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DEFORMATIONS OF REAL SINGULARITIES 

c. T. c. WALL 

(Received in revised form 2 February 1989) 

IN THE theory of singularities of functions (or hypersurfaces, or complete intersections), it is 
well known that equivalent conditions are that the singularity be isolated, that it be finitely 
determined (with respect to an appropriate equivalence relation) or that it possess a finite 
dimensional versa1 unfolding. Moreover, the algorithm for writing down such an unfolding 
is well known. 

A problem of particular interest is to determine what other singularities, or con- 
stellations of singularities, occur in the unfolding of a given one. It is familiar to workers in 
this area that the explicit formula mentioned above is not well adapted to the solution of 
this problem, except to decide the existence (or otherwise) of deformations X -+ Y where the 
singularities X and Y are similar. Alternative, more particular constructions of the 
miniversal unfolding have been devised to deal with this; in the case of simple singularities 
by Brieskorn [3,4], for simple-elliptic singularities by Looijenga [ 151, and again by him for 
cusp singularities [16]. From these constructions, the deformations can be read off. 

These constructions have all been made in the context of isolated singularities of 
complex surfaces. It is the object of this paper to investigate what these lead to in the real 
case. We retain the general background of the earlier work, and view a real singularity (or 
surface) as determined by a complex one together with an involution describing complex 
conjugation; i.e. by a Galois descent. This approach indeed applies over other fields 
(particularly in characteristic zero), and we make some remarks to this effect. However, 
though work has been done on (for example) de1 Pezzo surfaces over number fields, it does 
not seem to be of particular interest to explore deformation theory in this context, and we 
abstain from a detailed discussion. 

The plan of this paper is as follows. There are three main parts: on simple singularities, 
on simple-elliptic singularities and on cusp singularities. Each of these is divided into two 
chapters: the complex case, then the real case. In each chapter we first describe the 
classification, then the geometry associated to the construction of the deformation space. I 
had originally intended to include also algorithms to list the singularities occurring in the 
deformations: however, for reasons of space these are deferred to a future publication and 
only general remarks are given here. 

41. DU VAL SINGULARITIES (COMPLEX CASE) 

Although the case of Du Val singularities (alias rational double points, rational 
Gorenstein singularities, simple singularities) is well known, we recapitulate the facts briefly 
as we need to refer to them in the sequel, and in any case I know no reference for a 
discussion of some of the finer details in the real case. 
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Classification 

The list is well known: we have A,(n 2 l), D,(n 2 4), E,(n = 6,7,8). Normal forms are 
also well known, as is the fact (which is not important here) that these are the quotients of 
C2 by freely acting finite subgroups of SU,. The exceptional set in a minimal resolution 
consists of copies of P’ @, each with normal degree ( - 2), and intersections given by the dual 
graph well known by the same name A(A,, D,, or E,). We refer to Bourbaki [Z] for 
standard facts about these diagrams and the corresponding root systems. 

The deformation space 

The usual algorithm for hypersurface singularities permits us to write explicit equations 
for a miniversal deformation rr’: % + U of the given singularity Ye = 7cl-t (0). An intrinsic 
model for this was described by Brieskorn [4] and in more detail by Slodowy [21]: here % is 
a slice transverse to a subregular uni- (nil-) potent orbit of the complex Lie group G (of type 
A), either in G itself or in its Lie algebra g; II’ is induced by the basic invariants for the adjoint 
action. 

As follows from this, but was also [3,22] shown earlier by direct construction, there is a 
ramified covering q: @” + U such that the pullback II: Z” + @” of n’ by q admits a 
simultaneous resolution p: Z? + 9” in the strong sense that (i) it is obtained by a finite 
sequence of blowing+up of smooth subvarieties and (ii) it induces a minimal resolution on 
each fibre of rr. Indeed, this possibility characterises this class of singularities. The restriction 
of this covering to the complement of the discriminant D c U can be identified with the 
monodromy covering corresponding to the action of n,(U - D, u), on the homology 
H = H,( Y,) of the “Milnor fibre” Y,. 

Location of singularities in the deformation 

This is where the advantage of the covering q becomes apparent, for we can identify @” 
with the space on which the Weyl group W (of type A) acts as a reflexion group. For each 
ZEC”, the stabiliser W, is again a reflexion group, and so can be expressed uniquely as a 
product II W, of irreducible reflexion groups. Then if W, has type A,, the singularities of the 
surface X__ are Du Val singularities of types A,, and correspond bijectively to the factors. 

It is now easy to describe which constellations {A,} occur in this way on fibres. For z lies 
in some closed Weyl chamber C. The walls of C correspond bijectively to the vertices of the 
diagram A. If {ri: ill} are the vertices corresponding to the walls containing z, W, is 
generated by the corresponding reflexions (gi: ill}; and its Dynkin diagram AZ consists of 
the vertices { ui: ill} of and those edges of (if any) whose ends both lie among these vertices. 

Thus if, for example, A has type E,, the edges of C have stabilisers (obtained by omitting 
one vertex) of type A,, D,, A,A, or A:A,. 

o-o-o-o-o 

0 

We can add further precision here. The choice of a strong simultaneous resolution 
corresponds to choosing a particular Weyl chamber, or equivalently to the selection of a 
system R, of positive roots of W, where the root lattice is identified with H = H2(Xz). For 
ZE@“, the exceptional set E, in the resolution J?‘, of the fibre X, consists of ( - 2)-curves, and 
the homology classes in H of these are the fundamental roots for W, with respect to the 
system R, n R( W,) of positive roots (or equivalently, the chamber of W, containing the 
chosen Weyl chamber of w). 
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$2. DU VAL SINGULARITIES (REAL CASE) 

Classification 

The list may be found in several references ( with slight variations, according as one is 
classifying functions of two or three or more variables, or the corresponding varieties): our 
version is taken from Slodowy [21] (see Table 1). 

In the table, G, is the real Lie group associated with the singularity by Slodowy; the Tits 
symbol is that for G,. It also describes the real form of the minimal resolution: @ denotes a 
curve with real points (hence isomorphic to P’(R)); l a curve defined over [w but with no 

real points, and o a pair of conjugate complex curves. This determines the real part E, of 
the exceptional set up to isomorphism; x(En) is its Euler characteristic. Finally as X, is 
topologically a real surface with an isolated singular point P, the link of P is a closed l- 

Table 1. Real forms of du Val singularities 

Real 

Notation Normal form Tits symbol GR roots r x(Ea;) 

A,a x2 + y2 - z2 6 SL,Iw = SU,., A, 2 0 

A,C x2 + y2 + z2 . SU, - 0 0 

&-,a X2n+y2_z2 W____@ SL” 64 A,,-, 2 2-2n 

A,,-,b .P 
C” 2 0 

A,,- IC X2” + y2 + 2 

D2,a x2n-1 -xy2*z2 _____ so R 2”. 2n D 2” 3 I-2n 

D,,b p-1+xy2+g____ . 

-4 

so zn+l.Zn-I R B2,-, 1 3-2n 

D 2n+la x2” f xy2 - z2 _____ so 2”+1.2n+l FJ D2n+, 2 -2n 

D b 11+1 xzn f xy2 + z2 _____ S%+2.2”~ t? 2” 2 2-2n 

.%a x4+y3-z2 E2’ E.5 1 -5 

E,b x4 + y3 + z2 El’ F4 1 -1 

&a x3y+y3+z2 E:7’ E, 2 -6 
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manifold, hence a union of some number r of simple closed curves. The number I is easily 
determined (cf. [S, 63) and is also tabulated. 

Complex conjugation acts trivially on the diagram A in the cases labelled a and A,c; 

nontrivially in cases b and A,, _ 1 c (n 2 2). 

The deformation space 

The usual algorithm gives a miniversal deformation parametrised by a real form U, of 
U. This pulls back to 4-i (U,) c C”. However, this is not a real subspace of C”. We can 
describe the situation as follows (after [14]). 

Watts as a reflexion group on R” and on its complexification @“. The action of complex 
conjugation on the diagram A defines an element of N/ W, where N is the normaliser of Win 

O,(R). In fact this element can be represented by the identity (cases a) and by minus the 
identity in all other cases except D,, b. Choose a representative u,, , and extend the action of 
u,, to C” by tensoring with complex conjugation. As this normalises W, the group I? 
= ( W, u0 ) acts on @” and contains Was subgroup of index 2. Now we have the following. 

LEMMA. q-l (U,) is the union of the fixed subspaces V, of elements u of @- W with 

u2= 1. 

As each such u is an antiholomorphic involution, each VU is a real form of 63”. 

Proof (from [14]). If q(z) = XE ulw, then conjugation takes x into itself, hence preserving 
the W-orbit of z. Thus for any CE W- W, CZE Wz, and so we can choose c to leave z fixed. 

Such a c normalises the stabiliser W,. hence permutes its Weyl chambers. As WZ is 
transitive on these, we can find WE W, such that u = cw leaves a given chamber invariant. 
Then USE W, also fixes this chamber, hence is the identity. 

Looijenga also shows that each such subspace V, maps to the closure of one component 
of the complement of U, - D, inducing a bijection between W-conjugacy classses of 
elements u and such components. 

Note. Our u is the negative of Looijenga’s, but this does not affect the description of the 
geometry. 

We can add further precision. Suppose we have fixed a chamber C for W and the 
corresponding strong simultaneous resolution. This is preserved by conjugation only if u 
preserves C. However, for any particular fibre X,, the minimal resolution f3, is unique so 
complex conjugation extends to it, and its effect on H2(fz) determines uniquely an element 
u of I? which will satisfy u* = 1. The element u, is characterised as that element of 
kz- WIwhich leaves invariant the chamber of W, which contains C. 

This element uz also has the property (which does not, however, characterise it) of having 
maximal trace. 

LEMMA. The trace of u, on the root lattice of W, is maximalfor involutions in gZ - WZ. It 
is a sum over factors of W, of contributions as follows: 

Two factors interchanged bu u, 0 

Ana, &a, La 

A,,-,b, AZn-Ic ;t 

A,,b -1 

DJ n-2 

E& 2. 
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Proof: We can write the root lattice as a sum of irreducible pieces. For two such parts 
interchanged by U, (hence by each element of Gz - IV’:), the trace is 0 for each element of 
this coset. For a factor of type a, uz acts as the identity and clearly has maximal trace. 

For cases A, _ 1 b (or A,,_ I c), t is the negative of some YES(~); its trace is maximal when 
that of r’ is minimal, i.e. T’ fixes the minimal possible number of elements. This is indeed 
achieved (among elements of order 2) by the reversal corresponding to uz: 

( 

12 3 . ..n 

nn-ln-2... 1 > ’ 

For case D,, N is the wreath product of S(n) with ( f 1); for the nontrivial coset for D,b, 

we have an odd number of minus signs. An element of order 2 is a product of substitutions 

ei + ei (trace 1) 

ei+ + ej (trace 0) 

ei + - ei (trace - 1). 

Maximal trace for involutions in the coset is thus (n - 2), and is achieved by reflexion in e,, 
which interchanges the first two fundamental roots and hence agrees with u=. 

Finally for E, b we again have r = -r’, where r’ is one of five conjugacy classes of 
involutions in W(E,) (see e.g. [27,923X with respective traces 6, 4, 2, 0 and -2. The 
maximum trace is thus +2, and is indeed achieved by u,, which permutes the basic roots as 
indicated in Table 1. 

It seems appropriate at this point to discuss real resolutions. We first note that the given 
strong simultaneous resolution induces one of V,, if and only if u = u0 is the element of 
I?- W that preserves C. However, for any zEq-l(UR) the resolution of X, admits a 
conjugation as above, and the real resolved surface satisfies 

x(G) - x(X,) = C(%(Ep) - 1) 

extended over singular points E, of X,. The l(E,) are listed in Table 1; we have 
x - 1 = -trace T in each case (as follows from the Lefschetz fixed point theorem). 

A more natural way to desingularise X, from the topological viewpoint is to take the 
“real normalisation” Xi: remove small open conical neighbourhoods of the singular points, 
and close off each boundary circle with a disc (intrinsically, take the Freudenthal com- 
pactification of X, - Sing(X,)). Here we have 

x(X;) -x(X,) = Z(rp- 1) 

where rP is the number of components of the link of P: these too are listed in Table 1. 

Location of singularities in rhe deformation 

For ZE@“, we consider the stabiliser I?=. The intersection W, with W determines-as 
above-the singularities in the complex fibre X,. Moreover, as q(z)E U,, tiZ contains (by 
the above) an involution UE @-- W, which thus normalises W,. Write-as before- 
W, = II W,. Then u normalises this product, so will interchange some pairs of factors and, 
for the others, determine an element of N ( W,)/ W,. The singular points P, E XZ correspond- 
ing to W, are permuted accordingly by complex conjugation: we have some complex 
conjugate pairs. For the rest, the class of u in N( W,)/ W, determines the real form except in 
cases A,, _ 1 where it does not discriminate between types b and c (or, if m = 1, between u 
and c). This final point is subtler, and we will not go into it in this paper. 

We observe that if UE I?- W normalises W, and satisfies u2 = 1, then there is indeed a 
point z’E@” with stabiliser I?:, = W, u u WZ. For if L is the fixed set of W,, L is a complex 
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linear subspace of C”, and all Z’E L, except those lying on a union izI of certain proper linear 
subspaces, have the same stabiliser. Now u leaves L invariant, and defines a real form L, of 
it: thus any Z’E L,, z’$M will do. However, in the ambiguous cases above, the connected 
components of L, - M may correspond to different types A,,_ 1 b and A,,_ 1 c. 

$3. SIMPLE-ELLIPTIC SINGULARITIES (COMPLEX CASE) 

Classification 

Following Saito [20], a normal surface singularity is called simple-elliptic if the 
exceptional set of its minimal resolution consists of an elliptic curve E. To classify such 
singularities, it suffices to know the isomorphism class (or j-invariant) of E, and the degree 
-D of its normal bundle. The cases D = 1,2,3 yield hypersurface singularities (Arnold’s [ 1] 
parabolic singularities); D = 4 a complete intersection (of two quadric cones). Although our 
primary interest is in these, the arguments below cover the cases D I 6 and, with minor 
changes, cases D 5 9. 

The deformation space 

For D = 3, the standard equation is a cubic form in three variables. A versa1 deformation 
is obtained by varying the modulus and adding lower order terms, thus giving a cubic 
surface. It is convenient to complete this to the corresponding projective surface X (the 
curve E then reappears as the intersection with the plane at infinity), and consider 
deformations likewise as cubic surfaces in P3 (C). 

There is a similar construction for other values of D I 9, but it is convenient to 
reformulate this somewhat, First we construct the surfaces X. 

Take the projective plane P2 and blow up, in succession, n = 9 - D points, to give a 
surface 2,. We will suppose that the points are in “almost general position” (see [7] for 
details). Write K for the canonical class of 2,. Then the projective image of J?‘, defined by 
(- rx) is birational if r + 5 2 n, and gives a surface X,. The basic properties of this 
construction are given in Manin [17] and Demazure [7]. The case T = 1 (n I 6), with X 
smooth, gives the classical de1 Pezzo surfaces of degree D in PD. An updated version of this 
characterisation was given in Hidaka and Watanabe [l I]: if X is a normal Gorenstein 
surface with ample anticanonical divisor, then either X is a cone over an elliptic curve, or X 
arises as above, or D = 8 and X is either Pi x P’ or the Hirzebruch surface F, with the 
( - 2)-curve collapsed to a point. 

The Picard group P of x’ is a free abelian group with basis sO, the preimage of a line in 
P2, and the classes .si (1 I i I n) of the exceptional curves. We have 

&$ = 1, i# = - l(1 I i I n), .si~j = 0 (i #j). 

The canonical class is 

S0K2=9-n=D>O. 

the set of roots 

K= -33E,,+&i 

The orthogonal complement Q of K is negative definite: write R for 

R = {REP: K.r = O,<’ = -2). 

Then R spans Q provided n 2 3. The cases .? = P’ x P’ or F2 are exceptional: here P has 
basis~,,~,with~2=0,~,~~2=1andrc= 2(~, + a2) so R = { f (ql - II,)> spans Q in this 
case. In general, R is a root system: the reflexions s, corresponding to reR generate a 
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reflexion group K If n 2 3, a fundamental system of roots is given by 

p1 = &g-E1 -&z-E3 p,=Er-,-&, (2IrIn) 

so the type of the root system is given by 

n 3 4 5 6 7 8 
A A, x 4, A, D, E, E, E, 

We are interested in the pair (X, E), where E is a smooth hyperplane section (more precisely, 
the support of an anticanonical divisor). Then E is an elliptic curve. We consider the 
restriction 

@: Pie_? + Pit E. 

Since E represents - k’, for any 5 E P, C$ (5) has degree - < * K. In particular, 4 (ei) has degree 
1, so is a point Pi of E. Clearly Pi is the intersection of E with the exceptional curve of the ith 

blowing up. 
We can reconstruct x’ as follows. Embed E in P2 by @(so): now blow up P2 successively 

at the points Pi. Observe that this gives a simultaneous resolution of the family of surfaces 
X. For if U denotes the family of homomorphisms $, we blow up P’(C) x U successively 
along the submanifolds which are the sections (over U) defined by the points @(er). 

We can even construct X projectively: embed P2 in Pg as the Veronese surface and now 
project successively from the image of P, to Pg-‘. Thus @ determines 2 and X. Indeed, it is 

sufficient to have the restriction to Q, cp: Q + Pit, E = Jac E. For if +‘, G both induce q, they 

differ only by a translation of E. 
We now ask to what extent (X, E) determines rp. Here a little more care is necessary. 

Observe that R, = {IE R: q(r) = O> is also a root system: write W, for the group generated 
by the corresponding reflexions. 

PROPOSITION. Let 2, 2’ be surfaces as above, with smooth curves E, E’ as above and a 

commutative diagram 

PicZ L Pie E 

with CY an isomorphism, /?: E + E’ an isomorphism. Then there is a uniquely determined WE W, 
and a unique isomorphism o: X + 2’ taking E to E’ by p and inducing a0 w. 

This result is proved in [19, Theorem 3.73. Observe that if WE W,,,, then $0~ = $ (the 
converse is not always true). 

Let us identify Pit x’ with the standard lattice <so,&,, . . . ,E,). Since deg+ (0 = 
- 5 - K, the essential information contained in @ is given by its restriction to Q, cp: Q --f Jac E. 
We consider Horn (Q, Jac E) as our model for the deformation space of the simple-elliptic 
singularity. 

In the cases D I 3, the dimension of this space is 2 less than the Milnor number of the 
corresponding hypersurface singularity. One of these two dimensions corresponds to 
deformations of the curve E. The other corresponds to the fact that, the singularity being 
weighted homogeneous so that U admits a C*-action, we have taken the quotient. 

As in the case of Du Val singularities, our space is still a branched covering of this. Its 
universal cover Horn (Q, C) (where C is the universal cover of Jac E) corresponds to the 
monodromy covering; thus the branching behaviour is essentially the same in the two cases. 
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Location of singularities in the deformation 

A homomorphism cp: Q + Jac E determines + as the pushout in the diagram 

O+Q +P +iZ+O 

1’p I+ II 

04 JacE +PicE +h+@ 

and this in turn determines a (de1 Pezzo) surface X,. We have already defined 
R, = R n Ker cp and the corresponding group WV. Now, just as in $1, W,+, determines the 
list of singularities which appear on X,. A formal proof of this is given in [ 193. 

One can also determine which reflexion groups can occur as W,+, . For Wq is the reflexion 
subgroup of the stabiliser in W of (PE U = Horn (Q, Jac E). The action of Won this lifts to an 
action on the universal cover of U by the semidirect product I?of W with the fundamental 
group Q# x QX of U, where Q# denotes the dual lattice Horn (Q, Z); and stabilisers in fi 
are isomorphic to those in W. 

Consider first a single factor of Jac E 1 S’. The corresponding group W. QX acts on 
Horn (Q, R) as the affine reflexion group formed by extending W. The stabilisers are found 
as in $1, but now using a chamber which is a euclidean simplex (or product of such): in 
particular, no point can belong to all the walls. Thus we must delete at least one vertex from 
(each component of) the corresponding extended Dynkin diagram. 

For the full result, since there were two factors S’, we repeat the operation (of taking the 
extended diagram, then a proper subset) once more. For further details of this, see [19]. 

94. SIMPLE-ELLIPTIC SINGULARITIES (REAL CASE) 

Classification 

The abelian variety J = Jac E of dimension 1 has a real form if and only if the j-invariant 
j(J) is real. There are two types. 

(a) Ifj( J) 2 1, J is the quotient of C by a rectangular lattice L, which we can take to be 
generated by 1, ir(~ > 0). Real forms are defined by the conjugations z + rt i: for r # 1 (i.e. 
j # 1) these are inequivalent. The group J, of real points has (in each case) two components. 

(p) If j(J) I 1, J is the quotient of @ by a rhombic lattice, which we may suppose 
generated by 1 &- ir. Again, there are just two real forms z -+ + 2, inequivalent for r # 1 
(i.e. j # 1). The group J, has just one component. 

The set of all real forms is a smooth one-dimensional family with these two components. 
We can represent it graphically: 

I 
I 

-i 

/=I 
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Any real form of E determines one of the jacobian, Jac E. Conversely it is easy to show 
that if J, has type /I, then E has a real point (so is isomorphic to J over W); if J, has type g, 
there are two corresponding real forms for E,: one isomorphic to J,, the other with no real 
points (for the above example, we can take conjugation as z -+ [+ $(mod L). 

The real forms of the simple-elliptic singularities were determined in [18]. Since the 
singularity is determined by a curve E and a bundle over it, a real form is determined by a 
curve E, and a real class of real divisors D. The theory of real divisors is expounded in [lo]. 
We obtain the following list: 

D odd Then E, must have a real point. There are just two strata: /I, and a3. 
D even If E, has 0 or 1 component, it determines a unique singularity. The case where ER 

has 2 components splits into two, according to whether D has even degree on each 
component or odd degree on each. There are thus four strata: 

B 29 ao, a2 and ad. 

In each case E, (or J,) determines the singularity up to (real) isomorphism. 

The suffix in this notation is the number (r) of components of the real link. To determine 
this, we observe that a component of E, is one-sided or two-sided in the resolution 
according to whether D has odd or even degree on it. 

As this classification is not so well known, I now give the relation to equations in normal 

form. 
D=l (is) z2 - 4y3 + gz x4y + g3 x6, 

D= 3 (E6) z’x-4y3 +g2x2y-t-g3x3. 

I have left in both parameters g2 and g3 since either may vanish, and not only the ratio 
g:: g: but also the sign of g3 is needed for the classification. 

D = 2 (,!?,). Write 

8’: g; < 27g:. a3: g: > 279:. 

fi=(x4+(4i.-2)x2y2+y4) (LER;j.#O,l); 

g, = x4 + 21(x3yz-y4 @CR); 

then j 2 1 forf,, i -< 1 for g,,. We have strict normal forms 

82 g,+z2 ("g_-z2) pfE1w 

a0 L +z2 (-h-,+z2) 0-ci.c 1 

a2 .fi --' (-fA-,-z2) 0-ci.c 1 

a4 fi +z2 (-fi-I-z2) A<O. 

D = 4 (b,). We have a general pencil A1 fi + ,%,f, of homogeneous quadratics in 4 variables. 
Eigenvalues are the 4 points (A, : 1,) E P’ C corresponding to quadratics of rank less than 4. 

p2: 2 eigenvalues real, 2 complex conjugate. 
a2: 2 pairs of complex conjugate eigenvalues. 
ao: All eigenvalues real; some form n,ft + A2 f2 positive definite. 
a4: All eigenvalues real, otherwise. 

Normal forms can again be given, but none is particularly convenient. 



450 C. T. C. Wall 

The deformation space 

Our identification of the deformation space in the complex case derived from the 
proposition in $3. The proposition remains true if 8: E + E’ is a semialgebraic isomorphism: 
the resulting isomorphism e is then also semialgebraic (interprefed here in the sense of 
complex conjugation). Indeed, the proof requires no essential change. 

Now given a real de1 Pezzo surface X, and real hyperplane section E, we can 
complexify, and define $ as before; however, now complex conjugation acts on the Picard 
groups and @ is an equivariant homomorphism. Conversely, given a Z,-equivariant 
homomorphism 

G: PicX + Pit E, 

where the &-action on PicX leaves invariant K and the intersection numbers, and the 
action on E is induced by choice of a real form of E, the proposition guarantees us a 
corresponding surface X over C, and a semialgebraic involution, thus defining a real 
structure on X. However, the induced automorphism T on Pit X only agrees with the given 
one up to an element of W,,,. The geometric reason for this is clear: r has to permute the 
irreducible components of the exceptional set for the resolution 2 --,X, and as in $2, the fact 
that we have a simultaneous resolution picks out a particular class. It follows from the 
earlier discussion that the preferred T is that which leaves invariant the system of positive 
roots of W, consisting of the elements of R, which are non-negative linear combinations of 

p1, * * * 3 P.. 
We consider the space Horn, (Q, Jac E) of equivariant homomorphisms as our moduli 

space. An element cp of this group determines + by using the pushout diagram of Galois 
modules 

0-r Q -. P +z +o 

19 l+ II 
O+JacE+PicE+Z-+O. 

There are many components of our moduli space. We have already commented on the 
possible actions of r on Jac E. The action on Q preserves the roots, and extends uniquely to 
an action on P preserving K. It follows from [7] that the action of r on Q is induced by some 
element WE W of order 2 in the Weyl group. The classification of these up to conjugacy was 
discussed in my paper [27], where we also described how the choice of w and the integer 
n = 9 - D determines the real surface x’, up to homeomorphism in the cases when X z X is 
smooth. 

Once the actions of r on Q and on J = Jac E are fixed, there are two main subcases, 
depending whether JR has 1 or 2 components. In the former case, J is topologically 
equivariantly isomorphic to (S’ x S’, s) where s is the swap s(x, y) = (y, x). Thus if 
cp = (rpl, cpp2), (p2 = 41~05, and Hom,(Q, J) z Hom(Q, S’) is connected. In the latter, we can 
write J as a product S’ x S’ = J, x J_ of two circles, where T acts trivially on the first 
component and by inversion on the second. We define c: S’ x S’ + S’ x S’ by c(x, y) 
= (x, y). Correspondingly cp = cp + x cp _ . The homomorphism cp + can take arbitrary values 
on elements of Q invariant by r’, but those with r(t) = - 5 are sent to { f l}. To state this 
invariantly, we use Galois cohomology: as we only consider the real field here, this refers to 
cohomology of the group Z, generated by 7. For any module M, the Tate cohomology 
groups Z? (Z, ; M) are periodic with period 2. We will simply write Ho(M), H’ (M). 

Then (p+ induces a homomorphism 

and connected components of the family of possible cp+ correspond bijectively to homo- 
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morphisms al. A similar discussion holds for cp_ , with 

a’: Ho(Q) --) { f I}. 

We now describe how cp discriminates between real forms of the singularity. The type of 
involution on J (1 or 2 fixed components) already determines whether we have an a-stratum 
or a /?-stratum. The only case when we need look further is when D is even and JR has 2 
components, so that E’, s1 are defined. Now the canonical class K is an invariant element of 
P of degree D = 2m. For any j.Ep of degree m, K - i. - r(L) is an invariant element of Q, and 
its class h’. EH’ (Q) clearly does not depend on 1. Similarly, for p E P of degree 1, p - T(P) is 
an anti-invariant element of Q whose class x1 EH~ (Q) does not depend on the choice of ~1. 

LEMMA. In this situation, we have rhe z. stratum ifs’ (K~ ) = - 1, while ife’ (K~ ) = + 1, we 
have cz2 or x4 depending whether E’(K~) = - 1 or + 1. 

Proof In the pushout diagram 

O-+Q- P +Z+O 

1V 19 II 
O+ J -+PicE4Z+O 

both sequences split additively; the obstructions to equivariant splitting are classes in 
H’(Q), H’(J) and cp maps the former (represented by p - r,u, hence equal to rci) to the 
latter. But the lower sequence splits if and only if Pit, E is nonempty. 

If it does split, we have the a2 or r4 stratum depending whether K is not or is in that 
invariant component of Pit, E consisting of doubles of invariant elements of Pit, E. But this 
is determined by the value of E'(K~). 

$5. CUSP SINGULARITIES (COMPLEX CASE) 

Classification 

Following Hirzebruch [12], a singularity is called a cusp singularity if its minimal 
resolution consists of a cycle of rational curves. It is determined up to isomorphism by the 

normal degrees - bi of these curves. These satisfy bi 2 2 and y (bi - 2) = D > 0. The case 
i=l 

when the number (D*) of curves is s 2 is different in some respects, but we adopt the 
convention that the infinite cyclic cover consists of smooth rational curves E; (i E Z), with 
Ei, Ei disjoint if 1 i -jl 2 2, and meeting transversely in a single point (only) if 1 i -j I = 1: 
then the normal degree of E: is bi, where this is defined to be periodic in i with period D*. 

There is a natural duality in the class of cusp singularities. If the cycle b = (bi) is 
arranged as 

2 
.’ 

2 k, + 2, z, . ._. ,2; kt + 2, . . . , k, + 2; 

k; - I k; - 1 

with each ki, k: 2 1, then the dual cycle is 

k:+2 ,..., 2,kf+2,2 ,..., 2,.. .,2 ,..., 2. 
\ , \ , \ I 

k,- 1 k,-1 k,- I 

We have D = Z ki, D* = Zk:, so these are exchanged by the duality. 
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The singularity is a hypersurface singularity if and only if D I 3, a complete intersection 
if D = 4, a Pfaffian singularity in C5 if D = 5. Equations can readily be given in terms of the 
b* for a normal form (see e.g. [9,3.2]). In these cases the Milnor number is given by 

p = ll+D*-D. 

We will often associate to the cusp singularity the dual graph A of the resolution: 
a polygon with D* vertices labelled by the integers bi. Sometimes we use also the graph A* 
of the dual. 

The deformation space 

The construction is due to Loo’ijenga [ 163: we attempt only a condensed statement of his 
main results. The two dual cusp singularities can be “glued” to give an Inoue-Hirzebruch 
surface X (which is closed), with the two singular points x0, xi. 

The deformation space of X maps isomorphically to the product of those for these two 
singularities. We will however keep x1 fixed and deform x ,, : moreover, we consider only the 
(dense, Zariski-open) subset of the deformation space where x,, is deformed into (at worst) a 
set of Du Val singularities. The corresponding surfaces X, are rational, the cycle of curves 
resolving x1 is an anticanonical divisor E = C [iSi]. 

We can parametrise the family of such surfaces in the same manner as in $3. Indeed, 
following Loo’ijenga [16], we define here also a strong simultaneous resolution and a root 
system. First, by [16, Theorem 1.11, the surface 2, can be constructed as follows. 

Start with the smooth rational surface Yand the anticanonical cycle ,?? = ZEi defined by: 

if D = 1, Y = P2(@) and E is a nodal cubic curve; 
if D = 2, Y = P’ (C) x P’ (C) is a quadric surface and E, , E2 are tonics (smooth plane 

sections) meeting transversely; 
if D = 3, Y = P’(C) and ~i(l I i I 3) are lines forming a triangle; 
ifD=4, ~=P’(C)xP’(C)and~,u~~=P1(@)x{O,cc,),~2u~~=fO,cc~xP1(@); 
if D = 5, r is the nonsingular de1 Pezzo surface of degree 5 and the Ei are lines 

(exceptional curves) forming a pentagon-for example, those corresponding to the classes 

E1,Eg-El--~,E2,Eo-E2-Ej, ~~ - .cl -Ed in Pit Y. Then Ei has selfintersection number 
4 -D (except if D = 1, when we have 7). Now blow up a sequence of b, + 4 - D (or b* + 7, 
if D = 1) points Pi on Ei (but not the intersection points with other Ej). 

This gives the construction and (using the ordering of the Pi, which need not be distinct) 
the strong simultaneous resolution. The rank of the Picard group P = Pit Y of a resulting 
surface Y is obtained from that of t (1, 2, 1, 2, 5 in the five cases) by adding 

c (bf+4-D)=X(b,*--2)+0(6-D) 
imodD 

=D*+D(6-D) 

(or b* + 7 = D* + 9 when D = 1); thus we have rank P = D* + 10 in all cases, agreeing (as it 
must) with 10 - rc2 = 10 - E2. 

Define L to be the sublattice of P generated by the Ei (hence of rank D), and Q its 
orthogonal complement. A root system is defined in Q by listing a system of fundamental 
roots. If sj denotes the proper transform of Pi, we start by choosing the E! - si+ ’ : there are 
D* + D(5 -D) (or, if D = 1, D* + 8) of these, while Q has rank D* + 10 - D, thus we need 
1,2, 1,2, or 5 further roots for D = 1,2,3,4 or 5. If D = 1 resp. 3, and q is the class obtained 
from a general line in P2, we take q - &l - &’ - e3 resp. q -E: - E: - &: as our final root. If 
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D = 2 resp. 4 and vi, t/* are the classes obtained from the two rulings of Pi (a=) x P’(C) we 
take as further roots 

If D = 5, and tli is the class of the total transform of Ei we take as further roots vi - E,! 
(i mod 5). We then find that the root system has type described by graphs as follows 

D= 1 =*HJ*+‘l ..I 

D = 2 =Z.b:+Z,b:+Z 

D=3 *b:+I,b;+l,b:+1 

D = 4 nb:,b;,b:,b: 

D = 5 Rb:-,,bf-,,b:-I,b:-l.b:-l 

where (as in [9]) the symbols T, ll, R denote graphs of the respective shapes 

-% 

___--* 
T -----9 

--,--a 

II ::::x:::7 
-----* 

0 *--me -6 -m---4 

*-mm- --_-_-Q 

and the suffixes are the lengths of the arms, increased by 1. 
As in $3, we parametrise our family using the restriction homomorphism 

@: P=PicZ?,+PicE. 

A divisor on E is equivalent to one whose support avoids the singular set of E. It then has a 
degree on each component Ei; thus we have a natural surjection of Pit E onto the dual 
lattice L# of L. Its kernel (which can be calculated using the coefficient exact sequence 
0 + Z + 0, + 0: + 0 on E) is isomorphic to the multiplicative group @ x. Explicitly, let zi 
be a coordinate on Ei taking the values 0 on Ei n Ei _ 1, cc on Ei n Ei + 1 (more precisely, we 
should do this on components Ei of the universal cover): then given a divisor D we multiply 
the coordinates of its points with the indicated multiplicities to obtain an element of C ’ . 

The homomorphism 4 fits into a commutative diagram with exact rows 

O+Q +P +L#-rO 

l’p I+ II 
O+C’+ PicE+L#-*O 

so is essentially determined by its restriction cp. Given cp we define R, to consist of the roots 
in Ker cp and IV, to be the group generated by the corresponding reflexions. 

The positive cone C+ is that component of {xeP a: x . x > 0} which contains ample 
divisor classes. The choice of this component is equivalent to orienting a positive definite 
summand of P, or equivalently (since L is negative definite) of Q. 

We can now state the result describing how cp determines the surface 2, (denoted X V 
from now on). 
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THEOREM. Let X, X’ be rational surfaces with anticanonical cycles E, E’ and other 
notations as above. If 2: PicX + PicX’ is an isomorphism such that 

(i) z is an isometry 

(ii) r[Ei] = [E:] 
(iii) rR = R’ 
(iv) aC+ = C+ 
(v) @‘oa = 6 

then there exist a uniquely determined WE W, and a unique isomorphism o: X + x’ with 
a Ei = Ej, inducing a 0 w, and preserving the orientation of the cycle. 

Proof [16, 1.531. 
We seek to reformulate this result in terms of cp. Note first that the orientation of the 

cycle can be identified with one of the graph A. For D 2 3 this is already determined by the 
cyclic order of the curves Ei. Our description of the identification of Pit E shows that a 
change of this orientation will replace the isomorphism i: Ker (Pit E + L# ) + @ ’ by its 
inverse i’(D) = (c(D))-‘. 

Now suppose X, X’ as above, and that we know the cycles E, E’ determine isomorphic 
graphs A. Let Cr: Q + Q’ be an isomorphism satisfying (iii) 5R = R’, (iv)r(C+ ) = c’ + and 
(v) cp’“cc = rp. We seek to extend Cr to a satisfying (i) and (ii). Since Cr satisfies (iii), it is an 
isometry. As the two situations are abstractly isomorphic, we can take Q = Q’. Consider the 
induced automorphism of the discriminant group, 4: Q#/Q + Q#/Q; this is an isometry for 
the induced forms [23]. Now any element of the Weyl group W of R induces the identity on 

Q”/Q. The group N of automorphisms of Q preserving R and C+ normalises W, and N/W 
is isomorphic to the group G of automorphisms of the diagram (T, II or 0) describing a 
fundamental chamber of the root system. For D = 3,4,5 G is isomorphic to the group Aut A 
of automorphisms of the diagram A. For D = 1,2, Aut A is the direct product of G and the 
group generated by the obvious reflexion: 

b* 
-_ ---_ _-- u _-_!r>‘:_--__ 

We have (cf. [24]) a natural isomorphism of QX/Q on Lx/L, since Q and L are mutual 
orthogonal complements in the unimodular lattice P. Given automorphisms of Q and of L 
combine to give an automorphism of P if and only if the induced automorphisms of the 
discriminant group coincide. But Aut A acts on L (by permuting the Ei) and 

LEMMA. If PE Aut A acts trivially on L’/L, then either p = 1 or D I 2 and p is the obvious 
reflexion (which acts trivially on L). 

Proof [26]. 
Thus in all cases G acts faithfully on L#/L, or equivalently on Q#/Q. 
From the above discussion we deduce the following. 

PROPOSITION. Let Cr: Q + Q’ be an isomorphism with S(R) = R’, a(C + ) = C’ +. Then there 
is a unique isometry a:P -* P’ which extends Cc and satisfies a [Ei] = [E; +,i] for somejixed k 
and E = &- 1. 

We can thus reformulate the theorem. 

THEOREM. Let X, X’ be as above; a:Q + Q’ satisfy 

a(R) = R’, a(C+) = C”, cp’o5 = cp. 
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Then if D I 2, for a unique w E W, we have an isomorphism a: X + X’ inducing r 1 w. 
If 3 I D I 5, a determines E = f 1, and only if& = + 1 do we have a. 

Indeed, in the latter case, an isomorphism a induces r satisfying cp’ 0 ct = E cp, so except in 
the case q(Q) c { f l}, if E = - 1 the above does not lead to a surface. 

As in $3, we consider Horn (Q, C ’ ) as our model for the deformation space. Observe 
that L has rank D; Q has rank D* - D + 10 which coincides with the Turina number of the 
singularity. Again, the universal cover Hom(Q, Cc) is essentially the branched cover given by 
the monodromy of that part of the deformation space corresponding to Du Val singulari- 
ties. 

Location of singularities in the deformation 

This now proceeds as before. For a given cp, the singularities on X, correspond to the 
irreducible factors of W,. The group W, stabilises cp; also a lift in Hom(Q, C). The 
algorithm to determine possible W,+, runs as follows (cf. [ 161): take the diagram (of type T, ll, 
Cl) corresponding to the root system R in Q. Delete vertices till each component of the 
resulting graph is of finite type. Then each component, with at most one exception-say 
A,-is of type A, for some n. Replace the component A0 by the corresponding extended 
diagram; then delete (at least) one vertex from it. 

46. CUSP SINGULARITIES (REAL CASE) 

Classification 

This was determined in my paper [25]. Each real form is determined by a conjugation 
map, which acts on E and hence induces an automorphism of A. 

If this automorphism is trivial, the isomorphism classes of real forms correspond to 
T/2 T, where T is the discriminant group Lx/L. As T admits 2 generators, this has order 1,2 
or 4. The values of r for these real forms are 

(1 form) r=2 

(2 forms) I = 1, 3 

(4 forms) r = 2,2,2,4. 

If the automorphism is a rotation of A of order 2, we have a unique real form. It has 
r = 0. 

If the automorphism is a reflexion of A, it has 2 fixed points P, Q on A. Each is either (a) 
the mid-point of an edge, (b,) a vertex with bi odd, or (b2) a vertex with bi even. In cases (a), 
(b,) define nr = 1, rp = 1; in case (b2) define nP = 2, rP = (0,2}. Then we have nPnQ real 
forms; the corresponding values of r are given by rP + rQ. 

We observe also that in deriving this result one first shows directly that the real forms 
correspond to Ho (T; Lx/L) (trivial action case) or H’ (7, Lx/L) (reflexion case) where the 
action of 7 is induced by the given permutation of the Ei and is defined more precisely 
in [26]. 

The deformation space 

As in $4, we now claim that the proof of the theorem goes through without essential 
change to give semialgebraic isomorphisms: here hypothesis (c) must be replaced by 

$o(y = 704j 
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where t denotes complex conjugation in @ ‘, or-if Q reverses the orientation of the cycle 
A-its inverse. This allows us to determine the real forms of the surfaces X,. Taking into 
account the further discussion in 94, we see that our moduli space must now be taken as the 
space of equivariant homomorphisms 

Hom,(Q, @ ’ 1. 

Here again, if 3 I D I 5 then the variety X determines an orientation of the cycle, and the 
action of T on @ ’ is determined by whether conjugation on Q preserves or reverses this. If 
D I 2, for each conjugation on Q we have to consider both types of action of r on @ x. 

The discussion of the effect of WE IV,+, is now just the same as in [27] ($4). The possible 
actions of Z, on Q are those which preserve R and C+ : as above, these belong to N but not 
necessarily to IV. We can classify involutions in W using the same techniques as before, but 
I do not see how to extend this to N. 

More interesting is the action Z, on Pit E. As before, this is determined as a pushout of 
equivariant homomorphisms 

O+Q +P -+L#+O 

l’p 1G II 

0-K” +PicE+L#+O 

The action of Z, on Lx, and indeed also on Q= ’ is determined by the action on A. 
The exact sequence for Pit E is determined by the boundary homomorphisms 

HO(L#) + H’(Q=“), H’(L#) + HO(Q= x ). 

It is immediate from the fact that Z, acts by permuting basis elements that H’(L) = 0 
= H'(L" ). If Z, acts trivially or by rotation on A, then it acts by conjugation on c ‘, so 
H’ (a= ’ ) = 0. Hence in these cases the sequence for Pit E splits. 

If Z, acts by reflexion on A, it acts on C ’ byz+f-‘,soH’(Q=“)={+l}.Herethe 
sequence is determined by 6: Ho (Lx ) + { & 1 } or, by duality, ~EH’ (L). 

Identification of the real form 

We are now ready to relate the homomorphism rp to the real form of the singularity. In 
the “rotation” cases, cp induces 

Ho(~): H”(Q)-+Ho(Q=“) = {f l}; 

while in the reflexion cases we have 

H’(cp):H’(Q)-+H’(Q=“)= {fl). 

We recall that the real form of the singularity is determined by E’,EH’( Lx/L) in the case of 
trivial action, is unique for a rotation of order 2, and is determined by El1 EH’ (L”/L) for a 
reflexion. Write ijo~Ho(QX) (rotation cases), qr E H1 (QX ) (reflexion cases) for the classes 
dual to the homomorphisms H’(q), H’ (cp). 

THEOREM. The projection q:QX + T has 

Ho(q) fro = to (rotation cases), 

H’(q)ij, = 1, (rejlexion cases). 

Moreover, the boundary map d for the exact sequence 0 + L + Lx + T -+ 0 has a& = s’ 

(rejiexion cases). 
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Proof The four exact sequences making up the commutative diagram 

have the exact cohomology sequences which fit into the diagram 

The natural dualities between Q and Q”, L and L', P and itself induce dualities (of vector 
spaces over IE,) of Ho Q and Ho QX, H' Q and H' QX etc., under which the whole diagram 
becomes self-dual, with Ho T and H’ T dually paired. 

Now commutativity in the basic pushout diagram implies that H’cpo(a’l*) = 6. Thus 
by duality, 

(aq*)(?j) = 8. 

Of course, this is only of interest in the reflexion case. As d is injective, and as we have not 
given a formal definition of sl, to complete the proof in this case it will suffice to show that 
the real form is indeed determined by the real form of Pit E, viz. 6. Here we must use the 
notation of [25,43]. H"(Lx) is spanned by the classes of points on the invariant curves Ei. 
For a conjugation rp, K, E, is invariant and the point with coordinate u. = z is mapped to 
that with u. = coZ-l, so 6 CEO] = co E { f l}. But we showed (see especially [25, p. 227, 
penultimate paragraph]) that co and the corresponding number for the other invariant cycle 
(if any) determined the real form. 

In the case where T acts by a nontrivial rotation of AL, hence also T, has trivial 
cohomology and the result is thus trivial. There remains the case where r acts trivially on A, 
which is considerably more delicate. 

Write N for a (conjugation-invariant) regular neighbourhood of E in X, M for its closed 
complement. The homology groups form the diagram of exact sequences 
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which can be identified, subject to two qualifications, with essentially the diagram above: 

The first qualification is that the splittings are of additive groups only, and not natural. The 
second is that in identifying divisor classes with two-dimensional homology groups, the 
action of conjugation T acquires a sign, since it reverses the orientations of complex curves. 

Now .& can be identified with the obstruction to splitting Hi (alv) z Z 0 T equi- 
variantly: this is clear form the identification [26, §2F] of the action on H,(aN) of 
automorphisms and conjugations of the cusp. Hence this lifts to the obstruction to splitting 
H,(M, 8lv) 2 Z 0 Q” equivariantly, which is the same (by duality) as the obstruction to 
splitting Hz(M) 2 Z 0 Q. It remains to identify this last obstruction with $, . 

The map Ho (cp) can be interpreted as follows. An element x of Ho(Q) can be represented 
by a difference F = F’ - F” of cycles defined over R. We must look at the intersection with 
the exceptional locus E = ul Ei. Now, as we are in the split case, each Ei is isomorphic over 
R to P’(R). We have chosen coordinates Zi on Ei, which we may suppose real on EF Then 
Ho q(x) is the sign of the product of coordinates Zi of points of F’ n Ei, F” n Ei. We can thus 
ignore pairs of complex conjugate points. Indeed, if we write 

E- = ui{P~E”:zi(P)<O} 

we have Ho q(x) = (- l)“, n the mod 2 intersection number of the cycles FR = Fk + Fb;l and 
E- in Xn. 

On the other hand, the splitting obstruction for H,(M) can be computed from the 
surface F representing x by taking a homology B of F to a cycle avoiding E (hence, we may 
suppose, lying in M) and then taking the homology class of B urB in H,(X, M) 
z H,(N, 13iV) z Z, modulo 2. To identify these two, we must be more explicit about B. 

We observe that it is not necessary for the cycle F above to be chosen algebraic. 
Indeed, the intersection number of F, and E- in X, is determined by the mod 2 

homology class of F,, and hence by the equivariant mod 2 homology class of F. But-as a 
short calculation shows-H2(X; Z,) is an extension by H’(Z,; H2(X;Z2)) of a subgroup 
E, represented by mapping a 2-sphere with the antipodal involution to a point of X,, and 
hence not contributing to our invariant. 

We can thus suppose that F avoids singular points of E, and meets N in a collection of 
discs giving fibres over points of F n E of the normal bundle of E, deformations of these 
points give deformations of E. First we deform pairs of complex conjugate intersections to 
be real. Next deform all real intersection points to zi = + 1 or zi = - 1. As we are working 
mod 2, each of these intersections can be taken to have multiplicity 0 or 1. Moreover as 
XEQ, the two intersection points on Ei both have the same multiplicity (0 or 1). 

It remains to identify the two invariants after these normalisations: it suffices to show 
that each component Ei such that F. Ei = { - 1, l> contributes to the class of Bu rB in 

H, (N, 8N; Z, ). 
We construct B by joining - 1 to 1 by the semicircle {eie: 0 5 8 I n): the union of the 

corresponding normal discs gives the desired homology. Then ?B is given by the other half 
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of the unit circle. The cycle B u TB in (N, ZN) meets the l-cycle E - transversely in one point 
(zi = - 1). As E- generates H, (N; Z,) z Z,, this completes the proof. 

Since this proof is quite involved, it seems worth presenting an alternative argument 
which, though it gives a weaker result, gives more geometrical insight into the split case. 

The real exceptional set E, = u EiR is a connected graph. A basis for H, ( ER) is given by 
the Ei~ together with E -. The natural retraction of X, n N on ER has degree 2 on the 
boundary, so for each i there are 2 pieces mapping to E; and 2 to ET. As we saw in [25, p. 
2261, as Ei moves round the cycle these 4 components get permuted. The real form 
determines the class of the permutation in the symmetric group S(4): its class in the quotient 
S(3) by the four group is already determined by the complex class of the singularity. Types 
are thus as follows: 

Complex type Standard real form Nonstandard real form 

A 3, 1 - 

B 2, 1, 1 4 
C 1, 1, 1, 1 2, 2 

Each cycle yields a boundary component of N,. We can determine the homology classes 
in NR: e.g. for a cycle of lenth 1, we have a sum, with ET or E; for each i. It follows that a 
cycle of even length is homologous to a linear combination of the Ei( W) (and hence to 0 
in N): one of odd length is not. 

Now if F is (as above) an invariant cycle representing an element of Q, we want to relate 
FRYE- to the real form. As [F]EQ, F,.E” = 0. Now [E-l is not a linear combination of 
the [ Ew] in [X,] o there is a l-cycle L in XR with L. EW = 0, L. E - = 1, o there is an 
invariant 2-cycle F, with [F]EQ, F,. E- = 1. For L spans a surface D in X, which may be 
taken to have zero intersection numbers with the Ei: take F = D u rD. 
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