjbi 

det( SE - A) = j, de;;;;:;) 

= [det(sE - A)]-idet :: [ _1 SE; A ;j. (17) 

The denominator polynomial has been treated in Section 3. The numerator 
polynomial may be associated with the supplemented digraph sketched in 
Figure 8. 

The digraph G(sE - A) has been supplemented by 
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G I -1 0 0 SE-A c; 0 0 0 b, 

_._.... . ...-....._._,_, 
G (SE - A) 

-1 

FIG. 8. Supplemented digraph to interpret the numerator polynomial of the 
transfer function tji( s). 

(1) two new vertices: an input vertex li and an output vertex Oj; 
(2) input edges leading f rom Zi to state vertices according to the struc- 

ture of the column vector ?I~; 
(3) output edges leading from state vertices to Oj according to the 

structure of the row vector cl. 
(4) a feedback edge lead&g form Oj to Zi with weight - 1. 

On the supplemented digraph, all cycle families of length rz + 2 must contain 
the feedback edge from Oj to Zi. For brevity’s sake, they are called (j, i>- 
feedback-cycle families. 

THEOREM 2. The coepcients pk, ji of the numerator polynomial c;(sE - 
Ajadjbi in (17) are determined by the (j, i&feedback-cycle families which 
contain exactly n - k E-edges: Each such cycle family corresponds to a 
summand of pk,jisn-k. The value of the summand results from the product of 
weights of edges involved, multiplied by a sign factor (- l>“- k-d, where d 
denotes the number of individual cycles forming the cycle family under 
consideration. 

To give an example, let us supplement the system (10) by m = 1 input 
and r = 1 output, where 

c’=(l 1 0). (18) 
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The supplemented digraph and the (1, l)-feedback-cycle families are shown 
in Figure 9. The rules of Theorem 2 yield the numerator polynomial as 

(1 1 O)(sE-A)adj i 

ii 1 

= -( -l)(se,, - aL3)(sezz - G_) 

+( -l)(se,, - %3)( -4 - (-l)(% - %3)(-%) 

= e13e2~s’ + ( -e13u22 - ez2u13 + e13az1 - ez3all)s 

+ (%3%2 - ~13% + %1%3). 

(l,l)-feedbackcyciefamilies: 

0 2 

-1 
1 El r 

'.. 
I 3 

sisn; (-$= -1 (-l)% (-lf= -1 

FIG. 9. Supplemented digraph and (1, l&feedback-cycle families for the example 
system defined by (10) and (18). 
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Results related to Theorem 2 may be found in Ohta and Komada (1985) 
and van der Woude (1991). There, the concepts of cycle families and 
feedback-cycle families are not used. 

5. LOOKING FOR FACTORIZATIONS OF LARGE-SCALE SYSTEMS 

It is well known from the theory of determinants that the absolute value 
of det Q is invariant with respect to permutations of rows and columns of Q. 
The topological properties of the digraph G(Q), however, may depend 
heavily on such line permutations. 

Practical experience with large-scale determinants shows that the deter- 
minant may split up into a product of k (> 1) subdeterminants of order 
n,, . . . , nk, i.e., 

det Q = + fi det Qij, 2 n, = n. (19) 
i=l i=l 

Unfortunately, such a factorization may not be recognizable at first glance 
from G(Q). After appropriate permutations of rows and/or columns we can 
get a suitable representation of Q where the relation (19) becomes evident. 

The desired representation of Q may be obtained by permutation of the 
rows (apply a permutation matrix I’,. from the left) and by permutation of the 
columns (apply a permutation matrix P, from the right). So our next aim is to 
find permutation matrices I’,. and PC such that 

\ 

Because det Q - ldet QI, the hyp ermatrix structure of Q ensures the factor- 
ization (19) immediately; compare Murota (1989). 

GRAPH-THEORETIC PROCEDURE to obtain suitable permutation matrices P,. 
and PC. 
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Step 1. Look for a cycle family of length n on G(Q). Assume rank[Q] = 
n. Consequently, the existence of at least one cycle family of length n on 
G(Q) is guaranteed. The chosen cycle family defines a permutation 

The associated row permutation matrix is 

_P, = (ejl,eii,ei?,...,ei,,)' (21) 

where ej, denotes the ijth unit column vector. J,. transforms Q into a matrix 

_O = i’rQ. (22) 

Note that all main-diagonal elements of Q are occupied. 
Step 2. Consider G(Q), and look foFthe equivalence classes of strongly 

connected vertices in G(Q). If there is only one equivalence class in G(Q), 
then det Q is not properly factorizable in the sense of Equation (n>. 
Otherwise, due to the partial order between the classes, they can be enumer- 
ated in such a way that transitions from equivalence classes of lower indices 
to equivalence classes of higher indices are impossible. This reordering 
process may be interpreted as a similarity transformation of Q with a - 
permutation matrix P,, i.e. 

(23) 

Taking into account (221, one gets 

Furthermore, 

det Q = (det P,)‘(det _P,) det Q 

= (det_P,)detQ (25) 

(26) 

and 

det _P, = (-I)‘-‘, 
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where c is equal to the number of individual cycles contained in the cycle 
family which was chosen from G(Q) in order to determine the permutation 
matrix _P,. 

For elaborate procedures to get the strong components of a digraph and 
the permutation matrix PC, see, for example, Kemeny and Snell (1960), 
Kaufmann (19681, Kevorkian (1975), and Evans, Schizas, and Ghan (1981). 

EXAMPLE. Figure 10 shows a 7 X 7 matrix [Q] and the corresponding 
digraph G(Q). A cycle family of length n = 7 is marked with a dotted line. 
The associated row permutations are given by 

1234567 

Equation (22) yields 

_Q = (e2 e4 9 el e3 es e6)rQ. 

The structure matrix [Q] and the digraph G(Q] are shown in Figure 11. The 
maximal sets of strong5 connected vertices are encircled by dotted lines. The 
natural order between these sets is evident: 

(L6) + (5) --f {4} + {2,3,7}. 

1234 5 6 7 
X X 

X X 

X X 

X X X 

X X 

X X 

x x X 

FIG. 10. A 7 X 7 structure matrix [Q] and its associated digraph G(Q). 

G(Q): 
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2 
4 

K?l-: 

: 
6 

1234667 
X X 

X X X 

x x X 

x x 

X X 

X X 

X X 

Q(Q): 

FIG. 11. The structure matrix [o] derived from [Q] in Figure 10 and G(Q). - - 

The permutation matrix P, transforming Q into Q reads as - 

P, = (ea, e3, e7; e4; e5; e,, es). 

The resulting matrix Q [see (2411 has the quasitriangular structure shown in 
Figure 12. It should be noted that the column heads and the row heads in 
Figure 11 and in Figure 12 refer to the lines of the given original matrix Q 
introduced in Figure 10. 

Finally, let us return to descriptor systems (2). We have to investigate 
det(sE - A) instead of det Q. In looking for hidden structural factorizations 
of the characteristic polynomial det(sE - A), new problems do not arise. The 
same procedure explained for a square matrix Q may be applied to the matrix 
pencil (sE - A) and the associated digraph G(sE - A). We simply put 
Q = SE - A and subject th e s t ructure matrix [Q] to the permutation proce- 
dure discussed above: The procedure yields 

@=si-i=P,.(sE-A)P,. (27) 

FIG. 12. The structure matrix [ 01 derived from [_Q] by a permutation transform. 
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6. APPLICATION 

Let us consider an example taken from electrical engineering. Figure 13 
shows an electrical circuit, a so-called active RC filter. It consists of 12 
resistors, 2 capacitors, and 4 ideal operational amplifiers. The circuit is 
excited by one voltage source u”(t) as input. The system output is uout(t>. 

The following observation is fundamental for linear circuits: If the source 
has a time dependence which is sinusoidal, then-in the stationary state-all 
currents and voltages occurring in the circuit show a sinusoidal time depen- 
dence with the same frequency. Therefore, the differential equations describ- 
ing the circuit behavior may be replaced by algebraic equations which arise 
by applying the Laplace transform. This means, roughly speaking, that the 
differential operator d/dt is replaced by the complex factor s. So the 
voltage-current relations defining resistors and capacitors, i.e. 

i(t) = ;u(t) = Gu(t) 
du 

and i(t) = Cz, 

are transformed into 

Z(s) = GU(s) and I(s) =&U(s), 

respectively. 
Figure 14 illustrates the modeling of an ideal operational amplifier: the 

input branch is a so-called nullator, characterized by both branch voltage 
u = 0 and branch current i = 0; the output branch is a so-called norator, 
whose branch current and branch voltage are determined by the “surround- 
ing” circuit elements. In Figure 15, the given active RC filter has been 
prepared for the analysis of this circuit. Nodes 1,2,. . . ,9 have been intro- 
duced. The corresponding nodal voltages U,, U,, . . . , U, denote the potential 
difference between the nodes and the ground. The input and output currents 
of the operational amplifiers are symbolized by I,, I,, . . . , I,. Now, one may 
start the analysis by writing down the well-known Kirchhoff current laws for 
the nodes I, 2,. . . , 9 (the total current entering each node is zero): 

Node 1: 

G,( U, - Us) + (G, + sC,)( Vi - Us) + Z, + G7( Vi - U”) = 0. 
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I I 1 
I 

FIG. 13. Active RC filter. 

Node 2: 

G,( U, - U6) + (G, + s&)( U, - U,) + I, = 0. 

Node 3: 

Node 4: 

G,(U, - U,) + G,(v, - Us) + Z5 = 0. 

G,(U, - U6) + G,(U, - U9) + I, + G,,( U, - U’) = 0. 

FIG. 14. Modeling of an operational amplifier. 
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FIG. 15. Model of the electrical circuit shown in Figure 13. 

Node 5: 

G,,( U, - Us) - Z7 + G,,( U, - 0) = 0. 

Node 6: 

(G, + sC,)( U, - VI) + I, + G5( U, - U,) + Gs( U, - U4) = 0. 

Node 7: 

(G, + &a)( U, - U,) + I, + Gs( U, - US) = 0. 

Node 8: 

G,(Us - U,) + G,(Us - Us) + Z, + G,,(Us - Us) = 0. 

Node 9: 

G,(U, - U,) + I, = 0. 

Altogether, we have obtained 9 equilibrium conditions between 17 un- 
knowns. Due to the above-mentioned modeling of each operational amplifier 
by a pair of nuIIator-norator branches, one may assume that 

u, = u, = u, = 0, U, = Us, I, = I, = zs = I, = 0. 
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There remain 9 unknowns in a system of 9 equations: 

-G,U, - (G, + sC,)U, = GJ”, 

- G& - (G, + sC,)U7 = 0, 

- GsU; - G4U, = 0, 

(G, + G, + G,,)U, - G8U6 - G,U, = G,,U” 

(G,, + G,,)U, - G,,Us = 0, 

(G, + SC, + G, + Gs)Ua + I, - GRU4 = 0, 

(G, + SC, + G,)U7 + Z4 = 0, 

(G, + G4 + G,,)Us + Z6 - G,,U, = 0, 

G,U, - G,U, + I, = 0. 

237 

(=a) 

(28b) 

(28c) 

(284 

(28e) 

(28fl 

(2% 

(28h) 

(28i) 

Ordering the unknowns according to the indices, we get a descriptor vector 

x = (I, u, z4 u, Z6 u, us I, Uy)’ 

and a Laplace transformed descriptor system 

(SE - A)X(s) = N(s) = bU(s), 

where the column vector 

(29) 

b=(G, 0 0 G, 0 0 0 0 O)‘, 

the scalar input 

U(s) = U”, 
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and the coefficient matrix SE - A has the structure 

[SE - A] = 

0 0 0 x 0 0 

0 0 0 x 0 x 
0 0 0 0 0 x 
0 x 0 x 0 0 

0 x 0 0 0 0 

xxoxoo 
0 0 x 0 0 x 
0 x 0 0 x 0 
0 x 0 0 0 0 

x 0 0’ 
0 0 0 
x 0 0 
0 0 x 
x 0 0 

0 0 0 
0 0 0 
x 0 0 
0 x x 

* (30) 

At this point, it should be realized that we have got a descriptor system in 
the most natural way, simply by writing down the current equilibria at the 
nodes of the given active RC filter. It would demand considerable additional 
efforts to derive the state-space equations for systems of this kind. Moreover, 
in contrast to state-space representation, the coefficients of the obtained 
system of descriptor equations reflect the electrical parameters in the clearest 
way. 

Figure 16 shows the digraph G(sE - A). It is a strongly connected 
digraph. Nevertheless, we should look for hidden structure in the descriptor 
equations, taking into account that the enumeration sequence both of the 
columns and of the rows of the matrix SE - A has been chosen completely 
arbitrarily until now. Let us apply the factorization procedure of Section 5. 
First, we have to look for a cycle family of length 9 in the digraph of Figure 
16. There are several possibilities, e.g. 1 + 6 + 3 + 7 + 1, 2 + 5 + 8 -+ 
9 -+ 4 + 2, or 2 + 5 -+ 8 -+ 9 + 4 + 1 + 6 -+ 2, 3 4 7 + 3. Using the 
second one, we get a row permutation matrix 

_p, = (Q e5 e7 el eR e2 e3 e9 e4)‘, 

det_P, = (-l)“-” = -1. 

The structure matrix [_P,(sE - A)] = [SE - A] corresponds to the digraph 

G(sE - A) sketched in Figure 17. The equivalence classes of vertices may be 
easily from Figure 17: 
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123456789_- 

: 
x x 
Y x 

: 
x x 

[SE-AI- f x “: 
x Y 

x 
x 

3 
x x 

x Y x 
9_ x x x. 

I 

G(sE-A): 
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column 

FIG. 16. Structure matrix [SE - A] and its associated digraph G(sE - A). 

The partial order relations determined by the possibility of transition are the 
following ones: 

{4,6,7} + (2) + (9) + (8); 

{4,6,7} + (2) + (5) 3 (1) > 

{4,6,7} + (3). 

The permutation matrix PC may be chosen as 

PC = ( el e3 e5 e8 e9 e2 e4 e6 e7). 
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FIG. 17. Structure matrix [_P,( so - A)] = [sE - Al and the digraph G(sE - A). 

G(sE_A): 

123456769 

xx x 
Y x 

x x 
x Y 

x Y x 
x x 

x x 
x x x 
x x x 

Thus. we obtain the structure matrix 

[d;] = [P$E -A)P~] = i i 
0 0 

compare Figure 18. 
It should be noted that in Figures 16, 17 and 18 the row and column 

heads indicate the original equation indices and the original unknown indices, 
respectively, as introduced in (29) and (SO). Now, for the example system, the 
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FIG. 

graph. 

.13 5 8 9 2 4 6 7 

x x x 
x x 

x x x 
x x x 

x x x 
x x 

x x 
x x 

x x 

18. Structure matrix P,‘(sE - A)P, = P,(sE - A)P, and its associated di- 

factorization has been completed. Equation (28) has been transformed into 

/l 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

\o 0 0 

0 0 

0 0 

0 0 

1 G3 
0 -6, 
0 0 

0 0 

0 0 

0 0 

c, + SC, + G, + CM 

0 

0 

0 

-G 
0 

--cz-sc? 
-65 

0 

0 

6, + c, + PC0 

0 

0 

0 

0 

0 

- cc3 + ‘Cd 
-G3 

0 
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Obviously, the determinant of the example system splits up into a product of 

one subdeterminant of order 3 and six trivial subdeterminants of order 1: 

det(sE -A) = -det 0 = -G,(Gr, + G,,) 

x [ G4( G, + SC,) (G, + SC,) + W,G,] . 

(32) 
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