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Abstract

In this paper, we generalize a result by Berman and Billig on weight modules over Lie algebras
with polynomial multiplication. More precisely, we show that a highest weight module with an
exp-polynomial “highest weight” over an exp-polynomial Lie algebra has 7nite dimensional
weight spaces. We also get a class of irreducible weight modules with 7nite dimensional weight
spaces over generalized Virasoro algebras which do not occur over the classical Virasoro algebra.
c© 2004 Elsevier B.V. All rights reserved.
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0. Introduction

Representations of a=ne Lie algebras and the Virasoro algebra have many important
applications in mathematics and physics. One of the main ingredients of these theories
is the construction of the highest weight modules. Recently there has been substantial
activity in developing representation theories for higher rank in7nite dimensional Lie
algebras, in particular toroidal Lie algebras, generalized Virasoro algebras and quantum
torus Lie algebras (see [1 – 4,9,11–13,15,16,18,20 – 23]).
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Unlike rank one algebras (a=ne and Virasoro), the higher rank in7nite dimensional
Lie algebras do not possess the triangular decomposition (as de7ned in [19]). This is
explained by the fact that these algebras are graded by Zn with all graded components
being non-trivial, and there is no natural way of dividing Zn into a positive and a
negative parts when n¿ 1. Because of this, the standard construction of the highest
weight modules produces uninteresting representations. Nonetheless, there have been
found several explicit realizations of nice representations, using the vertex operator
approach.

In the vertex constructions the highest weight is replaced with a loop-like module
for the subalgebra of degree zero (in general, this subalgebra is non-commutative and
in7nite dimensional). Let us describe in brief these representations from the perspective
of the construction of the highest weight modules.

Let G be a Z×Zn-graded Lie algebra and let G=G−⊕G(0)⊕G+ be a decomposition
of G relative to the Z-grading. The subalgebra G(0) is an in7nite dimensional Lie alge-
bra of rank n. We take some natural module V for G(0) (usually V is either Zn-graded
or 7nite dimensional). Parallel to the construction of a highest weight module, we let
G+ act on V trivially, and introduce the induced module

M̃ (V ) = IndGG(0)+G+ V � U (G−) ⊗C V:

If V is Zn-graded then M̃ (V ) inherits a Z×Zn-grading, and it is Z-graded when V is
7nite dimensional.

The di=culty here is that M̃ (V ) will have in7nite dimensional homogeneous com-
ponents (and thus will not have a character). Nonetheless the explicit vertex opera-
tor constructions show that in some cases M̃ (V ) has quotients with 7nite dimensional
homogeneous components. This situation has been clari7ed in [1], where it was proved
that M̃ (V ) has a graded factor-module M (V ) with 7nite dimensional components pro-
vided that G is a polynomial Lie algebra and V is a polynomial module. The poly-
nomiality condition means that the structure constants of the Lie algebra and of the
module are given by polynomial expressions (see Section 1 for the precise de7nitions).
However this left out some important examples, notably quantum torus Lie algebras.
In this paper we expand the class of Lie algebras and modules for which the theorem
is applicable to quantum torus Lie algebras. We prove that M (V ) has 7nite dimen-
sional homogeneous components when G is an exp-polynomial Lie algebra and V is
an exp-polynomial module.

We illustrate our de7nitions and theorems with a sequence of 24 examples.
The paper is organized as follows. In Section 1, we de7ne exp-polynomial Lie

algebras, exp-polynomial modules and give the statement of the main results (Theorems
1.5 and 1.7). We provide numerous examples (old and new) of such Lie algebras and
modules as well as give examples of applications of the main theorems. In Section 2,
we 7rst establish the extended Vandermonde determinant formula, and then give the
proof of Theorems 1.5 and 1.7. In Section 3, we show a similar but stronger result for
generalized Virasoro algebras to give a class of irreducible weight modules with 7nite
dimensional weight spaces over generalized Virasoro algebras which do not occur over
the classical Virasoro algebra. These irreducible weight modules are recently proved
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to be the only irreducible weight modules with 7nite dimensional weight spaces over
higher rank Virasoro algebras besides modules of intermediate series [16].

1. Exp-polynomial Lie algebras and exp-polynomial modules

Let C be the complex number 7eld. We assume that all Lie algebras and vector
spaces are over C in this paper, although C can be replaced by any 7eld of character-
istic 0.

De�nition 1.1. The algebra of exp-polynomial functions in r variables, n1; : : : ; nr , is
the algebra of functions f(n1; : : : ; nr) : Zr → C generated as an algebra by functions
nj and anj , where a∈C∗ = C \ {0}, j = 1; : : : ; r.

An exp-polynomial function may be written as a 7nite sum

f(n1; : : : ; nr) =
∑
k∈Zr+

∑
a∈(C∗)r

ck;an
k1
1 : : : nkrr a

n1
1 : : : anrr ;

where ck;a ∈C, k = (k1; : : : ; kr) with kj¿ 0, and a = (a1; : : : ; ar).
It will be important for us that an exp-polynomial function f(n1; : : : ; nr) has the

property that the function f(n1 +m1; : : : ; nr +mr) is also exp-polynomial as a function
in 2r variables.

De�nition 1.2. Let G =
⊕

�∈Zn G� be a Zn-graded Lie algebra and K be an index set.
Then G is said to be an exp-polynomial Lie algebra if G has a homogeneous spanning
set {gk(�)|k ∈K; �∈Zn} with gk(�) ∈G�, and there exists a family of exp-polynomial
functions {fs

k;r(�; �)|k; r; s∈K} in the 2n variables �j; �j and where for each k; r the
set {s|fs

k;r(�; �) �= 0} is 7nite, such that

[gk(�); gr(�)] =
∑
s∈K

fs
k; r(�; �)gs(� + �) for k; r ∈K; �; �∈Zn: (1.1)

This homogeneous spanning set {gk(�)|k ∈K; �∈Zn} is called a distinguished spanning
set.

If the functions fs
k;r(�; �) in (1.1) are in fact polynomials, we say that G is a

polynomial Lie algebra (cf. De7nition 1.6 in [1]).

Example 1. Let g be a 7nite dimensional Lie algebra with a basis B= {gk}k∈K . Then
the toroidal Lie algebra G = C[t±1 ; : : : ; t

±
n ] ⊗ g is a polynomial Lie algebra with the

distinguished spanning set gk(�)= t�gk , �∈Zn, where here and elsewhere in this paper
t� = t�1

1 : : : t�nn . The Lie bracket in G is

[gk(�); gr(�)] = [gk ; gr](� + �):
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Example 2. Let Rn=C[t±1
1 ; : : : ; t±1

n ]. The Witt algebra (or Cartan type W Lie algebra)
is the Lie algebra Wn = Der(Rn) = Span{t�@i|�∈Zn; 16 i6 n}, where @i = ti(@=@ti).
The bracket in Wn is given by

[t�@i; t�@j] = �it�+�@j − �jt�+�@i:

Thus Wn is a polynomial Lie algebra (see [6]).

Example 3. The following family of algebras plays an important role in the represen-
tation theory of toroidal Lie algebras (see [1]). Let �1

n be the space of 1-forms on a
torus: �1

n=
∑n

p=1 Rnkp, where kp=t−1
p dtp. We de7ne a 2-parameter family of algebras

V (�; �) = Wn ⊕ �1
n=dRn:

The distinguished spanning set is

{dj(�); kj(�)|�∈Zn; j = 1; : : : ; n};
where dj(�) = t�@j, kj(�) = t�kj. The Lie bracket in V (�; �) is given by

[di(�); kj(�)] = �ikj(� + �) + !ij
n∑

p=1

�pkp(� + �);

[di(�); dj(�)] = �idj(� + �) − �jdi(� + �) + (��i�j + ��i�j)
n∑

p=1

�pkp(� + �);

[ki(�); kj(�)] = 0:

Note that the distinguished spanning set for this polynomial Lie algebra is not a basis
because of the linear dependencies between the kj(�): �1k1(�) + · · · + �nkn(�) = 0.

Next we will give an example of a Lie algebra which is exp-polynomial, but not
polynomial.

Example 4. Consider an associative quantum torus

Cq =
⊕

i∈Z;�∈Zn
Cti0t�

generated by the variables t±0 ; t
±
1 ; : : : ; t

±
n , where t1; : : : ; tn commute and t0 does not com-

mute with t1; : : : ; tn, but satis7es the relations: tjt0 =qjt0tj, for some q1; : : : ; qn ∈C∗. The
Lie algebra which is obtained from the associative algebra Cq is an exp-polynomial
Lie algebra with the distinguished set ti0(�) = ti0t

�, and the Lie bracket given by
[ti0(�); tj0(�)] = (qj� − qi�)ti+j0 (� + �). Here qj� = qj�1

1 : : : qj�nn .

De�nition 1.3. Let G=
⊕

�∈Zn G� be an exp-polynomial Lie algebra. A G module V =⊕
�∈Zn V� is called a Zn-graded exp-polynomial module if V has a basis {vj(�)}j∈J;�∈Zn ,

and there exists a family of exp-polynomial functions hsk; j(�; �) for k ∈K , j; s∈ J such
that

gk(�)vj(�) =
∑
s∈J

hsk; j(�; �)vs(� + �);
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where {gk(�)}k∈K is the distinguished spanning set for G, and for each k; j the set
{s|hsk; j(�; �) �= 0} is 7nite. The homogeneous components of the Zn-grading on V =⊕

�∈Zn V� are given by V� = Span {vj(�)}j∈J .

Note that if G is a Lie algebra with polynomial multiplication and all hsk; j are
polynomial functions, then the module V is actually a polynomial module de7ned in
De7nition 1.8 of [1].

Example 5. Let V1; : : : ; Vk be 7nite dimensional modules for a 7nite dimensional Lie
algebra g. Fix q1; : : : ; qk ∈ (C∗)n. We de7ne on the space V = Rn ⊗ V1 ⊗ · · · ⊗ Vk the
structure of an exp-polynomial module for the toroidal Lie algebra G = Rn ⊗ g by

g(�)v1 ⊗ · · · ⊗ vk(�) =
k∑

p=1

q�pp v1 ⊗ · · · ⊗ (gvp) ⊗ · · · ⊗ vk(� + �);

where v1 ⊗ · · · ⊗ vk(�) = t�v1 ⊗ · · · ⊗ vk . It is easy to see that in general V is an
exp-polynomial module and not a polynomial module.

This module V was studied in several papers like [8].

Example 6. A tensor module for the Witt algebra Wn is a polynomial module. Let V0

be a 7nite dimensional gln module. Then the tensor module V = Rn ⊗ V0 is a module
for Wn under the action

t�@jv(�) = �jv(� + �) +
n∑

p=1

�p(Epjv)(� + �);

where v(�) = t� ⊗ v, and Epj are the elementary matrices in gln. The families {vi(�)}
with {vi} being a basis of V0, form a distinguished basis in V , for which the structure
constants are polynomials.

This module V was initially de7ned in [21] and later studied in several references
like [10].

We extend De7nition 1.6 from [1] to give the following

De�nition 1.4. Let G be a Zn-graded exp-polynomial Lie algebra. We call this algebra
Zn-extragraded if G has another Z-gradation

G =
⊕
i∈Z

G(i) (1.2)

and the set K is a disjoint union of <nite subsets Ki,

K =
⋃
i∈Z

Ki;

such that the elements of the homogeneous spanning set {gk(�)|k ∈Ki; �∈Zn} are
homogeneous of degree i under this new Z-gradation and span G(i).
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Many important in7nite dimensional Lie algebras are in fact Zn-extragraded exp-
polynomial Lie algebras. Here we give some examples.

Example 8. We slightly modify Example 1 to get an extragraded algebra. Adding
an extra variable t0, we get an n + 1 toroidal Lie algebra Rn+1 ⊗ g, where Rn+1 =
C[t±0 ; t

±
1 ; : : : ; t

±
n ]. We consider a Zn-grading on this algebra by degrees in t1; : : : ; tn, and

a Z-grading by degree in t0. The distinguished spanning set is

ti0gk(�) = ti0t
�gk

with i∈Z, �∈Zn, and {gk} being a basis of g.

The previous example can be generalized in two ways:

Example 9. Let G(0) be an exp-polynomial Lie algebra with G(0)
� being 7nite dimen-

sional for all �∈Zn. Then G =C[t0; t−1
0 ] ⊗G(0) is an extragraded exp-polynomial Lie

algebra.

Example 10. Let g be a Z-graded Lie algebra with 7nited dimensional homogeneous
components. Then G = g ⊗ Rn is an extragraded exp-polynomial Lie algebra.

Remark. In the de7nition of an exp-polynomial Lie algebra we can relax the require-
ment that each family {gk(�)} be de7ned for all �∈Zn. We may instead require that
{gk(�)} is de7ned for � in some sublattice Lk ⊂ Zn. Of course in this case we should
have a restriction so that the expression in the right-hand side of (1.1) is well de7ned.

Example 11. With this relaxed de7nition we may consider the following as an
extragraded exp-polynomial Lie algebra:

G = g ⊗ Rn+1 ⊕ DerC[t0; t−1
0 ]

for a 7nite dimensional Lie algebra g with the distinguished spanning set {ti0gk(�); ti0@0|
i∈Z; �∈Zn; gk ∈B}. Here the sublattice that corresponds to the elements ti0@0 is L=(0).

Example 12. Introducing an extra variable t0 we can construct an extragraded version
of the Lie algebra from Example 3:

V (�; �) = Der Rn+1 ⊕ �1
n+1=dRn+1:

The Z-grading is by degree in t0, and the distinguished spanning families are ti0dj(�)=
ti0t

�@j and ti0kj(�) = ti0t
�kj.

Example 13. The exp-polynomial Lie algebra from Example 4 is actually extragraded.
The Z-grading on it is by degree in t0.

Example 14. Let Rn+1 = C[t±1
0 ; t±1

1 ; : : : ; t±1
n ], Wn+1 = Der(Rn+1) = Span {ti0t�@k ; ti0t�@0|

i∈Z; �∈Zn; 16 k6 n}. The Lie bracket in Wn+1 is given by

[ti0t
�@k ; t

j
0t
�@s] = ti+j0 t�+�(�k@s − �s@k); 16 k; s6 n;
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[ti0t
�@0; t

j
0t
�@s] = ti+j0 t�+�(j@s − �s@0); 16 s6 n;

[ti0t
�@0; t

j
0t
�@0] = (j − i)ti+j0 t�+�@0:

It can be easily seen that Wn+1 is a Zn-extragraded Lie algebra.
Cartan type S Lie algebras Sn+1 are also Zn-extragraded polynomial Lie algebras.

However we do not know whether Cartan type H or K Lie algebras are Zn-extragraded
polynomial Lie algebras.

Example 15. The Virasoro-like algebra L over C is the Lie algebra with a C-basis
{Lx|x∈Z2} and subject to the following commutator relations:

[Lx; Ly] = det

(
y

x

)
Lx+y ∀x; y∈Z2;

where x = (x(1); x(2)), y = (y(1); y(2)),

(
y

x

)
=

(
y(1) y(2)

x(1) x(2)

)
. For more details, see

[7]. It can be easily seen that L is a Z1-extragraded Lie algebra.

From now on we assume that G is a Zn-extragraded Lie algebra with gradations
(1.1) and (1.2), i.e., G =

⊕
i∈Z; �∈Zn G

(i)
� is a Zn+1-graded Lie algebra which has a

homogeneous spanning set {g(i)
k (�)|k ∈Ki; (i; �) ∈Zn+1} with g(i)

k (�) ∈G(i)
� , and there

exists a family of exp-polynomial functions {fs
k;m; i; j(�; �)} in the 2n variables �p; �p

where k ∈Ki, m∈Kj, s∈Ki+j and where for each k; m; i; j the set {s|fs
k;m; i; j(�; �) �= 0}

is 7nite, such that

[g(i)
k (�); g(j)

m (�)] =
∑
s∈Ki+j

fs
k;m; i; j(�; �)g(i+j)

s (� + �); for �; �∈Zn: (1.3)

Let G+ =
⊕

i¿1 G
(i), G− =

⊕
i6−1 G

(i). Then we have the decomposition

G = G− ⊕ G(0) ⊕ G+: (1.4)

Note that G(0) is a Zn-graded exp-polynomial Lie algebra.
Following the construction in [1], we now introduce our Zn+1-graded module over

Zn+1-graded Lie algebra G.
Assume V =

⊕
�∈Zn V� is a Zn-graded G(0) module with exp-polynomial action as

de7ned in De7nition 1.3. We can de7ne the action of G+ on V by G+V = 0 and then
consider the induced module

M̃ (V ) = IndGG(0)+G+ V � U (G−) ⊗C V: (1.5)

It is clear that M̃ (V ) is a Zn+1-graded module over G and

M̃ (V ) =
⊕

i60;�∈Zn
M̃ (V )(i)

� ; (1.6)

where M̃ (V )(i)
� is naturally de7ned, for example, M̃ (V )(0)

� = V�. In general, the homo-
geneous components M̃ (V )(i)

� with i¡ 0 are in7nite dimensional.
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It is easy to see that M̃ (V ) has a unique maximal proper Zn+1-graded submodule
M̃ rad which intersects trivially with V . Let

M (V ) = M̃ (V )=M̃ rad : (1.7)

Then we have the induced Zn+1-gradation

M (V ) =
⊕

i60;�∈Zn
M (V )(i)

� : (1.8)

The main result of this paper is the following theorem.

Theorem 1.5. Assume that G is a Zn-extragraded Lie algebra with grading (1.3),
V =

⊕
�∈Zn V� is a Zn-graded exp-polynomial G(0) module as de<ned in De<nition

1.3 with J being <nite. Then the Zn+1-graded G module M (V ) de<ned in (1.7) has
<nite dimensional homogeneous spaces, i.e., dimM (V )(i)

� ¡∞, for all i∈Z, �∈Zn.

If G(0) is a polynomial Lie algebra and V is a polynomial Zn-graded G(0) module,
the claim of Theorem 1.5 was proved in [1], Theorem 1.12.

Example 16. Let us consider an n + 1-toroidal Lie algebra G = Rn+1 ⊗ g as de7ned
in Example 8. Its component G(0) is an n-toroidal Lie algebra. We consider a module
V = Rn ⊗ V1 ⊗ · · · ⊗ Vk for G(0) which was described in Example 5. By the above
theorem, the G module M (V ) has 7nite dimensional homogeneous components. Such
modules were studied by Chari [5] and Rao [8].

Example 17. Let us consider the Virasoro-like algebra L as de7ned in Example 15. Let
L(i) =

⊕
k∈Z CLi;k . Fix an exp-polynomial function f(k). Then V =

⊕
j∈Z Cvj becomes

an exp-polynomial L(0) module via

L0; k vj = f(k)vj+k :

Then M (V ) has 7nite dimensional homogeneous spaces.

Example 18. Consider a Witt algebra Wn+1 = DerC[t±0 ; t
±
1 ; : : : ; t

±
n ], which we view

as an extragraded polynomial Lie algebra with Z-grading given by degree in t0. The
zero component with respect to this grading is Wn ⊕ Rn@0. Consider a tensor module
V = Rn ⊗ V0 for Wn as discussed in Example 6. We let Rn@0 act upon it by shifts
t�@0 · t� ⊗ v = dt�+� ⊗ v for some 7xed constant d∈C. By Theorem 1.5 the module
M (V ) is a weight module with 7nite dimensional weight spaces.

Example 19. Let V (�; �) be the extragraded Lie algebra from Example 12. Its zero
component with respect to the Z-grading is

Wn ⊕ Rn@0 ⊕
 n∑

p=0

Rnkp=dRn

 :
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Consider a tensor module V from the previous example on which we de7ne the action
of 1-forms of degree zero (in t0) as follows:

t�kp · t� ⊗ v = 0; p = 1; : : : ; n;

t�k0 · t� ⊗ v = ct�+� ⊗ v; for some c∈C:
Again by Theorem 1.5 the module M (V ) is a weight module with 7nite dimen-
sional weight spaces. These modules and their irreducible quotients were studied in
[1,3,4,9,15].

Example 20. Let G be the quantum torus Lie algebra from Example 4. We consider a
module V = C[t±1 ; : : : ; t

±
n ] for G(0) = C[t±1 ; : : : ; t

±
n ] with the action de7ned as follows:

t� · t� =f(�; �)t�+�, where f(�; �) is some 7xed exp-polynomial function. By Theorem
1.5 the module M (V ) has 7nite dimensional homogeneous components.

Example 21. Let g be a simple 7nite dimensional Lie algebra with the triangular de-
composition g=g− ⊕h⊕g+. We consider a 7nite Z-grading on g compatible with this
decomposition. As explained in Example 10 above, the algebra G=Rn ⊗g is an extra-
graded polynomial Lie algebra. Its zero component is the abelian algebra G(0) =Rn⊗h.
Consider a G(0) module V =C[t±1 ; : : : ; t

±
n ] with the action t�hk · t� =fk(�; �)t�+�, where

{hk} forms a basis of h and {fk(�; �)} are some 7xed exp-polynomial functions. Ap-
plying again Theorem 1.5 we conclude that M (V ) is a weight module with 7nite
dimensional weight spaces.

We would like to discuss now a 7nite dimensional version of the exp-polynomial
modules.

De�nition 1.6. Let G =
⊕

�∈Zn G� be an exp-polynomial Lie algebra as de7ned in
De7nition 1.2. A G module V is called a <nite dimensional exp-polynomial module
if V has a 7nite basis {vj}j∈J , and there exists a family of exp-polynomial functions
hsk; j(�) for k ∈K , j; s∈ J such that

gk(�)vj =
∑
s∈J

hsk; j(�)vs;

where {gk(�)}k∈K;�∈Zn is the distinguished spanning set for G.

Let G be an extragraded exp-polynomial Lie algebra and let V be a 7nite dimensional
exp-polynomial module for G(0). Just as in (1.5) and (1.7) we de7ne a Z-graded G
module M̃ (V ) and its Z-graded factor-module M (V ) = M̃ (V )=M̃ rad.

Theorem 1.7. Let G be a Zn-extragraded Lie algebra with grading (1.3), V be a
<nite dimensional exp-polynomial G(0) module. Then the Z-graded G module M (V )
has <nite dimensional homogeneous spaces, i.e., dimM (V )(i) ¡∞, for all i∈Z.

Let us now give some examples of the applications of this theorem.
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Example 22. Let G be an n+1-toroidal Lie algebra G=Rn+1⊗g as de7ned in Example
8. Its component G(0) is an n-toroidal Lie algebra. Let V1; : : : ; Vk be 7nite dimensional
modules for g, and let q1; : : : ; qk ∈ (C∗)n. We de7ne a structure of a G(0) module on
the 7nite dimensional space V = V1 ⊗ · · · ⊗ Vk in the following way:

g(�)v1 ⊗ · · · ⊗ vk =
k∑

p=1

q�pp v1 ⊗ · · · (gvp) ⊗ · · · ⊗ vk :

It is easy to see that V is a 7nite dimensional exp-polynomial module for G(0). The
induced module M̃ (V ) will have in7nite dimensional homogeneous components, how-
ever, by Theorem 1.7, the homogeneous components of its factor M (V ) are 7nite
dimensional.

The next two examples are modi7cations of Examples 20 and 21.

Example 23. Let G be the quantum torus Lie algebra from Example 4. We con-
sider a one-dimensional module C for G(0) = C[t±1 ; : : : ; t

±
n ] with the action de7ned

as follows: t� · 1 = f(�)1, where f(�) is some 7xed exp-polynomial function (high-
est weight). By Theorem 1.7 the module M (C) has 7nite dimensional homogeneous
components.

Example 24. Let g be a simple 7nite dimensional Lie algebra with the triangular de-
composition g=g−⊕h⊕g+. As explained in Example 21 above, the algebra G=Rn⊗g
is an extragraded polynomial Lie algebra. Its zero component is the abelian alge-
bra G(0) = Rn ⊗ h. Let {h1; : : : ; h‘} be a basis of h. Fix exp-polynomial functions
f1(�); : : : ; f‘(�) (highest weight) and consider a one-dimensional G(0) module C with
the action t�hk · 1 =fk(�)1. Applying again Theorem 1.7 we conclude that M (C) is a
Z-graded module with 7nite dimensional homogeneous components.

2. Proof of the main theorems

In this section we shall prove Theorems 1.5 and 1.7. The key step in the proof
of Theorem 1.12 in [1] was the Vandermonde determinant argument. Here we would
need a generalization of the Vandermonde determinant formula for the exp-polynomial
functions.

Lemma 2.1. Let a1; : : : ; am be elements of a <eld, s1; s2; : : : ; sm ∈N with s1 + · · · +
sm = s. Consider the following sequence of s exp-polynomial functions in one integer
variable: f1(n) = an1, f2(n) = nan1; : : : ; fs1 (n) = ns1−1an1, fs1+1(n) = an2; : : : ; fs1+s2 (n) =
ns2−1an2; : : : ; fs(n) = nsm−1anm. Let V = (vpk) be the square s × s matrix where vpk =
fk(p− 1), p; k = 1; : : : ; s. Then

det (V ) =
m∏
j=1

(sj − 1)!! asj(sj−1)=2
j

∏
16i¡j6m

(aj − ai)sisj : (2.1)
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Here we use the notation m!! = m! × (m − 1)! × · · · × 2! × 1! with the convention
0!! = 1.

Proof. This elementary lemma may be proved by induction on s using elementary
row and column transformations of the matrix. We will give here just an outline of
the proof. The basis of induction case s = 1 is trivial. To establish the inductive step,
one begins by applying elementary row operations to the matrix, the same as in the
proof of the ordinary Vandermonde determinant formula: subtract from the last row
the preceding row number s − 1 multiplied by a1, then subtract from row s − 1 the
preceding row s − 2 multiplied by a1, and so on. This will produce a matrix that has
1 as the top entry of the 7rst column, and the rest of the entries in the 7rst column
being zeros.

Next we expand this determinant along the 7rst column, which will yield an (s −
1) × (s − 1) matrix with the same determinant. Finally, applying elementary column
operations, it is possible to bring this (s−1)×(s−1) matrix to the form corresponding
to the sequence of functions a1an1, 2a1nan1, 3a1n2an1; : : : ; (s1 − 1)a1ns1−2an1, (a2 − a1)an2,
(a2 − a1)nan2; : : : ; (a2 − a1)ns2−1an2, (a3 − a1)an3; : : : ; (am − a1)n(sm−1)anm.

Pulling out the factors a1; 2a1; 3a1; : : : ; (s1 − 1)a1 from the 7rst s1 − 1 columns, and
(aj − a1) from the remaining columns, we bring the matrix to the extended Vander-
monde form of rank s − 1. To establish the inductive step, we only need to multiply
the expression for the extended Vandermonde determinant of rank s − 1 given by the
induction assumption by the factors we pulled out of the columns.

Corollary 2.2. In the notation of the previous lemma, let a1; : : : ; am be distinct non-
zero elements of a <eld of characteristic greater or equal to the maximum of s1; : : : ; sm,
or of characteristic 0. Then the set of exp-polynomial functions f1(n)=an1; : : : ; fs(n)=
nsm−1anm is linearly independent.

Proof. From the determinant formula (2.1) we see that the vectors of values of the
functions (fj(0); fj(1); : : : ; fj(s − 1)), j = 1; : : : ; s, are linearly independent.

Corollary 2.3. Let the exp-polynomial functions f1(n); : : : ; fs(n) satisfy the conditions
of Lemma 2.1 and Corollary 2.2. Let {ck} be a sequence with only <nitely many
non-zero terms. The sequence {ck} satis<es an in<nite system of linear
equations

∑
k

 s∑
j=1

dkjfj(n)

 ck = 0 for all n∈Z (2.2)

if and only if it satis<es a <nite system

∑
k

dkjck = 0 for all j = 1; : : : ; s: (2.3)
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Proof. Since

∑
k

 s∑
j=1

dkjfj(n)

 ck =
s∑

j=1

fj(n)
∑
k

dkjck ;

we see that (2.3) implies (2.2).
Suppose now that (2.2) holds. Evaluating (2.2) at n = 0; : : : ; s − 1, we get that

s∑
j=1

fj(n)
∑
k

dkjck = 0 for n = 0; : : : ; s − 1: (2.4)

Now s equations of (2.4) are linear combinations of s equations of (2.3). The change of
basis matrix from (2.3) to (2.4) is an extended Vandermonde matrix and is invertible,
since by Lemma 2.1 it has a non-zero determinant. Hence, the equations of (2.3) are
linear combinations of equations of (2.4) and thus (2.3) holds.

The last corollary also admits a straightforward multi-variable generalization.

Corollary 2.4. Let f1(n1; : : : ; nr); : : : ; fs(n1; : : : ; nr) be a set of distinct exp-polynomial
functions of the form fj(n1; : : : ; nr) = np1

1 : : : npr
r bn1

1 : : : bnrr , such that exponents pi’s
are less than the characteristic of the <eld, if the <eld has <nite characteristic. Let
{c�}�∈Zm be a set with only <nitely many non-zero terms. The set {c�} satis<es an
in<nite system of linear equations:

∑
�∈Zm

 s∑
j=1

d�jfj(n1; : : : ; nr)

 c� = 0 for all (n1; : : : ; nr) ∈Zr (2.5)

if and only if it satis<es a <nite system∑
�∈Zm

d�jc� = 0 for all j = 1; : : : ; s: (2.6)

Now we are ready to give a proof of Theorem 1.5.
Proof of Theorem 1.5. For the Zn-graded G(0) module V =

⊕
�∈Zn V� as de7ned

in De7nition 1.3, we have used gi(�) to denote g(0)
i (�). We stress here that both

{k|g(i)
k (�) �= 0} for any 7xed (i; �) ∈Zn+1 and J in De7nition 1.3 are 7nite sets. The

proof of the theorem will amount to proving two claims.

Claim 1. Let us <x i1; i2; : : : ; is ∈N, k1; k2; : : : ; ks, with kp ∈K−ip , k ∈ J and �∈Zn.
There exist exp-polynomial functions f1(�); : : : ; fd(�) in ns variables � such that a
linear combination:∑

�=(�1 ;:::;�s)∈Zns
b� g

(−i1)
k1

(�1)g(−i2)
k2

(�2) · · · g(−is)
ks (�s)vk(� − �1 − · · · − �s) (2.7)
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belongs to M̃ rad if and only if the set {b�}�∈Zns (with <nitely many non-zero elements)
satis<es a <nite system of linear equations:∑

�∈Zns
b�fp(�) = 0; for p = 1; : : : ; d:

Proof of Claim 1. Denote the sum in (2.7) by x. We have that x∈ M̃ rad if and only if

g( j1)
m1

(11) : : : g( jr)
mr

(1r)x = 0

for all j1; : : : ; jr ∈N with j1 +· · ·+jr=i1 +· · ·+is, m1 ∈Kj1 ; : : : ; mr ∈Kjr , 11; : : : ; 1r ∈Zn.
From the PoincarQe–BirkhoR–Witt argument and the fact that the Lie algebra G and

the module V are exp-polynomial, it follows that

g( j1)
m1

(11) : : : g( jr)
mr

(1r)x =
∑
�∈Zns

b�
∑
‘∈J

h‘(�; 1)v‘(� + 11 + · · · + 1r):

The functions h‘ are exp-polynomial in � = (�1; : : : ; �s) and 1 = (11; : : : ; 1r), and
depend on j1; : : : ; jr;m1; : : : ; mr . We get that x∈ M̃ rad if and only if {b�} satis7es the
system of equations:∑

�∈Zns
b�
∑
‘∈J

h‘(�; 1) = 0 (2.8)

for all 1∈Znr , ‘∈ J , j1; : : : ; jr ∈N with j1 + · · ·+jr = i1 + · · ·+ is, m1 ∈Kj1 ; : : : ; mr ∈Kjr .
Since j1; : : : ; jr ∈N are bounded by the condition j1+· · ·+jr=i1+· · ·+is and m1; : : : ; mr

belong to 7nite sets, we conclude that only 7nitely many functions h‘(�; 1) appear in
system (2.8). Nonetheless system (2.8) has in7nitely many equations because 1 has an
in7nite range. Our goal is to reduce (2.8) to a system with 7nitely many equations.

A exp-polynomial function h‘(�; 1) could be expanded in 1:

h‘(�; 1) =
∑
p

fp(�)a1p1
!p ;

where ap ∈Cnr , !p ∈Znr and the summation in p is 7nite. By Corollary 2.4, system
(2.8) is equivalent to a 7nite system of linear equations:∑

�∈Zns
b�fp(�) = 0

with a 7nite number (say, d) of exp-polynomial functions fp(�). This establishes
Claim 1.

Claim 2. In the notation of Claim 1, the set{
g(−i1)
k1

(�1) : : : g(−is)
ks (�s)vk(� − �1 − · · · − �s)

}
�∈Zns

spans a subspace of dimension less or equal to d in M (−i1−···−is)
� (V ).
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Proof of Claim 2. To prove this claim we need to show that any d+ 1 vectors in this
set are linearly dependent. Let B be a subset in Zns of size d + 1. The homogeneous
system of d linear equations∑

�∈B
b�fp(�) = 0

in d + 1 variables {b�}�∈B has a non-trivial solution. By Claim 1, the set

{g(−i1)
k1

(�1) : : : g(−is)
ks (�s)vk(� − �1 − · · · − �s)}�∈B

is linearly dependent modulo M̃ rad. Claim 2 is now proved.
Theorem 1.5 now follows immediately from Claim 2 since the space M (−i)

� is
spanned by the elements

{g(−i1)
k1

(�1) : : : g(−is)
ks (�s)vk(� − �1 − · · · − �s)}

with i1+· · ·+is=i; i1; : : : ; is ∈N. Thus there are 7nitely many possibilities for (i1; : : : ; is),
and the indices k1; : : : ; ks and k run over 7nite sets K−i1 ; : : : ; K−is and J .

Proof of Theorem 1.7. The proof of Theorem 1.7 may be derived from the proof of
Theorem 1.5 by forgetting the Zn-grading on the module V and replacing expressions
vk(� − �1 − · · · − �s) etc., simply with vk .

3. Weight modules over generalized Virasoro algebras

The Virasoro algebra Vir := Vir[Z] over C is the Lie algebra with the C-basis
{c; di|i∈Z} and subject to the following commutator relations:

[c; di] = 0;

[di; dj] = (j − i)di+j + !i;−j
i3 − i

12
c for i; j∈Z:

The structure and representation theory for the Virasoro algebra has been well de-
veloped. For details, we refer the readers to [16], the book [14], and the references
therein.
Generalized Virasoro algebras Vir[M ] in characteristic 0 were introduced by Pat-

era and Zassenhaus in [20], which are Lie algebras obtained from the above Virasoro
algebra de7nition by replacing the index group Z with an arbitrary non-zero subgroup
M of the base 7eld C, which are also the one-dimensional universal central exten-
sions of the generalized Witt algebras [6]. When M � Zn and n¿ 1, the algebras
Vir[M ] are called higher rank Virasoro algebras. Representations for Generalized Vi-
rasoro algebras Vir[M ] have been studied in several references. In [23], all weight
modules over any generalized Virasoro algebra with weight multiplicity 1 were deter-
mined, which are so-called intermediate series modules. In [18], it was proved that all
irreducible weight modules with 7nite dimensional weight spaces over the generalized
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Virasoro algebra Vir[Q] over C are intermediate series modules (where Q is the ra-
tional number 7eld). In [13], the irreducibility of Verma modules over the generalized
Virasoro algebra Vir[M ] over any characteristic 0 7eld was completely determined.
In [22], irreducible weight modules over higher rank Virasoro algebras with 7nite di-
mensional weight spaces were divided into two subclasses. One of these subclasses is
called 7nitely dense modules, and from De7nition 2.10 in [22], these 7nitely dense
modules seem to have very complicated structure, and [22] lacks any classi7cation of
such modules (actually in this section you will see that those modules have very nice
structures). Fortunately, this classi7cation problem, i.e., the classi7cation of irreducible
weight modules with 7nite dimensional weight spaces over higher rank Virasoro al-
gebras has been completely solved in [16] by using the following construction of
such modules. The classi7cation of irreducible weight modules with 7nite dimensional
weight spaces over the classical Virasoro algebra was solved by Mathieu in [17] by
using an entirely diRerent method.

In this section we assume that M = Z⊕M0 ⊂ C where M0 is a non-zero subgroup
of C. We simply denote L = Vir[M ]=Cc, and for any i∈Z we denote

Li =
⊕
a∈M0

Cdi+a;

L+ =
⊕
i∈Z+

Li; L− =
⊕
i¡0

Li:

Then L0 � Vir[M0]=Cc.
For any �; �∈C, we have the L0 module V (�; �;M0) =

⊕
a∈M0

Cva subject to the
actions

davb = (b + � + a�)va+b for a; b∈M0: (3.1)

We extend the L0 module structure on V (�; �;M0) to an L+ + L0 module structure by
de7ning

L+V (�; �;M0) = 0: (3.2)

Then we obtain the induced L module

Ṽ = Ṽ (�; �;M0) = IndLL++L0
V (�; �;M0) = U (L)

⊗
U (L++L0)

V (�; �;M0);

where U (L) is the universal enveloping algebra of the Lie algebra L. It is clear that,
as vector spaces, Ṽ � U (L−) ⊗C V (�; �). The module Ṽ has a unique maximal proper
submodule J trivially intersecting with V (�; �;M0). Then we obtain the quotient module

V = V (�; �;M0) = Ṽ =J: (3.3)

It is clear that V is uniquely determined by the constants �; �, and V=
⊕

i∈Z+
V−i+�+M0

where

V−i+�+M0 =
⊕
a∈M0

V−i+�+a; V−i+�+a = {v∈V |d0v = (−i + � + a)v}: (3.4)
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We can similarly de7ne Ṽi+�+M0 and Ṽ−i+�+a. It is easy to see that

dim Ṽ−i+�+a = ∞; for i∈N; a∈M0:

It will be diRerent for V−i+�+a.
Note that if M0 � Zn, then L is a Zn-extragraded Lie algebra, V (�; �;M0) is a L

module with polynomial action, and V (�; �;M0)=M (V (�; �;M0)) as de7ned in Section
2. In this case, from Theorem 1.5, we know that V (�; �;M0) has 7nite dimensional
weight spaces, i.e., dim V−i+�+a ¡∞ for all i∈N, a∈M0. More generally (without
the restriction M0 � Zn), we have

Theorem 3.1. The module V (�; �;M0) de<ned in (3.3) over Vir[M ] has <nite dimen-
sional weight spaces, more precisely, dim V−i+�+a6 1 · 3 · · · · · (2i + 1) for all i∈N,
a∈M0.

Proof. Since L− is generated by L−1, and L+ is generated by L1, we deduce that

L−1V−i+�+M0 = V−i−1+�+M0 ; for i∈Z+;

and, if v∈V−i+�+M0 where i∈N, satis7es L1v= 0 then v= 0. We also know that, for
any n∈N, a∈M0,

V−n+�+a = span{d−1+and−1+an−1 · · ·d−1+a1va0 |ai ∈M0;

with a0 + a1 + · · · + an = a}:

Claim 1. For any n∈Z+, and bi ∈C, �i ∈M0, (only <nitely many bi are not zero):

(a) if ∑
i∈Z

�ki bi = 0; for 06 k6 2n + 2; (3.5)

then ∑
i∈Z

bid−1+�id−1+an · · ·d−1+a1va0−�i = 0; (3.6)

(b) if ∑
i∈Z

�ki bi = 0; for 06 k6 2n + 1; (3:5′)

then ∑
i∈Z

bid�id−1+an · · ·d−1+a1va0−�i = 0 (3.7)

for all a0; a1; : : : ; an ∈M0, where all the sums are <nite.

Now we 7rst consider n = 0. Suppose (3:5′) holds for n = 0. We have∑
i∈Z

bid�i va0−�i =
∑
i∈Z

bi(a0 − �i + � + ��i)va0 = 0;
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which is (3.7) for n=0. Now suppose (3.5) holds for n=0. For any 1∈M0, we deduce

d1+1

(∑
i∈Z

bid−1+�i va0−�i

)
=
∑
i∈Z

bi(−2 + �i − 1)d1+�i va0−�i

=
∑
i∈Z

bi(−2 + �i − 1)(a0 − �i + � + �(1 + �i))va0+1 = 0;

to yield
∑
i∈Z

bid−1+�i va0−�i = 0, which is (3.6) for n = 0.

Suppose our claim holds for any n6m for a 7xed m∈Z+. Now we consider the
claim for n=m+ 1. To get (3.7) for n=m+ 1, we assume (3:5′) for n=m+ 1. For
any 1∈M0, we compute

d1+1

(∑
i∈Z

bid�id−1+am+1 · · ·d−1+a1va0−�i

)

=
∑
i∈Z

bi(−1 − 1 + �i)d1+1+�id−1+am+1 · · ·d−1+a1va0−�i

+
∑
i∈Z

bid�id1+1d−1+am+1 · · ·d−1+a1va0−�i : (3.8)

Since d1+1d−1+am+1 · · ·d−1+a1va0−�i ∈ (L−1)mva0−�i can be expressed as a combination
of elements of the form d−1+a′

m+1
: : : d−1+a′

1
va′

0−�i with the coe=cients which are degree
at most one polynomials in �i, by the inductive hypothesis and (3:5′), we see that the
second term on the right hand side of (3.8) is 0. So

d1+1

(∑
i∈Z

bid�id−1+am+1 · · ·d−1+a1va0−�i

)

=
∑
i∈Z

bi(−1 − 1 + �i)d1+1+�id−1+am+1 · · ·d−1+a1va0−�i

=
∑
i∈Z

bi(−1 − 1 + �i)(−2 − 1− �i + am+1)d1+�i+am+1d−1+am · · ·d−1+a1va0−�i

+ · · · + d−1+am+1 · · ·d−1+a2

×
∑
i∈Z

bi(−1 − 1 + �i)(−2 − 1− �i + a1)d1+�i+a1va0−�i : (3.9)

From the inductive hypothesis and (3:5′), we know that each sum on the right-hand
side of (3.9) is 0. Thus, for all 1∈M0,

d1+1

(∑
i∈Z

bid�id−1+am+1 · · ·d−1+a1va0−�i

)
= 0;
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which gives∑
i∈Z

bid�id−1+am+1 · · ·d−1+a1va0−�i = 0:

So (3.7) holds for n = m + 1.
To verify (3.6) for n=m+ 1, we suppose (3.5) holds for n=m+ 1. By using (3.7)

for n = m + 1, for any 1∈M0 we deduce that

d1+1

∑
i∈Z

bid−1+�id−1+am+1 · · ·d−1+a1va0−�i

=
∑
i∈Z

bi[(−2 + �i − 1)d1+�id−1+am+1 · · ·d−1+a1va0−�i + · · ·

+ (a0 − �i + � + �(1 + 1))d−1+�id−1+am+1 · · ·d−1+a1v1+1+a0−�i ] = 0;

which implies (3.6) for n=m+ 1. Thus Claim 1 holds for n=m+ 1. By the inductive
principle, Claim 1 follows.

Fix p∈M0 \ {0}. Let Pi = {kp|06 k6 2i} for any i∈N. For any n∈N, a∈M0,
�1; : : : ; �n ∈Zp with �i ∈Pi, let

W (a; �1; �2; : : : ; �n)

= span {d−1+�n+1d−1+�n · · ·d−1+�1va−�1−�2−···−�n+1 |�n+1 ∈Pn+1}:

Claim 2. For any �∈M0, we have

d−1+�d−1+an · · ·d−1+a1va−�1−···−�n−� ∈W (a; �1; �2; · · · ; �n):

It is clear that we can 7nd nontrivial b�n+1 ∈C for �n+1 ∈Pn+1 (consider the following
as a linear system of 2n + 3 unknowns with 2n + 3 equations) such that

�k +
∑

�n+1∈Pn+1

�kn+1b�n+1 = 0; for 06 k6 2n + 2;

which are equalities of the form (3.5), where �0 = 1. Then applying (3.6), we see that
Claim 2 follows.

From Claim 2 we know that

dim V−n+�+a

={d−1+�nd−1+an−1 · · ·d−1+a1va−�1−�2−···−�n : �i ∈ {kp|06 k6 2i}}
6 1 · 3 · · · · · (2n + 1); for n∈Z+; a∈M0:

Note that dim V�+a = 1 for all a∈M0. Thus our theorem follows.

It is clear that V (�; �;M0) is an irreducible Vir[M ] module if and only if V (�; �;M0)
de7ned by (3.4) is an irreducible Vir[M0] module. Thus, if we start with the irreducible
Vir[M0] module V ′(�; �;M0) (which is the irreducible subquotient of V (�; �;M0) and
which may not be an exp-polynomial module), instead of V (�; �;M0), we get an
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irreducible Vir[M ] module V
′
(�; �;M0), which can be also realized by taking the irre-

ducible subquotient of V (�; �;M0) for all �; �∈C.
The module V (�; �;M0) contains highest weight Vir[Z] (the classical Virasoro al-

gebra) modules U (Vir[Z])va for any a∈M0. Thus not all weight multiplicities of
V (�; �;M0) are 1, which indicates the modules V (�; �;M0) are not modules of inter-
mediate series.

It is natural to ask the following questions: Are the Vir[Z] submodules U (Vir[Z])va
irreducible? Is it true that U (Vir[Z])va =

⊕
i∈Z+

V i+a?
It is important to calculate the character formula for the modules V (�; �;M0). We

know the following about dim V−i+�+a for i∈Z+, a∈M0.

Corollary 3.2. For any i∈Z+, a1; a2 ∈M0, if (−i + a1)(−i + a2) �= 0, we have

dim V−i+�+a1 = dim V−i+�+a2 : (3.10)

Proof. Suppose a1 �= a2. Let a=a1 −a2, G=Vir[Za]=
⊕

i∈Z Cdia. Then G is isomor-
phic to the classical centerless Virasoro algebra. Consider the G module
W =

⊕
x∈Za V−i+�+a2+x. From Theorem 3.1, we know that W is a uniformly bounded

G module. By using Theorem 4.6 in [23], we see that all the dimensions of V−i+�+a2+x

are equal except for V 0. The corollary follows.
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