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Motivated by the recently found 4-dimensional w-deformed gauged supergravity, we investigate the
black hole solutions within the single scalar field consistent truncations of this theory. We construct
black hole solutions that have spherical, toroidal, and hyperbolic horizon topologies. The scalar field
is regular everywhere outside the curvature singularity and the stress-energy tensor satisfies the null
energy condition. When the parameter @ does not vanish, there is a degeneracy in the spectrum of black

hole solutions for boundary conditions that preserve the asymptotic Anti-de Sitter symmetries. These
boundary conditions correspond to multi-trace deformations in the dual field theory.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

Supergravity is an effective theory for string theory at low en-
ergies compared to the string energy scale. The Anti-de Sitter/Con-
formal Field Theory (AdS/CFT) duality [1] provides a remarkable
tool for extracting information about strongly coupled gauge the-
ories (in d dimensions) from a dual supergravity description (in
d + 1 dimensions). Within the AdS/CFT duality, the radial coordi-
nate plays the role of the energy scale and so the bulk geometry
has a nice interpretation as a renormalization group (RG) flow of
the dual field theory [2] (see, also, the review [3]).

The gauged N = 8 supergravity in four dimensions is the maxi-
mal gauged supergravity with spins lower or equal than two and it
can be obtained by Kaluza-Klein reduction of 11-dimensional su-
pergravity [4] on a 7-dimensional sphere [5]. In the holographic
context, much of the interest on the 4-dimensional gauged super-
gravities comes from the utility of the ABJM model [6] in testing
various strongly coupled phenomena in condensed matter physics.

What came as a surprise, recently, is the existence of a con-
tinuous one-parameter family of inequivalent maximally super-
symmetric gauged supergravities [7] (the critical points were ex-
tensively studied in [8]). These theories are characterized by one
‘angular parameter’, w, that generates an electric-magnetic dual-
ity transformation prior to selecting the SO(8) gauging, and they
are referred to as w-deformed gauged N = 8 supergravity. At the
practical level, the @ parameter can be introduced in the maximal
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gauged supergravity by multiplying the 56-bein, V, by a diagonal
matrix containing either e'® or e~ [9]. As the moduli potential is
a non-linear function in terms of V), the parameter w appears ex-
plicitly in the potential. It is worth noting that, long time ago, this
kind of ‘angles’ was introduced in N =4 gauged supergravities in
[10].

In this Letter, we construct exact domain wall (see, also, [11,
12]) and black hole solutions in one scalar field consistent trunca-
tions of w-deformed theories [11], which correspond to RG flows
of 3-dimensional dual quantum field theories at zero and finite
temperatures, respectively. We show that the null energy condi-
tion (which is the relevant energy condition in AdS) is satisfied
and construct the c-function using the gravity side of the duality.

For w = 0, we obtain domain wall solutions and explicitly write
down the corresponding superpotential. When w does not vanish,
there is a degeneracy in the spectrum of black hole solutions. Since
the black holes are interpreted as thermal states in the dual the-
ory, this degeneracy may seem puzzling at first sight. However,
this can be understood because the solutions correspond to dif-
ferent boundary conditions which in turn correspond to different
deformations of the dual field theory. The degeneracy in the spec-
trum of solutions can then be understood as a sign degeneracy in
the AdS invariant boundary conditions due to a change in the sign
of the scalar field. It is also interesting to note that the no-hair
conjecture in asymptotically AdS spacetimes of [14] have as a hy-
pothesis the reality of the superpotential. So, it does not apply to
the w-deformed theory, as the superpotential is generically com-
plex [15].

Since the coordinates in which the black hole solutions are
constructed are not very intuitive, we will explicitly provide the
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change of coordinates that asymptotically puts the metric in the
canonical form [16]. In this system of coordinates, it is easy to ob-
serve that the scalar field satisfies mixed boundary conditions that
correspond to multi-trace deformations in the dual theory [17].

2. Moduli potential

The single scalar field truncations of the w-deformed theory
were found in [11]. The action is the one of Einstein gravity mini-
mally coupled to a scalar field

1
1[guv, @] = d4XV _g|:R - Eauwau(p - Vn((P)i| (1)

1
167G
where G is the Newton constant. The moduli potentials are param-
eterized by an integer, n = {1..7}, and they contain a non-trivial
deformation parameter, w, when n is odd [11].!

We found that all the truncations are contained in a more gen-
eral moduli potential
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where [ is the AdS radius and I;2 = (v2 — 1). To obtain the poten-
tials V() from the general potential W, (), we have to relate
the parameters w and g to o and the AdS radius, I, in the fol-

lowing way: sin(w)? = "‘gsz", g= ﬁ where for odd n we define
S1=4, S3=—5,S —i+i and S ——i—i—g—z Then, by us-
1= 720023~ 727095~ 23 T o> 7= T @ » DYy

ing the relations between parameters, it is straightforward to show
that

Vilp) = Wg(fp) =V7(—9),
Va(p) = Wa(@)la=0 = Ve(p) (3)
V3(@) = Wa(p) = Vs(—9), V4(9) = Woo (@) la=0 (4)

The scalar field potential (2) has a negative maximum and so
AdS is a solution.” More precisely, the AdS vacuum can be obtained
forp =0

3 W)
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WV((/)):_I_Z’ Wl

do dg?
Indeed, the small scalar fluctuations are tachyonic, m? < 0, but
the mass is still above the Breitenlohner-Freedman (BF) bound,

ma. = —% and so this vacuum is perturbatively stable [18]. More-

over, since the mass is in the range m3; < m? <m; + 172, both
modes of the scalar field are normalizable [19]. Therefore, these
theories are suitable in the context of AdS/CFT duality with bound-
ary conditions corresponding to the presence of multi-trace opera-
tors in the dual field theory [17].

We would like to point out that it can be shown that for these
one scalar field consistent truncations, the range of the parameter

1 V4(¢p) was also discussed and independently derived in [9].

2 QObviously, this is the critical point that preserves N = 8 supersymmetry and the
group SO(8), however there exist also additional non-supersymmetric critical points
(8].

is w e [0, ] [11] rather than w € [0, %] like in the case of the full
theory [7]. The reason behind this fact is that the fields for which
the identifications should be done in order to reduce the range of
w have been truncated out. When o = 0 these single scalar field
truncations correspond to different cases of the four dimensional
potentials of [13].

3. Exact black hole solutions

In this section, we investigate the existence of event horizons in
terms of the parameters of the potential. Similar techniques to find
hairy black holes were used in [20-22] (see, also, [23,24]|) where
the details of the construction can be found. In what follows, we
present the solutions, discuss some of their properties, and explic-
itly check the existence of the horizon.

The black holes in AdS can have non-spherical horizon topology
and the solutions relevant to w-deformed gauge supergravity can
be written in a compact form as

2 4,2
ds? = 2(x) [—f(x) dt® + X +d2k] (6)
fx)
. v2xv71
=1, In(x), -Q(X)=m (7)
2—v v _1 2 2k
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Here, dX) is a two-manifold of constant curvature k = £1 or 0
and the corresponding black holes can have spherical, toroidal or
hyperbolic horizon topologies. The parameter 7 is in fact the inte-
gration constant and the reason it appears in a non-standard form
in the metric is because the computations simplify when a dimen-
sionless radial coordinate, x, is used.

The configuration and scalar potential are invariant under the
change v — —v, therefore from now on we consider v > 1.
We also note that conformal infinity is at x = 1. There are two
branches of solutions depending on whether x € (0,1) or x €
(1, 00). The metric is regular for any value of x # 0 and x # oo as
can be seen from the introduction of advanced and retarded coor-
dinates uy =t F [ % dx. The scalar field and metric are singular
at x =0 and x = oo but, as we will see, these singularities can be
covered by event horizons.

Interestingly, it is straightforward to observe in our parameter-
ization that, with this scalar field potential, the theory also admits
asymptotically flat hairy black holes [22,25,26] (when [=2 = 0) that
could, in principle, be related to asymptotically flat gauged super-
gravity [27]. Solutions of the form (6)-(8) in four dimensions were
originally found in [20] and discussed in different contexts in the
literature, [23,28-30]. Indeed, these solutions exist for any value of
v and « although we shall focus below only on the values related
to gauged supergravity.

For even n and vanishing « the situation is well known and
has been thoroughly studied. When n is even, there exist exact
neutral asymptotically locally AdS black holes only for k = —1 [31].
In what follows, we are going to carefully analyze the existence
of event horizons for k =1 and comment also on the case k = 0.
Since the solutions are static, the horizon is localized at the place
where the gy component of the metric vanishes. That is, there
is an x4 such that f(x;) = 0. As expected, since the solution is
asymptotically AdS, we obtain at the boundary, where the scalar
field vanishes, f(x =1) =I~2. Furthermore, it is straightforward to
obtain the (non-trivial) solution of the equation % =0, and by
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analyzing the second derivative of f we obtain that this point is a
maximum. Therefore, the function f has at most one zero in any
physically relevant interval. Since f is positive at the boundary, the
existence of a black hole horizon is ensured if f is negative near
the singularities. Therefore, the necessary and sufficient condition
for the existence of a horizon are

o

1

o
V<2, x>1 24— )<o0 9
< > :>(77 +V+2>< (9)

vV>2, x<1— 2_ 9 <0
’ U

5 o
v>2,x>1:>(77 +v+2)<0 (10)
Therefore, there should exist hairy black holes in an open set of
the parameter space when at least one of the relations above are
satisfied.

Finally, we want to point out that the symmetries of these the-
ories (3) and (4) allow to map the n =3 into the n =5 theory
by making the field redefinition ¢ — —¢ and letting the geometry
invariant.

3.1. Spherically symmetric black holes

We are going to consider the cases of non-trivial o, namely
when n is odd.

e When n=1 then o = M% and v = $. Then, the condition
(9) shows that there are no spherically symmetric black holes.

e When n =3 then o = —M and v = 4. Then, the con-
dition (10) shows that there are black holes when x > 1 and
sin(w)? > @

e When n =5 then sin(w)? = % + 1= cos(w)? = —"]‘—’22 and
v = 4. Then, the condition (10) shows that there are black
holes when x > 1 and cos(w)? > @

e When n =7 then sin(w)? = —% +1 = cos(w)? = % and
V= %. Then, the condition (9) shows that there are no spheri-

cally symmetric black holes.
3.2. Planar black holes
For k = 0, the condition that f(x) becomes negative near the
singularity is
o 1

o
V<2, x>1— —— <0 (11)
V42

o
V>2, X<1l=>—-—-<0
v—2

V>2 x>1— 2 _ <0 (12)
v+2

As in the previous case, there are no black holes when n=1 or 7.
e When n = 3 then condition (10) shows that there are black
holes when x > 1 and for Vo # 0.

e When n =5 then condition (10) shows that there are black
holes when x > 1 and for V.

When k=0 and o =0, we also obtain domain wall solutions:

ds? = P x)[—dt® + n* dx* + dy? + dz*] (13)
. v2xv—1
o=5'nw.  2w= ot (14)

In this case the potential can be explicitly written in terms of a
superpotential

_(dP@\ 3
Wv(ﬁl’)—z(W) —EP((P) (15)
where
P(p) = l*l[(v +v—1)e<“z;1>w’v T - 1)6*‘%)‘”"] (16)

4. Boundary conditions

One important question we would like to address in this section
is if the boundary conditions for our solutions are compatible with
the AdS/CFT duality. The mixed boundary conditions compatible
with AdS/CFT duality were interpreted as a multi-trace deforma-
tion of the boundary CFT [17].

Let us discuss the branch x € (1, co) for which the scalar field is
positively defined. We change the coordinates so that the function
in front of the transversal section, d X, has the following fall-off:

Q) =r*+0(?) (17)
By using the change of coordinates®

1 -1 1 9Ww?-9)

x=1+——=——==|1-—— ———
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we obtain the following asymptotic expansions for the metric func-

tions:

(18)
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_2n? (dx\* B 1 P21
&= fx) \dr) 2 4 4n2r4
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Therefore, the asymptotic behavior of our exact black hole solu-
tions fits very well in the general analysis of [16] and, conse-
quently, we expect that the boundary conditions for the scalar
correspond to a multi-trace deformation in the dual field theory
[17]. The asymptotic expansion of the scalar field is

ho=—— 53— s+ 007 (21)

and by comparing with the scalar field in the standard notation of
[16]
a b

. o Ao < )\.+ (22)

we obtain Ay =2A_ =2, a= % and b= _Zn+l' The scalar field

introduces an asymptotic deviation at the order O (r—4) in (20) that
is not present when the scalar field vanishes (v = 1).

Since b = —%az, these boundary conditions are, indeed, com-
patible with the canonical realization of the conformal symmetry

at the boundary. However, when the scalar field is negative, the

3 We assume that 7 > 0 so that r — oo implies x — 1 from the right.
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boundary conditions change and are of the form b = ’7“a2 and
there is a degeneracy in the spectrum of black hole solutions.
These boundary conditions are invariant under the asymptotic AdS
symmetries. Black holes are interpreted as thermal states in the
dual field theory, and from this point of view, b is the expectation
value of an operator of dimension two. The degeneracy is absent
when w = 0 because the black holes with n =3 and ¢ > 0 do
not exist in this case. It is also worth to remark that AdS invariant
multi-trace deformation are not incompatible with supersymmetry,
as was checked in some concrete examples in [32].

5. Discussion

In this Letter, we have investigated the existence of exact do-
main wall and black hole solutions in one scalar field consistent
truncations of w-deformed N =8 SUGRA theories. The black holes
only exist in the n =3 and n =5 theory, which are actually identi-
cal up to the field redefinition ¢ — —¢. Let us therefore focus on
the theory with n = 5. This theory has a hairy black hole with AdS
invariant boundary conditions even when @ = 0 (because « does
not vanish in this case). The value of the scalar field is everywhere
positive as it has no nodes. By turning on the deformation param-
eter, the theory has a new black hole solution that corresponds to
a negative scalar field, ¢ < 0. From our discussion in Section 4, it
is clear that this is equivalent to the fact that there are black holes
for boundary conditions of the form b = ﬂ:%“az. Therefore, when
w # 0 there are two hairy black holes for each value of the pa-
rameters. Each hairy black hole is associated to a sign flip in the
expectation value of a dimension 2 operator in the CFT. We would
also like to remark that, to the best of our knowledge, the exact
form of the black holes in undeformed gauged supergravity was
unknown until now.

The existence of these black holes also implies that there is a
richer phase diagram in the dual theory. Hairy black holes in AdS4
are physically relevant objects as they are an important ingredient
of the AdS/Condensed Matter correspondence (see, e.g., [33] and
the reference therein). As was originally pointed out in [34], there
could also exist second order phase transitions between the hairy
black holes and the hairless ones.

For completeness of the analysis, let us now show that the null
energy condition is satisfied. Indeed, whenever there is a single
minimally coupled scalar field to a diagonal metric it is possible to
show that the null energy condition is satisfied. In an orthonormal
frame ei’L, the energy momentum tensor has the form T,weff ey =
diag(p, p1, p2, p2) where

%
dx
Since the null energy condition is valid for our solutions, there are
no violations that lead to superluminal propagation and instabili-
ties in the bulk [35] and so we expect that the boundary theory is

well defined (see, e.g., [36]). Also, the c-function [37] can be also
constructed®:

2
p+p1=gx‘xl< )20, p+p2=0. (23)

L (me232\? X' 2
C(x)_CO(T> _Co[x“(v+1)+(v—1)] (24

As expected, in the hairless limit when the neutral spherical black
hole is obtained (v = 1), the flow is trivial. We also notice that
the c-function is completely determined by the conformal factor
that is in agreement with the interpretation of the black hole as

4 Similar examples are presented in [23,38] and we do not present the details
here.

a thermal state in the boundary theory. The c-function should re-
main unchanged when a finite temperature vacuum is excited in
the same theory and so there should not be any dependence of
the metric function f(x).

In conclusion, the black hole solutions we have found corre-
spond to mixed boundary conditions in AdS and can be interpreted
within the AdS/CFT duality as RG flows of the dual field theory at
finite temperature.
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