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$1. INTRODUCTION 

A CLASSIFYING space for a topological group G is the base space B, of a principal G-bundle 

EG + B, such that E, is a contractible space. It is a universal object in the sense that any 

principal G-bundle over a complex K admits a bundle mapping into E, . General properties 

of G-bundles and their characteristic classes are obtained by studying E, + B, . 

The first functorial construction of an EC --f B, was given by Milnor in 1956 [5]. In 1959, 

Dold and Lashof [l] reformulated Milnor’s construction in such a way that it applies when G 

is a topological monoid (i.e. an associative H-space with a two-sided unit). Recently Milgram 

[4] gave a different functorial construction, and proved two useful properties: first, if G is an 

abelian monoid, then B, has a natural (functorial) structure as an abelian monoid; secondly, 

if G is a complex such that the multiplication G x G --t G is skeletal (i.e. for each q, it maps 

the q-skeleton into the q-skeleton), then B, becomes a complex in a natural way so that the 

chain group C(B,) is isomorphic to the bar resolution of C(G). Thus Milgram’s construction 

can be regarded as the geometric analog of the algebraic bar construction. 

In this paper, we present a reformulation of Milgram’s construction. It has three 

advantages: it is well motivated, the degree of generality of the results can be precisely 

stated, and the relation of Milgram’s construction to that of Dold and Lashof becomes 

apparent (it is a quotient of the latter). 

We shall establish two further properties. First, the construction preserves products 

E G x H = EG x EH . Secondly, if G is a group (or an abelian monoid), then EG has a natural 

structure as a topological group (abelian monoid) such that G is a subgroup (submonoid), 

B, is the coset space E,/G, and, when G is abelian, B, is a quotient group (monoid). 

The fact that B, preserves products combined with its functorial property implies 

immediately that it carries an abelian monoid (group) into an abelian monoid (group); one 

need only observe that the multiplication G x G --t G, and the inverse mapping G --f G are 

morphisms. In the category of semisimplicial monoids, the W-construction of Eilenberg- 

MacLane [3] has exactly these properties (see John Moore [6]). In view of this, it appears 
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likely that Milgram’s resolution, applied to the geometric realization of a semi-simplicial 

monoid, gives a space that is naturally equivalent to the geometric realization of the W-con- 

struction applied to the monoid. 

42. ENLARGING AN ACTION 

We assume throughout this paper that G denotes a topological monoid (equivalently, an 

associative H-space with a two-sided unit e). All spaces are assumed to be compactly 

generated (a set that meets every compact set in a closed set is closed); and product spaces 

are formed in the sense of the category of these spaces [8, 4.11. 

An action of G in a space X is a mapping X x G -+ X (the image of (x, g) is written xg) 

satisfying the associativity law x(gg’) = (xg)g’, and the unit condition xe = x. A space X with 

an action is called a G-space. A mapping f: X + Y of one G-space in another is a G-mapping 

iff(xg) = (fx)g for all X, g. For any product of the form X x G, the right action of G is 

defined by (x, g)g’ = (x, gg’) for all x, g, g’. Then, if X is a G-space, the action mapping 

X x G -+ X is a G-mapping relative to right action by virtue of the associative law. 

2.1. Definition. Let A be closed in X, and h : A x G -+ A an action. Form the adjunction 

space x = A uh (X x G); this is the quotient space obtained from X x G by collapsing 

A x G into A by h. Right action of G in X x G induces an action of G in x. The resulting 

G-space is called the enlargement to X of the G-action on A. 

We identify X with the image in x of X x e; this identification on A preserves the action 

of G. In this way 1 is the union of the closed set A with the action h and the open set 

(X - A) x G with right action. 

Let us recall [8, 6.21 that A is called a neighborhood deformation retract of X (briefly, 

(X, A) is an NDR) if there is a mapping U: X +I= [O, llandahomotopyk: X x I+ Xsuch 

that ~~‘0 = A, k(x, 0) = x for all x E X, @a, t) = a for all a E A, t E I, and k(x, 1) E A for all 

x such that ux < 1. 

2.2. LEMMA. Zf (X, A) is an NDR, then (x, A) is an NDR. If also (G, e) is an NDR, then 

(x, X) is an NDR. 

Proof. It is easily seen that (X x G, A x G) is an NDR (see [8, 6.3]), then the first 

statement follows from the general proposition [S; 8.51 about adjunction spaces. By [8; 6.31 

(X, A) x (G, e) =(X x G, X x e u A x G) 

is an NDR. Since the quotient mapping X x G +X is a relative homeomorphism 

(X, A) x (G, e) -+ (X, X), the second statement follows from [8; 8.41. 

Remark. Our definition of a compactly generated space includes the Hausdorff condi- 

tion. As a quotient space, the enlargement x may fail to be Hausdorff. However, when 

(X, A) is an NDR, x is Hausdorff. This follows from Lemma 8.5 of [8] where it is stated that 

any adjunction space Y u,, X is compactly generated if X and Y are compactly generated, and 

(X, A) is an NDR. Since the proof of the Hausdorff condition was omitted, we give it here. 

Since X - A maps topologically onto Y uh X - Y, this open subset is Hausdorff. Suppose 

x,~Yandx,~Yu,,X- Y.Set 
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u = (x E X 1 UX < &x,)/2}, V = {x E x 1 ux > @x,)/2}. 

Then Y u U, V map onto open sets separating xi and x2 . Suppose next that xi, x2 E Y. Let 

U,, U, be open disjoint sets separating x,, x2 in Y. Let r: W+ A retract a neighborhood of 

A in X into A. Then U, u r-‘h-‘U, and U, v r-‘h-‘U, map onto disjoint open sets of 

Y u,, X separating x1 and x2. 

2.3. LEMMA. Let G, H be topological rnonoids, and let h: G -+ H be a continuous mor- 

phism. Let f: (X, A) --) (Y, B) be a mapping of NDR pairs such that A is a G-space, B is an 

H-space, and f 1 A is h-equivariant, i.e., f(ag) = (fa)(hg) for all a E A, g E G. Then 

f x h : X x G + Y x His h-equivariant relative to right action, and it induces an h-equivariant 

mapping of quotient spacesf: (9, A) + ( F, B) called the enlargement off. In this way, enlarge- 

ment becomes a functor. 

Proof. Two distinct points (xi, gi), (x Z, g2) of X x G are equivalent in X if 

x,,x,~Aand xlgl =xZg2. Since f 1 A is h-equivariant, we have f(x,g,) = (fx,)(hg,) for 

i = I, 2, hence (fx,, hg,) and (fxz , hg2) are equivalent in y Therefore the composition 

X x G -+ Y x H + Pfactors into X x G -+X -+ x Since X has the quotient topology, f is 

continuous. Since the quotient mappings X x G +x and Y x H + F are G- and H-map- 

pings, it follows that f is h-equivariant. It is routine to check the functorial properties of 

enlargement. 

2.4. Remark. The enlargement 1 ZI X is characterized up to a G-equivalence by the 

property : if Y is any G-space, and f any map X -+ Y such thatf 1 A is a G-mapping, then there 

exists a unique G-mapping f ‘: x + Y extending f. 

By a complex we shall mean a CW-complex. A mapping f: K-+ L of two complexes is 

called skeletal iff maps the q-skeleton of K into that of L for each q 2 0. A product of two 

complexes is regarded as a complex whose cells are the products of cells of the factors. 

2.5. LEMMA. Let G be a complex such that the multiplication G x G -+ G is skeletal. Let 

(X, A) be a complex and subcomplex, and suppose the action A x G + A is skeletal. Then the 

enlargement X inherits a unique structure as a complex from that of X x G, X is a subcomplex 

of x, and the mapping 1 x G -+ x is skeletal. 

Proof. It is a general proposition that, if L is a subcomplex of K, M is a complex, and 

f: L -+ M is skeletal, then M uJ K inherits a unique structure as a complex from the disjoint 

union M u K such that M is a subcomplex and the quotient map M u K + M uf K is 

skeletal. This becomes obvious if we picture K as being built out of L by successive adjunc- 

tions of cells ordered by dimension; for we may build M u/ K out of M by adjoining the 

same cells to M using adjunction maps modified by f. If we apply this proposition to the 

case K = X x G, L = A x G and M = A, it follows that X inherits a structure as a complex 

such that X x G + 1 is skeletal and X is a subcomplex. Since each cell of 1 is the image of a 

cell of X x G of the same dimension and Xx G x G -+ Xx G + X are skeletal, it follows 

that x x G -+ W is skeletal. 
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$3. CONTRACTIONS OF SPACES 

The unit interval Z = [0, l] is a topological monoid under ordinary multiplication. An 

Z-action Xx I+ Xis of course a homotopy which, for t = 1, is the identity map of X. It is a 

special kind of homotopy, the associative law requires that each point on the path of a 

point follows a path contained in the first path; the homotopy is a l-parameter semigroup 

of motions with a reversed parameter. The base point of Z is defined to be 0. 

3.1. Definition. A contraction of a space X to a base point x,, is an Z-action h : Xx Z -+ X 

that factors through the smash product Xx Z + X A Z-t X. In other words, h(x, 0) = x0 = 

h(x,, t) for all x E X, t E I. 

For example, the multiplication mapping m: Z x Z-t Z is a contraction of Z to 0. 

We shall restrict ourselves to spaces with base points (X, x,) that are NDR’s. Then, by 

[8 ; 6.31, the product pair (X, x0) x (Z, 0) is an NDR. The reduced cone X A Z is just the 

adjunction space determined by the map of Xx 0 u x0 x Z to a point xi. Then, by [8; 8.51, 

(X A Z, x1) is an NDR; in particular X A Z is Hausdorff. 

The proof of the following lemma is trivial. 

3.2. LEMMA. The right action of Z on Xx Z induces a contraction on X A Z called the 

canonical contraction. The cone with this contraction is a functor from the category of pointed 

spaces to the category of pointed spaces with contractions. 

3.3. LEMMA. Let x0 E A c X be such that (X, A), (X, xc,) and (A, x,,) are NDR’s, and 

let h : A A Z -+ A be a contraction of A to x,, . Set 8 = A u,, (X A Z) so that 8 is the quotient 

space of X A Z obtained by collapsing A A Z into A by h. Then all of the pairs (8, x0), (8, A) 

and (2, X) are NDR’s, and the canonical contraction of X A Z induces a contraction of 8 to x0 

which extends h. We call (8, x0) with this contraction the enlargement to X of the contraction 

on A. It is functorial for mapsfi (X, A, x,) + ( Y, B, y,,) such that A and B hare contractions 

andf 1 A is an Z-mapping. 

Proof. By the product theorem [8; 6.31, (X, A) x (Z, 0) is an NDR. It maps by a relative 

homeomorphism onto (X A Z, A A Z), hence, by [8; 8.41, (X A Z, A A Z) is an NDR. It 

follows from the lemma 18; 8.51 on adjunction spaces, that (r?, A) is an NDR. Since (A, x,,) 

and (8, A) are NDR’s, the lemma [8; 7.21 yields that (2, x0) is an NDR. If Z denotes the set 

of endpoints of I, then (Z, i) is an NDR. Hence, by the product theorem (X, A) x (Z, Z) is an 

NDR, and, since it maps onto (8, X) by a relative homeomorphism, the latter is also an 

NDR. 

In the diagram 
lxm 

xxzxz -xxz 

“1 k 1’ 
_zAI - x 

p and p’ are the natural quotient mappings, and m is the multiplication of I. To show that 

there is a unique function k such that kp’ = p( 1 x m), let (x, t, z) and (x’, t’, z’) be distinct 
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points of Xx I x I having the same image under p’. If both map to the base point, we have 

x = x0 or t = 0 or z = 0; and this implies x = x0 or tz = 0, hence (x, tz) maps to the base 

point. Similarly (x’, t’r’) maps to the base point. If neither maps to the base point, then we 

must have that x, x’ are in A, xt = x’t’ and z = z’ # 0. These imply xtr = x’t’z’, hence 

(x, tz) and (x’, t’r’) have the same image in r?. Thus k is uniquely defined. 

To prove that k is continuous it suffices to show that p’ is preclusive (a quotient map- 

ping). Since a composition of preclusions Xx I -+ X A I -+ 8 is a preclusion Xx I+ 8, 

we may apply [8 ; 4.41 to conclude that Xx Ix I + r? x Zis preclusive. Composing this with 

the preclusion I? x I + r? A I gives p’, hence p’ is also preclusive. 

The construction of 1: (s, A) + ( ?, B) and the verification of functorial properties is 

routine and will be omitted. This concludes the proof. 

3.4. LEMMA. Let (X, A) be a complex and subcomplex, and let the contraction A A I-+ A 

be a skeletal mapping where I is the complex lvith tu’o vertices and one edge. Then the enlarge- 

ment 8 inherits a unique structure as a complex from that of X A I, and the mappings 

X A I-+r? and8 A I+8 are skeletal. 

Proof. Apply the argument proving 2.5 with K, L, A4 replaced by X A I, A A I, and A, 

respectively. 

Remark. Just as in 2.4, the enlargement x is characterized by the property: iff: X -+ Y 

is a map of X into a space Y having a contraction, and f 1 A is an I-mapping, thenfextends to 

a unique I-mapping r? -+ Y. 

&t. CONSTRUCTION OF THE RESOLUTION 

For any topological monoid G with unit e such that (G, e) is an NDR, we have the 

following construction obtained by alternating the constructions of 92 and $3. Ey an induc- 

tion on n, we define spaces D, , E,, such that 

c E, c D, c ..a c D, c E, c Dn+l c .*a 

Moreover each D, has a contraction D, A I-+ D, and each E, is a G-space. Let Do consist 

of the single point e with the obvious contraction. Let E, denote the enlargement to D, of 

the G-action on the empty subset of D, . A check of definition 2.1 shows that E, = Do x G is 

just a copy of G and the action is right translation. Now define D, to be the enlargement to 

E, of the contraction of D,. A check of the definition (see 3.3) shows that D, is just the 

reduced cone on E, . Define El to be the enlargement to D, of the G-action on E,, . In general 

D, is the enlargement to E,_1 of the contraction of Dn_l, and E,, is the enlargement to D, 

of the G-action on E,,_,. The G- and I-actions are denoted by 

4”: E,xG+E,, and $,,: D,xI+ D,. 

We now pass to the limit by setting 

E, =U&E, =U;,,Dn, 

and giving E the topology of the union (weak topology). Since the G-action 4, on E,, extends 
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&_ 1 for each n, the union of the &‘s defines a G-action 4: E x G -+ E. Since the contraction 

$, of D, extends $, _ r for each n, the union of the $“‘s is a contraction $ : E A I + E. 

4.1. THEOREM. If (G, e) is an NDR, then the Eo constructed above is a G-resolution in the 

sense of [7, I. 11. Moreover, iff : G + H is a continuous morphismof topological monoids, there 

is an associated functorial f-mapping of resolutions f’: Eo + En. 

Proof. Clearly {E,} represents E as a filtered G-space. It is an acyclic filtration be- 

cause the contraction of E contracts E, to the point e in E,,,, for each n. It is a free filtered 

G-space because, for each n, E,, = E,_, ug (D, x G), hence the quotient mapping 

(D,, E,,_,) x G --) (E,, E,_,) is a relative homeomorphism. Finally we must show that 

(D,, E,_,) is an NDR for each n. The proof of this proceeds by induction on n; the case 

IZ = 0 is trivial. Assume inductively that (D,, E,_,) is an NDR. Since (G, e) is an NDR, 

it follows from 2.2 that (E,, 0,) is an NDR. Then it follows from 3.3 that (Dn+l, E,) is an 

NDR. This completes the inductive step, and the proof that Eo is a resolution. 

The functorial nature of the construction is shown by proving the same for each 

D,, E,, using 2.3, 3.3, and passing to the limit. 

4.2. LEMMA. If G is as in 4.1, then, for each II, (E,, E,,_,) and (Eo, E,) are G-NDR’s, 

i.e. the functions u and h in the de$nition of an NDR satisfy u(xg) = ux andh(xg, t) = h(x, t)g 

for all X, g and t. 

Proof Let U, h represent (D, , E,,_,) as an NDR. Define u’: D, x G + I and 

h’:D,xGxI+D,xGby 

u’(x, g) = ux, h’(x, g, t) = (h(x, t), g) for all x, g, t. 

Then, with respect to right action in D, $ G, u’ and h’ represent (D, x G, E,_, x G) as a 

G-NDR. Since the quotient mapping 

6:(D,,E,-,) x G-+(K,E,-,) 

is a relative homeomorphism, it follows from [S; 8.41 that u’, h’ induce a representation 

u, k of (E,, , E,_ I> as an NDR such that ub = U’ and k(@ x 1) = bh’. Since 4 is a G-mapping, 

it follows that v, k represent (E, , En_,) as a G-NDR. 

According to [8 ; 7. l] the NDR property of (Em, E,,,_ I) is equivalent to the existence of a 

retraction r,,, of Z x E,,, into 0 x E,,, u I x E,,_,. It is easily checked that the G-NDR 

property is equivalent to r being a G-map. Apply now the argument of [8; 9.41 to construct 

aretractionsofIxEintoOxEuIxE,,. Since s is essentially a composition of various 

rm’s, it follows that s is a G-map; hence (E, EJ is a G-NDR, and the lemma is proved. 

Since G is not required to be a group, the orbit of a point of E, under G need not be a 

copy of G. However, each point lies in a maximal orbit which is a copy of G because EG is the 

union of the sets E,, - E,_, homeomorphic to (D, - E,_,) x G. These maximal orbits are 

closed sets. 

4.3. Definition. The base space B, of the G-resolution EC is the quotient space of E;; 

by its maximal G-orbits. Let p: EG + B, be the natural map. Set B,, = pE,, . The base space 

with this filtration we call Milgram’s classtfying space for G. 
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It is readily seen that B, is obtained from B,_, by adjoining D, by the projection 

p: E,,_, --, B,_, . Since (D,, I&_,) is an NDR, it follows from [S; 8.51 that (B,, B,_,) is an 

NDR. Applying [8; 9.41 we obtain that B, is a Hausdorff space, and each (B, B.) is an 

NDR. It follows now from [8; 2.61 that B, is compactly generated, and by [8; 9.51 that B, 

has the topology of the union of {B,}. 

4.4. Remark. The construction of Dold and Lashof differs from ours only in that each 

D, is the cone E, _ 1 A I rather than the space obtained from the cone by collapsing D,_ 1 A I 

into D,_ 1. It follows that there is a functoriai mapping of the Dold-Lashof resolution onto 

the Milgram resolution. This is a quotient mapping when G is compact, but may not be in 

general due to the intricate topology Dold and Lashof gave their resolution. 

$5. SIMPLICIAL PARAMETERS FOR EG 

The proofs of our main results are based on a parametric representation of Eo, 

essentially that of Milgram’s definition. 

Let A,, denote the n-simplex of R” defined by the inequalities 0 5 f, 5 t, 2 . *. 5 f, 5 1; 

and let 6, denote its interior: 0 < t, < * * - < t, < 1. The standard imbedding of A,, in A,,+r 

adjoins the (n + 1)st coordinate tn+l = 1. 

A point of G” x An will be represented by its coordinates in ‘shuffled form [gl, t,, 92, 

t,, . . . . gn, f,]. Imbed G” x A, in G”+l x A,+1 by adjoining the coordinates gn+l = e and 

t n+1= 1. Let G” x A, denote the union U:=e G” x A,, . 

5.1. THEOREM. For each n there is a natural transformation k, : G” x A,, --f D, with the 

following properties. 

(a) Each k, is proclusive. 

(b) The restriction of k, to G”-’ x An-r is k,_, ; hence the union of the k,‘s is de$ned and 

isamappingk:G”~A~-+Eo. 

(c) Each k, restricts to homeomorphisms 

(G-e)“xS,aDn-E,,-l and (G-e)” x 6~~,~E,,~,~D,~~. 

(d) The restriction of k, to G” x An_1 + E,_, is a G-map where G acts only on the nth 

G-factor by right translation. 

(e) If the action of Z on G” x A,, is dejined by 

]g1, fly 92 3 f2 ,...,,a,,f,l~=~g,,f,~,~2,f2~,...,g”,f”~l, 

then k, is an I-mapping. 

(f) 0-x = [sly Sly . . . . gn,sn]andy= [hl,tl, . . . . h, , t,] in G” x A, are such that, for some 

j< n, 

kj]gl,sl, .a*) gj 7 sj] = kj[hl, tl, * . * 7 hj 7 fjl, 

andgi=hiandsi=tifori=j+l ,..., n,thenk,x=k,,y. 

Proof The proof proceeds by induction on n. In case n = 0, Go x A0 and Do are single 

points. Interpreting A_, and E_, to be empty, the six properties hold in a trivial way. 
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Assume inductively that k,,_I has been constructed to satisfy (a)-(f). We shall define k, so 

that the folIowing diagram is commutative 

G”-l x A,_, x G x I 2 
lXrk 

G” x A,_, x I ---+ G” x Aa 

(5.2) x-,-1X1X1 kn 

I),_, : G x Z 
A-Xi I* I 
- E,_,xf m & 

The mapping T interchanges the two middle factors, $ is defined by 

$((f,, * 1 * , LA 4 = Yxv, * ’ *, fn-15 3, 

and I, P are the quotient mappings occurring in the definitions of En_, and D,. It is 
readily verified that if (1 x $)T brings two points together then their G-coordinates are 
equal, and also their Z-coordinates; if the latter are non-zero, then all coordinates are equal; 
and if the Z-coordinates are zero, then ,$A x l)(k,_, x 1 x 1) carries both points to the base 
point of D, . This shows that there is a unique k,, making the diagram commutative. The 
continuity of k, follows from the preclusive property of (l] x $)?Y The functorial property 
of k,, follows readily from that of the other mappings of the diagram. 

To prove (a), we note first that $, T, kn_I, A and p are preclusive. Since a product of 
preclusions is a preclusion [8; 4.41, it foilows that al1 mappings of the diagram, other than 
k,, , are preclusions. Suppose then that i.J c 0, is such that k;” U is open; since (1 x I,!J)T is 
continuous and the diagram commutes, we have that 

(k,,(l;x $)T)-‘U= @(A x l)(k,_,jx 1 x I))-‘U 

is open. Since the composition ~(2 x l)(k,_ 1 x 1 x 1) is preclusive, it follows that U is open. 
Hence k, is preclusive. 

To prove (b), let x be a point of G”-’ x A,_, considered as a point of G” x A# with last 
two coordinates e, 1. Then x = (1 x ~)~(x, e, 1); and, recalling the definitions of ,X, p, we 
have 

k,x = p(A x l)(kn_I x 11x 1)(x, e, 1) = Z~(jx l)(k,_, x^, e, 1) = k,,_lx. 

The proof that & is a homeomorphism is based on the diagram 
1xT 

(G-e)“-1x6,_, x(G-e) - (G-e)“x6,_, 

i 

a,-,X1 Bn 

(4-1 - J&J x (G - e) i’ E,_1 
I 

-&-I 

where T interchanges the last two factors and A’ is the restriction of /2. Since the quotient 
mapping L in the construction of Em_1 out o f E,,_2 defines a homeomorphism of 

(Q-1 - E,,_,)‘x G onto E,,-,_, - En_2, it follows that 2’ is a homeomorphism. Since T is a 
homeomorphism, and a,_, is assumed to be so, it follows from the commutativity of the 
diagram that p,, is a homeomorphism. 

To prove the same for IX,, , we use the diagram 
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(G-e)" x 6,_, x 6, - 
I 

I LX1 I a, 

(E”_, - D,_,) x 6, pl Dn-En-, 

where I/Y is the restriction of $, and $ is the restriction of I(. It is readily checked that $ ’ and 

CL’ are homeomorphisms. Since /?. is a homeomorphism and the diagram is commutative, it 

follows that a,, is a homeomorphism. This proves (c). 

To prove (d), consider the diagram of subspaces of 5.2 obtained by replacing A,, by 

A,,_r, each I-factor by the point 1 E Z, and each mapping by its restriction. With respect to 

right action of G on the right-hand G-factors, 1 x I,//, T and k,_ 1 x 1 x 1 are clearly G-map- 

pings. Since the G-action in E,- 1 is induced by that in D,_, x G through the quotient map A, 

it follows that A and A x 1 are G-maps. Since p I E,_1 x 1 is just the identification of E,_, 
as a subspace of D,, it too is a G-map. Since :the diagram is commutative and all map- 

pings, other than k,, are G-maps, it follows that k, is also a G-map. 

To prove (e), let I act on each of the four spaces on the left of 5.2 by standard right 

action on its factor I. After verifying that all mappings of 5.2, other than k, , are I-mappings, 

it follows from the commutativity of the diagram that k, is also an I-mapping. 

To prove(f), note that the hypothesis implies s, = t, . If both are zero, then k, maps both 

to e E D, . Suppose s,, = t, = T is not zero. Let Si’ = si/r and ti’ = ti/z for 1 5 i 5 n - 1, and 

set x’ = [gl, sl’, . . . , Sn-1, $-,I, Y’ = h tl’, f.. 3 i~,_.~, tL-l]. Since kj forj < n satisfies (e). 

we have 

kj[g,, sI’, . * .T gj 3 sj’l = (kj[gl, ~1, * . * 7 gj 9 sjl)~-’ 
= (kj[h,, tl, * * * 7 hj, tj])t-’ =kj[h,, tl’, . . .) hj, tj’]. 

We conclude from this that k,,_Ix’ = k,,_,y’ because eitherj = II - 1, orj < n - 1 and x’, y’ 

satisfy the hypotheses of (f) with n replaced by IZ - 1. It follows that k,_, x 1 x 1 maps 

(x’, g,, , s,) and (y’, h,, t,) = (y’, gn, s,) to the same point. It follows now that k,x = k, y. 
This completes the proof of the theorem. 

5.3. DeJnition. Let N, = U;=,,(G - e)j x (Sj U Sj-l). If x E D,, u E G” x A,,, and 

k, u = x, then u is said to represent x; if also u E N, , u is called the representation in normal 
form. Two elements u, v E G” x A, are called equivalent if k, u = k, v. 

5.4. COROLLARY. The restriction of k,, to N, -+ D, is bijective. Thus ihe representation of 
an element of D, in normalform is unique. 

The corollary follows from 5.lb, c and the observation that D, is the disjoint union 

uy=o(Dj - Dj-1). 

The condition for u = [gi, t,, . , . , gn, tn] to be in N,, is that there is a j such that 

g1,...,gjEG_e,O<t,<*** < tj s 1, and gi = e and ti = 1 for i = j + 1, . . . , n. 

Starting with a u that is not in normal form we reduce it to its equivalent normal form 

by a series of elementary reductions of the following two types: 
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(5.5) If some gi = e or ti = 0, delete the pair gi, ti and adjoint e, I on the right. 

(5.6) Ifsomet,_r = l,replacegi-1 bygi_,giandgibye. 

One verifies these equivalences in the case i = 12 by checking the definition 5.2 of li,. The 

cases i < n follow from the case (i, i) by applying 5.lf. 

$6. THE NATURAL EQUIVALENCE EC x H z EG x EH 

6.1. Dejinition. Let G, H be topological monoids, and let p, q denote the projections of 

G x H into G and H respectively. Define cc, H : E, x H + EG x EH to be the mapping whose 

components are p”, 4 (see 4.1). 

It is obvious that c is continuous, it is a natural transformation of functors, it is a 

mapping of (G x H)-spaces, and hence it induces a mapping B, x fI -+ Bc! x BH . 

If K is a third topological monoid, and p, q, r are the projections Gi x H x K into 

G, H, K respectively, then we have the associative law 

(1 x &r,&o,Hx~ = (&,H x ~)~G~H,K:&~II~K+J% x EH x EK 

because both sides have the components p”, q, r”. 

If T: G x H + H x G interchanges the factors, and also T’: EG x E,, + E,, x EG, then 

we have the commutative law T’C,, H = lH, G T because both sides have the components 

If d: G -+ G x G and d’: EG + E, x E, are diagonal maps, we have tG. e d = S. This 

holds because p”d” = (pd) - = ‘i and similarly @d = 1. 

Let us assign to EG x EH the standard filtration for a product: 

(Ec X EH)~ = uY=e EG, i X EH,n-i* 

Since p and 4 preserve filtrations, it follows that 5 maps filtration n into filtration 2n for 

each n. 

6.2. THEOREM. The mapping tG,H of 6.1 is a homeomorphism, hence 5 is a natural 

equivalence. Moreover, <,lH preserves jiltrations. 

Proof. In the diagram 

(G x 27)” x A” k, Q,(G x H) 

I 
sm 

I 
< 

k,,xk, 

(G” x A,) x (H” x A,) - D,(G) x D,(H) 

let k, be defined as in 5.2, and define 5, by 

(6.3) Msr, A,), r,, . . . , (gn , h,), ~1 = ([sl, t,, . . . > gn , 4,1, h t,, . . ., hn 9 4J). 

It is readily checked that the diagram is commutative for each n. Define N,(G) and N,(H) as 

in 5.3. If {. in 6.3 is applied to an element in normal form of length sn, the components on 

the right need not be in normal form, but may be reduced to normal form by deleting 
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factors of the form (e, t) (see 5.5). Let 5,’ be the resulting map of normal forms, giving a 

commutative diagram: 

N,(G x H) --“rt--, R(G x H) 
(6.4) 

i 

S”’ 
k,xk, I 

5 

N,(G) x N,(H) -+ R(G) x R(H) 

Define a map C,, *. . N,(G) x N,(H) -+ NP+&G x H) as follows. Let x = [gI, sl, . . . , g., s.] 

and Y = PI, b, . . . , hb, tb] be in normal form (5.3) where a 5 p and b 5 q. Let ul, . . . , u, 

denote the union of the distinct s and t-values of x, y arranged in ascending order 

o<u,< .*.<u,s l.Foreachj= l,..., r, define gj’ to be gi if uj = si for some i, otherwise 

gj’ = e. Similarly, hi’ = hi if uj = ti for some i, otherwise hi’ = e. Define 

5(-x, Y) = KSI’, AI’), u1, . . . > (91’9 A,‘), $1 

It is readily checked that [(x, y) is in normal form. It is also readily checked that 1 is an 

inverse of 5’ in the sense that 5b+4iP, 4 is the inclusion ofN,,(G) x N,(H) inN,+,(G) x N,+,(H), 

and c2” 5,’ is the inclusion of N,(G x H) in N,,(G x H). Since k, restricted to normal forms 

is bijective (5.4), it follows now from 6.4 that < is bijective. Since [ maps filtration p, q into 

filtration p + q, it follows that 5-l preserves filtrations. 

We shall now show that 5 -’ is continuous. The proof is based on the following diagram: 

T kmxkn 

G”xH”xA,xA,- G”xA,xH”xA,-w R,(G) x R(H) 
* 

(6.5) 
i, 

I 
6-1 

G” x hn x K 
(I’XIX km+, I 

Lx- (G x H)m+n x A,,,+” - &,+,(G x H) 

The mapping T interchanges the two middle factors. Let a be any (m, n)-shuffle, let K, 
be the subset of those elements of A,,, x A\, whose coordinates are brought into (weakly) 

increasing order by the shuffle a, and let i, be the indicated inclusion map. The map 

CC’: G” x II,+ (G x H)m+” replaces each g E G by (g, e) E G x H, each h E H by (e, h) E G x H, 
and then performs the shuffle c1 on the resulting factors. 

Since (k,,, x k,JT is preclusive, the continuity of 5-l will follow from that of 

t-‘(k, x k,)T. Since each K, is a closed set and their union is A,,, x A,, , it suffices to show 

that CM’(k, x k,)Ti, is continuous for each CI where i, is the inclusion. The mappings on the 

bottom row are obviously continuous. Thus we have only to prove that the diagram is com- 

mutative. Let r = m + n, and form the following diagram 

bT k, x kr 

G”xH”xA,xA,- G’x A,x H’x A,- D,(G) x D,(H) 

i, 
I I 

t;r 
I 

r 
a’ x = 

G” x H” x K, - (GxH)‘xA, - MG x H) 

where 5, is defined in 6.3 and b is the obvious inclusion mapping. We observed earlier that 



360 N. E. STEENROD 

the right rectangle is commutative. The left rectangle is not commutative; however, the lower 
route gives an element differing from that of the upper route only in the presence of a 
number of extra factors (e, t), and these have the same image under k, x k, . Thus the long 
rectangle is commutative. Since it contains the preceding rectangle, it too is commutative. 
This completes the proof. 

$7. TOPOLOGICAL GROUPS 

In this section we assume that G is a topological monoid with a morphism 

(7.1) Ad:G+AutoG 

such that gg’ = ((Ad g)g’)g for al1 g, 9’ E G, and (Ad g)g’ is continuous from G x G to G. If 
G is a topological group, we have (Ad g)g’ = gg’g- ‘, If G is an abelian H-space, we have 
(Ad g)g’ = 9’. For convenience we shall write gg’g-” instead of (Ad g)g’ even when g has no 
inverse. 

Let E be the free associative monoid generated by all pairs (9, t) E G x I. As a set it is 
(G x Z)” = UrzO (G x Z)n, each element being a monomial (gl, tr) *** (g,, r,). Multiplica- 
tion is defined by the usual identifications (G x Z)” x (G x Z)n = (G x Z)m+n (the juxtaposi- 
tion of monomials). The unit is the empty monomial corresponding to n = 0. 

7.2. Definition. Let EG’ be the quotient monoid obtained by reducing $! by the following 
three sets of relations: 

(1) (9, 0) = (e, t) = the unit e of EG’ for all g E G, t E Z, 

(2) (9, t)(g’, t) = (gg’, t ) for all 9, 9’ E G, t E Z, 
(3) if 0 < t’ < t 5 1 and g, g’ E G, then 

(9, N9’l 8’) = (99’9-1, t’)(s, 0. 

To be precise, two monomials m, m’ of Z? are equivalent if there is a sequence of mono- 
mialsm=m,,m,,..., mk = m’ such that one may pass from any llfi to mi+l by an operation 
of type 1,2 or 3 or its inverse applied to some factor or pair of successive factors of mi. The 
equivalence classes in Z? are the elements of EG’. It is readily seen that the multiplication in Z? 
induces one in E,’ so that the natural mapping 8 -+ E G’ preserves products. We do not 
assign any topology to EG’ until Theorem 7.6 below. 

For a fixed t > 0, the set of (9, t) for all g E G forms a submonoid isomorphic to G. We 
identify G with the submonoid corresponding to t = 1. 

If G is abelian, it follows from the relations of type 3 that E,’ is abelian. In case G has 
inverses so also &’ because, by (2), (g, t)-’ = (g-‘, t). Thus if G is a group so also is E,‘. 

7.3. Dejinition. A monomial (gl, tl) - * * (gk , tk) is said to be in semi-normal form if 
oltls **.stk51. It is said to be in normalform if O<t,<*==<t,sl and each 
gi E G - e. The empty monomial representing e is also said to be in normal form. 

7.4. LEMMA. Each monomial is equivalent to one and only one monomial in normalform. 

Proof. Starting with an arbitrary monomial, we may reduce it to semi-normal form 
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using only type 3 operations. Then, if there are any factors with equal t’s we combine them 

by type 2 relations, obtaining thus a monomial such that 0 2 t, < t, < * * * < tk S 1. Finally, 

using type 1 relations, we may delete all factors of the forms (g, 0) and (e, t). The resulting 

monomial is in normal form. 

To prove uniqueness, we define for each monomial m = (gl, tJ . . . (gk , tk) a function 

m:(O, l]-tGasfollows. Foreachj= 1,2 ,..., k, let b, denote the product in order of those 

gisuchthati<jandti>tj,andsetgj=bjgjb-’.Nowset 

m(t) = the product in order of all gj such that tj = t. 

In case t # tj for all j, we set m(t) = e. Notice that if m is in normal form, then m(ti> = gj for 

each factor (gj, tj), and otherwise m(t) = e. We must show that an equivalence m 3 m’ of 

two monomials implies m(t) = m’(t) for all t. It is enough to show this when 1~1, m’ are 

related by a single application of a relation of one of the three types. 

There are four cases to distinguish. In all cases m = (gl, tl). * * (gk , tk) and m’ is obtained 

by an operation involving the factor (gs, t,) of m. In case 1, t, = 0 and m’ is obtained by 

deleting (gs, t,). In case 2, gs = e and m’ is obtained by the same deletion. In case 3, t,= ts+l 

and m’ is obtained by replacing the two factors (g, , t,)(g, + 1, t,+ 1) by one (gsgs+ 1, t,). In case 

4, t, > ts+t and m’ is obtained by replacing (gs, t,)(g,+i, &+A by (gsgs+1g71, k+i)(gs, 0. 
Since the complete proof that m(t) = m’(t) is lengthy and mostly routine, we will outline the 

main steps and give details for case 4 only. 

We compare first the computations of gj and Sj’ in m and m’. Since m and m’ coincide 

in all factors preceding the sth, and gj depends only on the factors up to and including the 

jth, it follows that gj = gj’ for j < s. For the same reason, the factor b, used to conjugate g, 

is also used for gs’. In case 4, we obtain 

g, = b,gA?, Bs+r = (b,g,)g,+,(b,gJ-’ 

s,’ = Ug,g,+,g;‘)K’, &+I = b,g,b,’ 

Consider now a j > s + 1, and case 4. If t, 5 tj , then also t, + 1 5 tj , hence the s and (s + 1)st 

factors of m contribute only e’s to the factor bj in gj = b,g, b;l. Interchanging t,, ts+l does 

not alter this conclusion, hence b,’ = bj. Since gj’ = gj, we have gj’ = gj. If ts+l s tj < t,, 

bj obtains the factor gs from the sth factor of m, and e from the (s + l)st, while bj’ obtains e 

from the sth factor of m’, and gs from the (s + 1)st. Since bj, b,’ have otherwise the same 

factors it follows that bj = b,‘, whence gj = gj’. If tj < ts+l, bj obtains the factors gs and 

gs+l from the factors s and s + 1 of m respectively, while b,’ obtains gsgs+lg;l, gs instead. 

Since bj, bj’ have otherwise the same factors, it follows that bj = b,‘, hence gj = gj’. Thus in 

case 4, Sj = ~j’ except for j = s and s + 1, and these are given above. 

Consider now the computations of m(t) and m’(t). If t is not one of the t,, . . . , tk in m, 

it also does not occur in m’, hence, by definition, m(t) = e = m’(t). If t = tj for some j but 

t # t, or t,+1 (case 4), we have Qj = gj’ for every j such that t = tj , hence their products m(t) 
and m’(t) are equal. If t = t,, we have gj = gj’ for j # s and tj = t, hence m(t) and m’(t) 
receive the same factors from corresponding factors of m and m’ except that m(t) obtains 

b, gS bil from factor s and an e from factor s + 1, while m’ obtains an e and b, gS b;l from the 
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corresponding factors. Hence m(t,) = m’(t,). Now take t = t,+i. Again m(t) and m’(t) 

receive the same factors from corresponding factors of m and m’ except for the factors s and 

s + 1, and, for these, m(t) obtains e, as+1 as given above, and m’(t) obtains S,‘, e. Since 

a,’ = S,+ 1 it follows that m(t,+,) = m’(t,+ 1). This completes our proof that m(t) = m’(t) in 

case 4. The other cases are less difficult. 

As observed earlier, a monomial m in normal form can be reconstructed from its m(t) 

because m(ti) = gi for each of its factors (gi, ti) and m(t) = e for other t’s. The invariance of 

m(t) under equivalence implies therefore the uniqueness of the normal form. This completes 

the proof of lemma 7.4. 

Remark. In case G is a group, a simpler proof is obtained by defining m(t) to be the 

product of those gi occurring in m such that ti > t. Inverses are needed to reconstruct from 

this m(t) the normal form of m. 

7.5. Dejnition. Define k: Eo’ + E, by assigning to the element of Eo’ whose normal 

form is (gl, tl). *. (9,” , t,) the element k,[g,, t,, . . . , g,,, , t,] of Eo (see 5.1). In the special case 

m=O,kmapseEEc’intoe=D,inE,. 

7.6. THEOREM. Assuming that G satisfies 7.1, then the following hold. 

(4 
(b) 

Cc) 

(4 

Cd 
(f) 

(g) 

The mapping k defined in 7.5 is bijective. 

For each m, D, - D,_, corresponds bijectively under k to precisely those elements 

whose normal forms have length m, and E,,,_, - D,_, corresponds to the subset with 

I,= 1. 

Under k the submonoid G of Eo’ corresponds to E,, and the action mapping 

I$: Eo x G + Eo of #4 coincides under k with right translation. 

Let 4 denote the multiplication defined in Eo by taking over the multiplication in Eo’ 

under k. Then 4 is continuous, hence Eo is a topological monoid. 

If G is a group (i.e. G has a continuous inverse), then Eo is also a group. 

If both G and H satisfy 7.1 and f: G + H is a morphism, then the natural mapping 

f: Eo -+ En is a morphism of monoids. 

If both G and H satisfy 7.1, then the natural equivalence 5: EoxH + Eo x En is an 

isomorphism of monoids. 

Proof. (b) is an immediate consequence of 5.1~; and (a) follows from (b). It is easy to 

verify (c). 

To prove (d) it suffices to show that the multiplication mapping 4: D, x D, -+ Dm+” 

is continuous for all m, n because Eo x Eo has the topology of the union of the sets D, x D, 

(see [8; 10.31). For each (m, n)-shuffle CI, let K, denote the set of those points of A,,, x A,, 

whose coordinates ((sr, . . ., %J, @I, . . ., tn)) are brought into weakly increasing order by the 

shuffle ~1. We have then the diagram 

kmxkn T 

D, x D, - G” x A,,, x G” x A,, +- G” x G” x A,,, x A,, 
I t 

(7.7) 
I 

4 L 
km+n OL’Xoi I 

D m+a t--------- G”+” x A,,,+,, c------- G” x G” x K, 
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where i, is an inclusion, T interchanges the two middle factors G” and A,,,, and 

CQl, . . ..gm.&, *.., h,) is obtained by first replacing each hj by Cj h,cyl where cj is the 

product of the gi’s that hj must pass in the shuffle ~1, and then performing the shuffle LY. 

Commutativity of the diagram is seen as follows. Starting with u E G” x G” x K,, we 

obtain (1 x T x l)ia u = (ZQ, UJ where ul, u 2 represent the elements k, u1 and k, u2 in semi- 

normal form. Similarly (~1’ x LY)U represents k,,, (c(’ x cr)u in semi-normal form. Now the 

product 4(k,,, ul, k, u2) of these elements in the semi-normal forms ur, u2 can be reduced to a 

semi-normal form by applying type 3 operations alone, and the result is seen to be (a’ x tx)u. 

Therefore k,+,( CC’ x cr)u = +(k,u,, k,u,) as required. 

By 5. la, the maps k, , k,, are preclusive, hence also their product [S ; 4.41, and also 

(k, x k,)T. Thus to prove that 4 is continuous, it suffices to prove that &k, x k,)T is 

continuous. Since the sets G” x G” x K, , for all shuffles CI, cover G” x G n x A,,, x A,, and 

are closed, it suffices to prove the continuity on each of them. But commutativity of the 

diagram implies that 4(k, x k,)T restricted to G” x G” x K, is (a’ x cc)k,+, , and this 

mapping is clearly continuous. 

To prove (e), it suffices to prove the continuity of Ix = x-l on each D, because Eo 

has the topology of their union. This is based on the diagram 

G” x A,,, 2 D, 

1’ k, I* 
G” x A,,, - D, 

The mapping P is defined by p[gl, I,, . . . , g,,, , t,] = [gI’, t,, . . . , g,‘, t,] where 

gk’ = (gk+l “%)-l&l(gk+l ‘.*&,) for k = 1, 2, . . . , m. 

It is readily checked that the diagram commutes. Since k, is a preclusion and ~1 is obviously 

continuous, it follows that A is continuous. 

To prove (f), it is enough to show thatf(see 4.1) preserves products. This is a triviality 

one has only to check that the construction from G to Eo’ is a functor, and that the mapping 

k: Eo’ + Eo is a natural transformation of functors. 

To prove (g), it suffices to show that 5 preserves products. Since the projections of 

G x H into G and H preserve products, it follows from (f) that the associated mappings 

E GXH into Eo and EH also preserve products. Since these are the components of 5 and 

Eo x EH is a direct product, the assertion follows. 

$8. THE FIBRATION EC + BG 

Recall the definition of Dold and Thorn [2] : a mapping p : E -+ B is called a quaszjibra- 

tion if pE = B, and 

P* : ni(E, P-‘x, Y> zxi(B,x) forall x~B,y~p-~x,i20. 

8.1. THEOREM. Let G be a topological monoid with unit e such that (G, e) is an NDR. 
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Assume also that each left translation of G induces isomorphisms of all homotopy groups. Then 
p: Eo + Bo is a quasijibration. 

Proof. Our proof, in outline, is the same as that of Dold and Lashof [l ; Prop. 2.31. 

Since B, is a point, E, + B, is a quasifibration. Assume inductively that, for some n, 
E,, -+ B,isa quasifibration. We shall show that E,,,, + B,,, is a quasifibration. By 4.2, there 

is a representation U, t? of (E, + 1, E,) as a G-NDR; let u”, h” denote the induced representation 

of the quotient (B, + 1, B,,) as an NDR (see 4.3). Set V= B,,,, - B, and U = K’[O, 1). Then 

B “+I = U v V. Since E,,,, - E, = p-l V--t Vis the projection of a product structure, V is a 

distinguished set (i.e. p-l V+ V is a quasifibration). For the same reason U n V is a dis- 

tinguished set. 

The homotopy h restricted to p-l U x I is a deformation retraction of p_lU into E, , 

and covers the deformation h” 1 (U x I) of U into B, . Let h, = h ) E,,,, x 1 and 

h”, = h”l B,,, x 1. We claim that 

(8.2) @1 IP-l.&: n,cP-‘x) x ~~(p-~h”,x) for all x E B,,, and iz 0. 

For x E B., this is trivial since fir and /& restrict to identities. For x E B,,, - B, , p-lx is a 

copy of G under its action on the pointy = p-lx n Dn+l. Sincep-‘h”,x is a copy of G, it has 

the form bG for some b up-lh”,x, and then h,y = bg, for some go E G. Since h1 is a G-map- 

ping, we have h,(yg) = bg,g. Thus h, onp-‘x is just a copy of the left translation of G byg,; 

hence 8.2 holds. Since B, is a distinguished set by the inductive hypothesis, it follows now 

from [2; 2.101 that U is a distinguished set. Since U, V and U n V are distinguished, we may 

apply [2; 2.21 to conclude that U u V = B,,,, is distinguished. This concludes the inductive 

step; hence B,, is distinguished for every n. Since B, has the topology of the union u z B, , 

it follows from [2; 2.151 that B, itself is distinguished. This completes the proof. 

8.3. THEOREM. Let G be a topological group such that (G, e) is an NDR. Then Eo is a 
principal G-bundle over B, with the action Eo x G + Eo as principal map. 

Proof. Since Eo is a topological group and G is a closed subgroup, it suffices to prove 

that G has a neighborhood W which is a product space over p W = V. By 4.2, the pair 

(Eo, E,,) has a representation as a G-NDR by mappings u, h. Set W = u-‘[0, 1). Since W is 

open and is G-invariant, it follows that V = p W is open in B, . Define r : W + G by ry = h(y, 1). 

Note that r is a G-mapping. Define 

5: Wx G+ W by l(y,g)=y(ry)-‘g forall (y,g)E Wx G. 

(It is in this definition of 5 that the existence of inverses in G is needed.) All the maps of the 

diagram 

WxG 

! 
\ 
‘1 

PX 1 ‘9 
A (P. *) 

VxG- W-VxG 

have been defined excepting c. We shall show that 5 induces a map 5 of its quotient space 
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V x G such that c(j x 1) = 5. Clearly a point of W x G has the same image as (y, g) under 

p x 1 if and only if it has the form (yg’, g) for some g’ E G. Then 

&g’, s) = y&r(&))-‘g = vs’((ru)s’)-‘s = Yg’g’-‘(rY)-% 

= y(rY)-‘g = 5(Y,g). 

Therefore 5 induces a unique function c such that [(p x 1) = 5. Since Vis a quotient space of 

W, it follows from [8; 4.41 that V x G is a quotient space of W x G, and this implies that i 

is continuous. 

Since 5 is a G-mapping, so also is i. Now p&y, g) = p(y(ry)-‘g) = py, and 

rt(y, 9) = r(y(ry)-%) = (rY)((rY)-‘g) = 9. 

Therefore 5 composed with (p, r) is the identity of V x G. On the other hand, if y E W, 

&y, ry) = y(ry)-l(ry) = y, and this shows that (p, r) composed with [ is the identity of W. 

Therefore [ is the required representation of W as a product V x G. This concludes the 

proof. 

59. COMPLEXES ON G, EG AND_&‘, AND THE BAR RESOLUTION 

We assume in this section that G is also a complex such that e is a vertex and the multi- 

plication G x G -+ G is skeletal. Let Z = [0, l] have the cellular structure consisting of two 

vertices 0, i and one edge denoted by 6, = (0, 1). We shall construct now the associated 

complexes (or reticulations) of D, , E,, and B,, . 

The reticulation of E,, comes from its identification with G, each cell of G is a cell of E, . 

The Z-structure on D, = e is given by a skeletal map e x Z-+ e, hence, by 3.5, D, has a 

reticulation such that the natural maps E, x Z -+ D, and D, x I-+ D, are skeletal. Recall 

that the first map is a homeomorphism from (E, - D,) x 6, to D, - Z& . We denote by [a] 

the image cell of 0 x 6, in D, - E, . The general stage is described as follows. 

9.1. THEOREM. Starting with the reticulation of E,, = G and alternating the constructions 

of Lemmas 3.4 and 2.5, we obtain reticulations of D, , E,, for each n; their union is a functorial 

reticulation of Eo such that the action Eo x G + E, and the contraction E, x I+ E, are 

skeletal. The cells of D, - E,_, are in l-l correspondence with sequences of cells of G - e 

of length n ; the cell corresponding to cl, . . . , cn is denoted by [ol 1 * . . 1 a,]. The cells of 

E,, - D, are in 1-l correspondence with sequences of cells of G - e of length n + 1; the cell 

corresponding to cl, . . . , B,, + 1 is denoted by [ol 1 * * * 1 o,]IJ~+ 1. These cells are defined by the 

inductive conditions 

(9.2) [Cl I *** I %I = P(([cJI I ... I %-II4 x 4) 

(9.3) [aI I *** l%l%+1 = mJ1 I *-* I%J x %I+11 
where p: E,,_l x I+ D, and A: D, x G --f E, are the quotient maps occurring in the construc- 

tions of D, and E,, . In case n = 0, the cell [ ] corresponding to the empty sequence is e, and 

[ ]a is the cell 0 of G - e = E, - D, . Moreover, k, maps the cell aI x - * - x a,, x 6, of 

Gn x A,, homeomorphically onto [alI * * . I CT”], and k,+ 1 maps the cell u1 x * * - x a,, 1 x 6, 

of G”+l x An+l homeomorphically onto [cl I * - - I a&,+ 1. 
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Proof. The proofs of the statements of the first sentence are straightforward. To prove 

that the cells are as described, assume inductively that the cells of En_1 - D,_, have the 

form [a1 I . * * I G,,- 1 la,. Now p maps (E,,_ 1 - D, _ 1) x 6, homeomorphically onto D, - E,_ 1, 

hence each cell of D, - E,,_, has the form p(r x 8,) where r is a cell of E,,_ I - D,_,. Since 

~hastheform[~,I...)a,_,]~,, it follows from the definition 9.2, that each cell of D, - E, _ I 
has the form [ail * 3 * I a,,]. Now 1 maps (D, - I?,_,) x (G - e) homeomorphically onto 

E, - D, , hence each cell of E,, - D, has the form J.(p x a) where p is a cell of D, - E,,_l and 

d is a cell of G - e. Since p has the form [a, 1. * * 1 o,], it follows from the definition 9.2 that 

each cell of E,, - D, has the form [ai I . . . I o&. 

To prove the cellular property of k, , let ul, . . . , D,, be a sequence of cells of G - e. 

Consider the cell p = cl x . . . x onml x 6,-l x o,, x 6, of G”-’ x An-1 x Gx Z (see 5.2). 

Since ij? maps 6,-r x 6, homeomorphically onto 6,) we have that (1 x $ )Tmaps p homeo- 

morphically onto g1 x **a XC,, x 6,. Thus the k,-image of rrl x ... x o,, x 6, is the 

~(2 x l)(k,,_, x 1 x 1) - image of p. The inductive hypothesis on k,_, and 9.2, 9.3 give 

ZO x l)(k,_, x 1 x I)p = p(Ax I)([a,l *.a Ion-J x on x 8,) 

= f&l *** I%-&,, x b> =hl ... I%J, 

and this is the required form. 

Corresponding to a sequence pi, . . . , on + 1 of cells of G - e, form the cell r = or x ..a. 

xg, x &,x Gn+l x 1 of G” x A, x G x Z (see 5.2 with n replaced by II + 1). Since (1 x $)T 

maps z homeomorphically onto g1 x . -. x on+l x 6,) the k,+,-image of this latter cell is 

the p(n x l)(k, x 1 x 1)-image of r. Using what was proved above for k, and 9.2, 9.3, we 

obtain 

p(J. x I)(k, x 1 x 1)~ = p(J. x l)([o,l *a. 1 a,] x o,,,, x 1) 

= P([Cr I ‘*. loJ,+1 x 1) = bll *.. I%l%+l, 

which is the stated form. This completes the proof. 

9.4. THEOREM. There is a unique reticulation of B, satisfying the conditions: (1) each 

B, is a subcomplex, (2) each projection E,, + B, is skeletal, and (3) B, is the complex formed 

by attaching the complex D, to B,,_, by the (skeletal) projection E,,_l + B,,_,. 

Proof. Clearly the conditions provide an inductive definition of the reticulations of the 

B,‘s provided we show at each stage that p: E,, -+ B, is skeletal. Let z be any cell of E,,; by 

9.3, either T is in D, or it has the form A(p x o) where p x o is a cell of D, x G of the same 

dimension as z. If r is in D,, we also have J(z x e) = r. Now PA: D, x G + B,, can be 

factored into the projection q: D, x G + D, followed by p’ = p ( D, . Since p’ and q are 

skeletal, so is pl, hence pz = pi,(p x o) lies in the r-skeleton of B,, where r = dim(p x 0) = 

dim r. Therefore p is skeletal, and the proof is complete. 

9.5. THEOREM. Zf G and H have reticulations such that the multiplications G x G -+ G 

and H x H -+ H are skeletal, then the mapping 5 -I: E, x EH+EGxH of 6.2 isskeletal. 

To prove the theorem it suffices to show that 5-l in the diagram 6.5 is skeletal. 

Using 9.1, any cell o x z of D,(G) x D,(H) has the form k, o’ x k, 7’; hence it is the 
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image of a cell of G” x H” x A,,, x A,, of the same dimension. Thus it suffices to show that 

k,+,(a’ x a)i,’ is skeletal for each ~1. Since k,+, is skeletal, we are reduced to studying 

(a’ x cl)i;‘. Since CI’ imbeds G” x H” as a subcomplex of (G x H)m+n, we need only study a 

on K,. 

Let 0 be a face of AM of dimension q, and z a face of An of dimension q. Let 

s=(.Q,..., s,) be a point of 6, and t = (tl, . . . , t,) a point of 7 such that c((s, t) is in increas- 

ing order, i.e. (s, t) E K, n (a x 7). Of the possible equalities that may hold among the 

coordinates of s, namely, 0 = sl, s1 = s2, . . . , s,-~ = s,,, , s, = 1, let N(s) be the number that 

do hold. Then the smallest face of Am containing s has dimension m - N(s). Since c is a face 

containing s, we have q 2 m - N(s), or N(s) 2 m - q. Similarly, N(t) 2 n - r. Set u = CI(S, t). 

It is easily seen that N(U) >= N(s) + N(t) because any equality of elements in s or t still holds 

after shuffling. Therefore a@, t) is on a face of A,,,+,, of dimension 

m + n - N(u) 5 m - N(s) + n - N(t) 5 q + r. 

This completes the proof. 

9.6. THEOREM. If G is abelian, then the multiplications in Eo and B, are skeletal map- 

pings. If also G is a group, and v: G + G, defined by vg = g-l, is skeletal, then the induced 

maps V and V, defining inverses in Eo and B, , are likewise skeletal. 

Proof. To prove that the multiplication C$ for Eo is skeletal it suffices to prove that its 

restriction to D, x D, is skeletal for each nz, n. Let cr be a q-cell of D, , and z an r-cell of D, . 
By 9.1, CJ = k,(o, x cr2) where ol, o2 are cells of G”, Am of dimensions q1 and q2 = q - ql, 

respectively. Similarly, z = k,(z, x zJ. Referring to the diagram 7.7, we have 

&a x z) = 4(k, x k,)T(a, x z1 x a2 x z2). 

Let s = (sl, . . . , s,) be a point of 02, t = (tl, . . . , t,) a point of rt2, and CC an (m, n)-shuffle 

such that c((s, t) is in increasing order, i.e. (s, t) E K, n (a2 x z2). Define N(s) and N(t) as in 

the proof of 9.5. Arguing exactly as in 9.5, we conclude that CI(S, t) is on a face of A,,,+,, of 

dimension at most q2 + r2. Let x E 61 and y E TV. Since G is abelian, CI’: G” x G” --) Gm’* is 

just the shuffle CI of the factors; since this is a skeletal mapping, CC/(X, y) lies on a cell of 

dimension q1 + rl. Therefore (a’ x cz)i, ‘(x, y, s, t) lies on a (q + r)-cell. Since k,,+, is skeletal, 

k,+,(a’ x 4C’(x, Y, s, t) = 4(k,,, x k,)W, Y, s, t) 

lies in the (q + r)-skeleton. It follows that C/J(B x z) is in the (q + r)-skeleton; hence C#J is 

skeletal. 

Let 0, z be cells of B, of dimensions q, r, respectively. By 9.2, there are cells c’, 2’ of Eo 

of dimensions q, r, respectively, mapped by p : Eo + B, onto 0 and 2. Since B, is a quotient 

group of Eo, p4(a’ x 7’) coincides with the image ~2 of u x z under multiplication. Since 

4 andp are skeletal, cz = p&a’ x 2’) lies in the (q + r)-skeleton. Hence the multiplication in 

B, is skeletal. 

When G is an abelian group, the mapping v is a morphism of groups. If v is also skeletal, 

it follows from the functorial nature of the reticulations that C and V are skeletal. 
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