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§1. INTRODUCTION

A CLASSIFYING space for a topological group G is the base space B of a principal G-bundle
Eg — B; such that E; is a contractible space. It is a universal object in the sense that any
principal G-bundle over a complex K admits a bundle mapping into E;. General properties
of G-bundles and their characteristic classes are obtained by studying E; — B;.

The first functorial construction of an E; — B, was given by Milnor in 1956 [5]. In 1959,
Dold and Lashof [1] reformulated Milnor’s construction in such a way that it applies when G
is a topological monoid (i.e. an associative H-space with a two-sided unit). Recently Milgram
[4] gave a different functorial construction, and proved two useful properties: first, if G is an
abelian monoid, then B has a natural (functorial) structure as an abelian monoid; secondly,
if G is a complex such that the multiplication G x G — G is skeletal (i.e. for each g, it maps
the g-skeleton into the g-skeleton), then B, becomes a complex in a natural way so that the
chain group C(B;) is isomorphic to the bar resolution of C(G). Thus Milgram’s construction
can be regarded as the geometric analog of the algebraic bar construction.

In this paper, we present a reformulation of Milgram’s construction. It has three
advantages: it is well motivated, the degree of generality of the results can be precisely
stated, and the relation of Milgram’s construction to that of Dold and Lashof becomes
apparent (it is a quotient of the latter).

We shall establish two further properties. First, the construction preserves products
Egwg = Eg x Ey. Secondly, if G is a group (or an abelian monoid), then E; has a natural
structure as a topological group (abelian monoid) such that G is a subgroup (submonoid),
B is the coset space E;/G, and, when G is abelian, By is a quotient group (monoid).

The fact that B preserves products combined with its functorial property implies
immediately that it carries an abelian monoid (group) into an abelian monoid (group); one
need only observe that the multiplication G x G - G, and the inverse mapping G — G are
morphisms. In the category of semisimplicial monoids, the W-construction of Eilenberg—
MacLane [3] has exactly these properties (see John Moore [6]). In view of this, it appears
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likely that Milgram’s resolution, applied to the geometric realization of a semi-simplicial
monoid, gives a space that is naturally equivalent to the geometric realization of the W-con-
struction applied to the monoid.

§2. ENLARGING AN ACTION
We assume throughout this paper that G denotes a topological monoid (equivalently, an
associative H-space with a two-sided unit ). All spaces are assumed to be compactly
generated (a set that meets every compact set in a closed set is closed); and product spaces
are formed in the sense of the category of these spaces [8, 4.1].

An action of G in a space X is a mapping X x G — X (the image of (x, g) is written xg)
satisfying the associativity law x(gg") = (xg)g’, and the unit condition xe = x. A space X with
an action is called a G-space. A mapping /> X — Y of one G-space in another is a G-mapping
if f(xg) = (fx)g for all x, g. For any product of the form X x G, the right action of G is
defined by (x, g)g’ = (x, g¢') for all x, g, ¢g’. Then, if X is a G-space, the action mapping
X x G — X is a G-mapping relative to right action by virtue of the associative law.

2.1. Definition. Let A be closedin X,and A : A x G — A an action. Form the adjunction
space X = A u, (X x G); this is the quotient space obtained from X x G by collapsing
A % G into 4 by h. Right action of G in X x G induces an action of G in X. The resulting
G-space is called the enlargement to X of the G-action on A.

We identify X with the image in X of X x e; this identification on A preserves the action
of G. In this way X is the union of the closed set 4 with the action 4 and the open set
(X — A) x G with right action.

Let us recall [8, 6.2] that A is called a neighborhood deformation retract of X (briefly,
(X, A)isan NDR) if there is a mapping u: X — I = [0, 1]and a homotopy k: X x I— X such
that u™ 10 = A4, k(x,0) = xforallxe X, k(a, t) =aforallae A, t € I, and k(x, 1) € 4 for all
x such that ux < 1.

2.2. LEMMA. If (X, A)isan NDR, then (X, A) is an NDR. If also (G, e) is an NDR, then
(X, X)is an NDR.

Proof. 1t is easily seen that (X x G, 4 x G) is an NDR (see [8, 6.3]), then the first
statement follows from the general proposition [8; 8.5] about adjunction spaces. By [8; 6.3]

(X, 4) x(G,e)=(X xG, X xeudxG)

is an NDR. Since the quotient mapping X x G — X is a relative homeomorphism
(X, A) x (G, e) > (X, X), the second statement follows from [8; 8.4].

Remark. Our definition of a compactly generated space includes the Hausdorff condi-
tion. As a quotient space, the enlargement X may fail to be Hausdorff. However, when
(X, A)is an NDR, X is Hausdorff. This follows from Lemma 8.5 of [8] where it is stated that
any adjunction space ¥ u, X is compactly generated if X and Y arecompactly generated, and
(X, A) is an NDR. Since the proof of the Hausdorff condition was omitted, we give it here.
Since X — A maps topologically onto ¥ U, X — 7, this open subset is Hausdorff. Suppose
x;€ Yand x, € Yu, X — 7. Set
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U= { = ,)/2}, V={x eY|ux>(u /2%
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Then Y v U, ¥ map onto open sets separating x; and x, . Suppose next that x;, x, € Y. Let
U,, U, be open disjoint sets separating xy, x, in Y. Let r: W — A retract a neighborhood of
Ain X into 4. Then U; u r 'A7'U, and U, U r~'h~'U, map onto disjoint open sets of
Y u, X separatin nd x,.

2.3. LEMMA. Let G, H be topological monoids, and let i: G - H be a continuous mor-
phism. Let - (X, A) —» (Y, B) be a mapping of NDR pairs such that A is a G-space, B is an
H-space, and f|A is h-equivariant, i.e., f(ag) = (fa)(hg) for all ac A, geG. Then
f X h: X x G— Y x H is h-equivariant relative to right action, and it induces an h-equivariant
mapping of quotzent spaces f: (X, A) — (Y, B) called the enlargement of f. In this way, enlarge-

Proof. Two distinct points (x;, g;), (x,, g,) of X x G are equivalent in X if
x;, X, € Aand x,9, = x,4g,. Since f| A is h-equivariant, we have f(x;g;) = (fx,)(hg,) for
i=1, 2, hence (fx,;, hg,) and (fx,, hg,) are equivalent in Y. Therefore the composition
X x G- Y x H- Yfactors into X x G- X — Y. Since X has the quotient topology, f is
continuous. Since the quotient mappings X x G —»X and Y x H — Y are G- and H-map-

~o adig DU at T o L amiiierasin it Té o smrrtbiemn 4 Alinnls tlhhn Srrmatasinl cmumimandiae ~F
plllsb lL TO1HLUWD l 1dl J n I[ cqulvauaut ll. lb lUullllC tU CIICUVA LU 1LUlIvivuilal pl UpClthh Ul
enlargement.

2.4. Remark. The enlargement X > X is characterized up to a G-equivalence by the
property: if Yis any G-space, and fany map X — Y such that /| 4 is a G-mapping, then there
exists a unique G-mapping f": X — Y extending f.

By a complex we shall mean a CW-complex. A mapping f: K — L of two complexes is
called skeletal if f maps the g-skeleton of K into that of L for each ¢ = 0. A product of two
complexes is regarded as a complex whose cells are the products of cells of the factors.

2.5. LeMMA. Let G be a complex such that the multiplication G x G — G is skeletal. Let

Ie (‘lr ] heon fl«-o
S SKelelai, inen the

(X. A be a complex and subcomplex., and suppose the action A x G — A
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enlargement X inherits a unique structure as a complex from that of X x G, X is a subcomplex

of X, and the mapping X x G - X is skeletal.

Proof. 1t is a general proposition that, if L is a subcomplex of K, M is a complex, and
J: L — M is skeletal, then A U K inherits a unique structure as a complex from the disjoint
union M U K such that M is a subcomplex and the quotient map M U K-> M U, K is

skeletal. This becomes obvious if we nicture X as beine built out of I bv successive adiunc-

=XKCICLal, 1I1IS DOCOINCS HCLRIC A emng built out of L b Sely ve aGiullc
I o J J

tions of cells ordered by dimension; for we may build M U, K out of M by adjoining the
same cells to M using adjunction maps modified by f. If we apply this proposition to the
case K= X xXG, L =AxGand M = A, it follows that X inherits a structure as a complex
suchthat X x G — X is skeletal and X is a subcomplex. Since each cell of X is the image of a
cell of X x G of the same dimension and XxGx G— X x G — X are skeletal, it follows
that X x G - X is skeletal.
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§3. CONTRACTIONS OF SPACES

The unit interval 7 = [0, 1] is a topological monoid under ordinary multiplication. An
I-action X x I— X is of course a homotopy which, for t = 1, is the identity map of X. Itisa
special kind of homotopy, the associative law requires that each point on the path of a
point follows a path contained in the first path; the homotopy is a l-parameter semigroup
of motions with a reversed parameter. The base point of I is defined to be 0.

3.1. Definition. A contraction of a space X to a base point x,is an I-actionh: Xx I - X
that factors through the smash product X x I— X A I — X. In other words, A(x, 0) = x, =
h(xq,t)forallxe X, tel

For example, the multiplication mapping m: I x I — I is a contraction of I to 0.

We shall restrict ourselves to spaces with base points (X, x,) that are NDR’s. Then, by
[8; 6.3], the product pair (X, xo) x (£, 0) is an NDR. The reduced cone X A I is just the
adjunction space determined by the map of Xx 0 U x, % I to a point x,. Then, by [8; 8.5],
(X A I, x;) is an NDR; in particular X A I is Hausdorff.

The proof of the following lemma is trivial.

3.2. LEMMA. The right action of I on X x I induces a contraction on X A I called the
canonical contraction. The cone with this contraction is a functor from the category of pointed
spaces to the category of pointed spaces with contractions.

3.3. LEMMA. Let xo€ A < X be such that (X, A), (X, x,) and (A, x,) are NDR’s, and
let h: A A I > A be a contraction of A to x,. Set X = A U, (X A I) so that X is the quotient
space of X A I obtained by collapsing A A I into A by h. Then all of the pairs (X, x0), (X, A)
and (X, X) are NDR’s, and the canonical contraction of X A I induces a contraction of X tox,
which extends h. We call (X, x,) with this contraction the enlargement to X of the contraction
on A. It is functorial for maps f: (X, A, xo) — (Y, B, y,) such that A and B have contractions
and [ | A is an I-mapping.

Proof. By the product theorem [8; 6.3], (X, A) x (I, 0) is an NDR. It maps by a relative
homeomorphism onto (X A I, A A I), hence, by [8;8.4], (X AL, A AI) is an NDR. It
follows from the lemma {8; 8.5] on adjunction spaces, that (X, A) is an NDR. Since (4, x,)
and (X, A) are NDR’s, the lemma [8; 7.2] yields that (X, x,) is an NDR. If I denotes the set
of endpoints of I, then (Z, I) is an NDR. Hence, by the product theorem (X, 4) x (1, I)isan
NDR, and, since it maps onto (X, X) by a relative homeomorphism, the latter is also an
NDR.

In the diagram

~ ~

XAl — X

p and p’ are the natural quotient mappings, and m is the multiplication of I. To show that
there is a unique function k such that kp’ = p(1 x m), let (x, ¢, 7) and (x', ¢, 7") be distinct
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points of X x I x I having the same image under p’. If both map to the base point, we have
x =Xxgort=0 ort=0; and this implies x = x, or t = 0, hence (x, #r) maps to the base
point. Similarly (x’, #'t") maps to the base point. If neither maps to the base point, then we

must have that x, x’ are in 4, xt =xt’ and 7 =17’ # 0. These imply xtt = x't't’, hence
(x, tr) and (x, 't’) have the same image in X. Thus k is uniquely defined.

To prove that k is continuous it suffices to show that p’ is proclusive (a quotient map-
ping). Since a composition of proclusions Xx I — X A I—X is a proclusion Xx I - X,
we may apply [8; 4.4] to conclude that X x Ix I — X x Iis proclusive. Composing this with
the proclusion X x I—» X A I gives p’, hence p’ is also proclusive.

The construction of f: (X, A) —» (Y, B) and the verification of functorial properties is
routine and will be omitted. This concludes the proof.

3.4. LEMMA. Let (X, A) be a complex and subcomplex, and let the contraction A A I - A
be a skeletal mapping where I is the complex with two vertices and one edge. Then the enlarge-
ment X inherits a unique structure as a complex from that of X A I, and the mappings
XAI->X and X A I- X are skeletal.

Proof. Apply the argument proving 2.5 with K, L, M replaced by X A I, A A I, and A,
respectively.
Remark. Just as in 2.4, the enlargement X is characterized by the property: if f: X — ¥

is a map of X into a space Y having a contraction, and f | 4 isan I-mapping, then f extends to
a unique I-mapping X - Y.

§4. CONSTRUCTION OF THE RESOLUTION
For any topological monoid G with unit e such that (G, e) is an NDR, we have the

following construction obtained by alternating the constructions of §2 and §3. By an induc-
tion on n, we define spaces D,, E, such that

DycEycDyccD,cE,cDyyycee

Moreover each D, has a contraction D, A I — D, and each E, is a G-space. Let D, consist
of the single point e with the obvious contraction. Let E, denote the enlargement to D, of
the G-action on the empty subset of Dy . A check of definition 2.1 shows that E, = Dy x G is
just a copy of G and the action is right translation. Now define D, to be the enlargement to
E, of the contraction of Dy. A check of the definition (see 3.3) shows that D, is just the
reduced cone on E; . Define E; to be the enlargement to D, of the G-action on E, . In general
D, is the enlargement to E,_, of the contraction of D,_, and E, is the enlargement to D,
of the G-action on E,_;. The G- and I-actions are denoted by

¢, E,xG—E, and U, D, xI— D,.
We now pass to the limit by setting
EG= :o=0En=U:°=0Dna
and giving E the topology of the union (weak topology). Since the G-action ¢, on E, extends
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¢, for each n, the union of the ¢,’s defines a G-action ¢: E x G — E. Since the contraction
Y, of D, extends ,_, for each n, the union of the ¥,’s is a contraction y: E A I E.

4.1. TueoreM. If (G, e) is an NDR, then the E constructed above is a G-resolution in the
sense of [7, 1.1]. Moreover, if f : G — H is a continuous morphismof topological monoids, there
is an associated functorial f-mapping of resolutions f: Eg — Ey .

Proof. Clearly {E,} represents E as a filtered G-space. It is an acyclic filtration be-
cause the contraction of E contracts E, to the point e in E, ., for each n. It is a free filtered
G-space because, for each n, E,=E,_; U,(D,x G), hence the quotient mapping
(D,, E,.) x G—(E,, E,_,) is a relative homeomorphism. Finally we must show that
(D,, E,-;) is an NDR for each n. The proof of this proceeds by induction on #n; the case
n =0 is trivial. Assume inductively that (D,, E,_,) is an NDR. Since (G, ¢€) is an NDR,
it follows from 2.2 that (E,, D,) is an NDR. Then it follows from 3.3 that (D,,, E,) is an
NDR. This completes the inductive step, and the proof that E; is a resolution.

The functorial nature of the construction is shown by proving the same for each
D,, E, using 2.3, 3.3, and passing to the limit.

42. LEMMA. If G is as in 4.1, then, for each n, (E,, E,_,) and (E;, E,) are G-NDR’s,
i.e. the functions u and h in the definition of an N DR satisfy u(xg) = ux and h(xg, t) = h(x, t)g
for all x, g and t.

Proof. Let u,h represent (D,, E,_;) as an NDR. Define u" D,x G—1I and
h:D,x GxI—>D,xGby

u((x: g) = ux, h,(xa 9, t) = (h(xa t)a g) for all x, gt

Then, with respect to right action in D, > G, v’ and /' represent (D, X G, E, | x G) as a
G-NDR. Since the quotient mapping

¢: (Dn9 En—l) X G_’(En’ En—l)

is a relative homeomorphism, it follows from [8; 8.4] that u/, " induce a representation
v, k of (E,, E,_,) as an NDR such that v$ = 4’ and k(¢ x 1) = $h’. Since ¢ is 2 G-mapping,
it follows that v, k represent (E,, E,_,) as a G-NDR.

According to [8; 7.1] the NDR property of (E,,, E,,-,) is equivalent to the existence of a
retraction r,, of I x E,, into 0 x E, UIx E,_,. It is easily checked that the G-NDR
property is equivalent to r being a G-map. Apply now the argument of [8; 9.4] to construct
a retraction s of I x Einto 0 x E u Ix E,. Since s is essentially a composition of various
r,.’s, it follows that s is a G-map; hence (E, E,) is a G-NDR, and the lemma is proved.

Since G is not required to be a group, the orbit of a point of E; under G need not be a
copy of G. However, each point lies in a maximal orbit which is a copy of G because Ej is the
union of the sets E, — E,_, homeomorphic to (D, — E,_;) x G. These maximal orbits are
closed sets.

4.3. Definition. The base space Bg of the G-resolution Eg is the quotient space of Eg
by its maximal G-orbits. Let p: Eg — Bg; be the natural map. Set B, = pE,. The base space
with this filtration we call Milgram’s classifying space for G.
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It is readily seen that B, is obtained from B,_, by adjoining D, by the projection
p:E,_,— B,_,. Since (D,, E,_;) is an NDR, it follows from [8; 8.5] that (B,, B,_;) is an
NDR. Applying [8; 9.4] we obtain that B; is a Hausdorff space, and each (B, B,) is an
NDR. It follows now from [8; 2.6] that B; is compactly generated, and by [8; 9.5] that B;
has the topology of the union of {B,}.

4.4. Remark. The construction of Dold and Lashof differs from ours only in that each
D, is the cone E,_; A Irather than the space obtained from the cone by collapsing D,_{ A [
into D,_,. It follows that there is a functorial mapping of the Dold-Lashof resolution onto
the Milgram resolution. This is a quotient mapping when G is compact, but may not be in
general due to the intricate topology Dold and Lashof gave their resolution.

§5. SIMPLICIAL PARAMETERS FOR E;

The proofs of our main results are based on a parametric representation of Eg,
essentially that of Milgram’s definition.

Let A, denote the n-simplex of R” defined by the inequalities0 £ 1, <1, <21, £ 1;
and let 8, denote its interior: 0 < #; < +-» < t, < 1. The standard imbedding of A, in A,
adjoins the (n + 1)st coordinate #,,, = L.

A point of G" x A, will be represented by its coordinates in shuffled form [g,, ¢, g,,
fr, --rGn>t,]. Imbed G" x A, in G"*! x A,,, by adjoining the coordinates g,,; = e and
t,+1 = L. Let G° x A, denote the union | ;%o G" x A,.

5.1. THEOREM. For each n there is a natural transformation k,: G* x A, — D, with the
following properties.

(a) Each k, is proclusive.
(b) The restriction of k, to G*~* x A,_, is k,_; hence the union of the k,’s is defined and
is a mapping k: G* x A, - E;.
(c) Each k, restricts to homeomorphisms
(G—eyxd,~>D,~E_, and (G—ey'xb,_,t>E,_,—D,_,.
(d) The restriction of k, to G" x A,_, —» E,_, is a G-map where G acts only on the nth
G-factor by right translation.
(e) If the action of I on G" x A, is defined by
[919 HsGastas ooy Gns t,,]‘L' =[gla Ul 92,827, cces Gns tnTL
then k, is an I-mapping.
€ Ifx=1091,510-rGu>Saland y =[hy, t, ..., hy, t,]in G" x A, are such that, for some
Jj<n,
kj[gl, S13 -5 9Gj5 sj] = kj[hb By e hj’ tj]9
and g; =h,and s, =t fori=j+1,...,n,thenk,x =k,y.

Proof. The proof proceeds by induction on 7. In case n = 0, G® x A, and D, are single
points. Interpreting A_; and E_; to be empty, the six properties hold in a trivial way.
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Assume inductively that k,_, has been constructed to satisfy (a)-(f). We shall define &, so
that the following diagram is commutative

T 1xy
G ' xA_ xGxI — G'xA,_ xI — G"xA,

(5‘2) kp-1x1xi jkn
4 Ax1 I3
D,_yxGxI — E,_,xI ————— D,

The mapping T interchanges the two middle factors, ¥ is defined by
‘/’((tn LRI tn—l)! T) = ‘1&([119 LA tn—-lta ‘c)’

and 4, p are the quotient mappings occurring in the definitions of E,., and D,. 1t is
readily verified that if (1 x )T brings two points together then their G-coordinates are
equal, and also their I-coordinates; if the latter are non-zero, then all coordinates are equal;
and if the /-coordinates are zero, then p(A x 1)(k,_; x 1 x 1) carries both points to the base
point of D, . This shows that there is a unique k, making the diagram commutative. The
continuity of k, follows from the proclusive property of (1} x y)T. The functorial property
of k, follows readily from that of the other mappings of the diagram.

To prove (a), we note first that , T, k,_;, 4 and u are proclusive. Since a product of
proclusions is a proclusion [8; 4.4], it follows that all mappings of the diagram, other than
k,, are proclusions. Suppose then that U < D, is such that k, * U is open; since (1 x )T is
continuous and the diagram commutes, we have that

(e Lix YT U = (u(A x Dlk,— x 1 x 1)7'U

is open. Since the composition u(A X 1)(k,-; % 1 x 1) is proclusive, it follows that U is open.
Hence k, is proclusive.

To prove (b), let x be a point of G*~* x A,_, considered as a point of G* x A, with last
two coordinates e, 1. Then x = (1; x Y )T{x, e, 1}; and, recalling the definitions of A, y, we
have

kyx = p(A x Dik,—y X IiX Dix, e, 1) = !1(;1!)( Dky-yx, 6, 1) =k, x.

The proof that f, is a homeomorphism is based on the diagram

1xT
(G—-e 'x6,_  x(G—e) —> (G—e)"x5,_,

an-1%1 :
e
(Dp—y —E,_3)x(G—€¢) — E,;~D,

where T interchanges the last two factors and A’ is the restriction of A. Since the quotient
mapping A in the construction of E,_; outof E,_, defines a homeomorphism of
(Dy—y — E,_;) x Gonto E,_; — E,_,, it follows that 1’ is a homeomorphism. Since T is a
homeomorphism, and «,_, is assumed to be so, it follows from the commutativity of the
diagram that f, is a homeomorphism.

To prove the same for «,, we use the diagram
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1%’
(G—e)'x 0,4 x6, —— (G—e)"xJ,

Bax 1 an
-
(Ey-y —D,-) X6, —— D,—E,,
where ' is the restriction of {, and ' is the restriction of p. It is readily checked that ¥’ and
y' are homeomorphisms. Since 3, is a homeomorphism and the diagram is commutative, it
follows that o, is a homeomorphism. This proves (c).

To prove (d), consider the diagram of subspaces of 5.2 obtained by replacing A, by
A, _;, each I-factor by the point 1 € 7, and each mapping by its restriction. With respect to
right action of G on the right-hand G-factors, 1 x , Tand k,_; x 1 x 1 are clearly G-map-
pings. Since the G-action in E, _, is induced by thatin D,_,; x G through the quotient map 4,
it follows that 4 and A x 1 are G-maps. Since u | E,_; x 1 is just the identification of E, _,
as a subspace of D,, it too is a G-map. Since :the diagram is commutative and all map-
pings, other than k,, are G-maps, it follows that k, is also a G-map.

To prove (e), let [ act on each of the four spaces on the left of 5.2 by standard right
action on its factor /. After verifying that all mappings of 5.2, other than &,,, are I-mappings,
it follows from the commutativity of the diagram that k, is also an I-mapping.

To prove (f), note that the hypothesis implies 5, = ¢, . If both are zero, then k, maps both
toee D,. Suppose s, =t, = T is not zero. Let s, =s;/rand ¢,/ = t)/tfor 1 £i<n—1, and
set X' =1[g1, 8 s ccosGnotsSpo1 s YV = [, 8y ooy By, 1,_4]. Since k; for j < n satisfies (e),
we have

kj[gl, sl” s s Sj’] = (kj[gh Sgs v Gjs Sj])":__1
= (s by ooy by T =Kl 1 By 1],

We conclude from this that k,_;x" = k,_,y" because either j=n— 1,0orj<n —land x’, y’
satisfy the hypotheses of (f) with n replaced by n — 1. It follows that k,_,; x 1 x 1 maps
(x', gu»>sy) and (', h,, 1) = (', g, 5,) to the same point. It follows now that k,x =k, y.
This completes the proof of the theorem.

5.3. Definition. Let N, =)}-o(G—e) x (6;|)6,-y). If xe D,, ueG"x A,, and
k,u = x, then u is said to represent x; if also u € N,,, u is called the representation in normal
Sorm. Two elements v, v e G" x A, are called equivalent if k,u = k, v.

5.4. COROLLARY. The restriction of k, to N, — D, is bijective. Thus :he representation of
an element of D, in normal form is unique.

The corollary follows from 5.1b, ¢ and the observation that D, is the disjoint union
Ui=o(Dj — D;-).

The condition for u=[g,, t,...,9,,¢] to be in N, is that there is a j such that
Gi5---,9;€G—e,0<ty < <;£l,andg;,=eand t;=1fori=j+1,...,n.

Starting with a u that is not in normal form we reduce it to its equivalent normal form
by a series of elementary reductions of the following two types:
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(5.5) If some g, = ¢ or ¢; = 0, delete the pair g,, ¢, and adjoint ¢, | on the right
13 1 3 r Jir 1 i hd 3 A VRR RARM LADAANe
(5.6) If some t;_, = 1, replaceg;_, byg,_,g9;and g, by
One verifies these equivalences in the case { = n by checkl.. the definition 5.2 of k,. The
cases [ < n follow from the case (i, i) by applying 5.1f.
§6. E NATURA QUIVALENC x Eg X Ey
£ 1 Nt . T nd 77 XXl PRy [N SRyt IR,k DI B . SIS ol
6.1. Definition. Let G, H be topological monoids, and let p, ¢ denote the projections of
G x H into G and H respectively. Define &; i Egxyg — Eg % Ey to be the mapping whose
components are p, § (see 4.1).
Vo B SN 7
It is obvious that £ is continuous, it is a natural transformation of functors, it is a
manning nacee and hanca it indicec a mannina R Rl R
mapping G x H)-spaces, and hence it induces a mapping Bg .y — Bg! X By.

(I x &gy, )6, nxx = (sG X Déoxn, k' Egxnxx = Eg X Ey X Eg
because both sides have the components f, g, ¥
If T: G x H— H x G interchanges the factors, and also T': E; x Ey — Ey x Eg, then
we have the commutative law T'¢; g = &y ¢ T because both sides have the components
g, p
Ifd:G—Gx G and d": EG — E; x E; are dlagonal maps, we have &;_gd = d’. This
holds because pd = (pd) ~ =1 and similarly §d =T.

Let us assign to E; x Ey the standard filtration for a product:

(E.x E ..\_ll'l . x E,.

G ™~ ~“H/n U“Ul"“‘ﬂn i
Since p and § preserve filtrations, it follows that ¢ maps filtration # into filtration 2n for

el
cacil 7.

6.2. THEOREM. The mapping &g g of 6.1 is a homeomorphism, hence £ is a natural
equivalence. Moreover, £¢ % preserves filtrations.

Proof. In the diagram

kn
(G x H)" x A, —— D(G x H)

1&
knXkn
X

(G" X n/ x A, ) -_— Dn(G) Dn(H)
let k, be defined as in 5.2, and define {,, by
(63) ﬁn[(glshl)’ tla --',(gn9hn)’ tn]=([g1,t1a '--sgna tn]7 [h19 tl’ ""hn’tn])'

It is readily checked that the diagram is commutative for each n. Define N,(G) and N,(H) as
in 5.3.If £, in 6.3 is applied to an element in normal form of length <n, the components on
the right need not be in normal form, but may be reduced to normal form by deleting
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factors of the form (e, ¢) (see 5.5). Let £, be the resulting map of normal forms, giving a
commutative diagram:

kn
N,(Gx HY —— DG x H)
(6.4)
&n' 4
knXkn
N(G) x N,(H) — D,(G) x D,(H)

Defineamap{, ,: N(G) X N(H)— N, (G x H)asfollows. Let x=[gy, 51, .., ga> 5]
and y = [Ay, t4, ..., hs, t,] be in normal form (5.3) where a < p and b <q. Let uy, ..., 4,
denote the union of the distinct s and r-values of x, y arranged in ascending order
O<u <+-<u <1.Foreachj=1,...,r, defineg, tobeg,ifu; =s;for some i, otherwise
g; = e. Similarly, h;' = h; if u; = t, for some /, otherwise h;" = e. Define

{Ce ») =91, )y uy, o5 (95 b))y ]
It is readily checked that {(x, y) is in normal form. It is also readily checked that { is an
inverse of ¢’ in the sense that &, ,{, ;is the inclusion of N (G) x N(H)in N, (G) X N, (H),
and {,, &,’ is the inclusion of N,(G x H) in N,,(G x H). Since k, restricted to normal forms
is bijective (5.4), it follows now from 6.4 that £ is bijective. Since { maps filtration p, g into
filtration p + g, it follows that £~ preserves filtrations.

We shall now show that ¢ "1 is continuous. The proof is based on the following diagram:
T km X kn

G" x H*x A, X A,——> G" x A, x H" x A, —— D,(G) x D(H)

(6.5) { ¢
| a’ Xa kmtn
G"x H"x K, —— (Gx H)"*"x Ay, —— Du1,(G x H)

The mapping T interchanges the two middle factors. Let « be any (m, n)-shuffle, let K,
be the subset of those elements of A, x A, whose coordinates are brought into (weakly)
increasing order by the shuffle «, and let i, be the indicated inclusion map. The map
a':G™ x H,— (G x H)"*" replaces cachge Gby(g,e) € G x H,eachhe Hby(e,h) € G x H,
and then performs the shuffle « on the resulting factors.

Since (k, x k,)T is proclusive, the continuity of ¢~ will follow from that of
E~ Yk, x k,)T. Since each K, is a closed set and their union is A, X A,, it suffices to show
that £~ (k,, x k,)Ti, is continuous for each « where i, is the inclusion. The mappings on the
bottom row are obviously continuous. Thus we have only to prove that the diagram is com-
mutative. Let 7 = m + n, and form the following diagram

bT kpr X kp

G"x H"x A, x A,—— G"x A, x H" x A,—— D(G)x D,(H)

a’xXa ky

G"xH"xK, —— (GxH)YxA —— DJ(Gx H)

where £, is defined in 6.3 and b is the obvious inclusion mapping. We observed earlier that
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theright rectangleis commutative. The left rectangle is not commutative; however, the lower
route gives an element differing from that of the upper route only in the presence of a
number of extra factors (e, 7), and these have the same image under &, X k,. Thus the long
rectangle is commutative. Since it contains the preceding rectangle, it too is commutative.
This completes the proof.

§7. TOPOLOGICAL GROUPS
In this section we assume that G is a topological monoid with a morphism
.1 Ad: G- Auto G

such that gg" = ((Ad g)¢g")g for all g, ¢’ € G, and (Ad g)¢’ is continuous from G x G to G. If
G is a topological group, we have (Ad g)g’ = gg’g™'. If G is an abelian H-space, we have
(Ad g)g’ = ¢'. For convenience we shall write gg’g~* instead of (Ad g)g’ even when g has no
inverse.

Let E be the free associative monoid generated by all pairs (g, 1) € G x I. As a set it is
(G x IN® =\ 2o (G x I, each element being a monomial (gy, 4,) -+~ (g,, {,). Multiplica-
tion is defined by the usual identifications (G x I)™ x (G x I)" = (G x I)™*" (the juxtaposi-
tion of monomials). The unit is the empty monomial corresponding to n = 0.

7.2. Definition. Let E;' be the quotient monoid obtained by reducing E by the following
three sets of relations:

(1) (g9,0)=(e,f)=theunite of E;' forallgeG, tel,

@ (9:0(9,)=(g¢',t) forallg,g'e G, tel,
(3) if0<t <t=landg, g €G, then

(9: g, 1) = (99’97 ", t')(g, ).

To be precise, two monomials m, m’ of E are equivalent if there is a sequence of mono-
mials m = my, m,, ..., m = m’ such that one may pass from any m; to m;,, by an operation
of type 1, 2 or 3 or its inverse applied to some factor or pair of successive factors of m;. The
equivalence classes in E are the elements of Eg'". It is readily seen that the multiplication in £
induces one in E; so that the natural mapping E — E’ preserves products. We do not
assign any topology to E;' until Theorem 7.6 below.

For a fixed ¢ > 0, the set of (g, ¢) for all g € G forms a submonoid isomorphic to G. We
identify G with the submonoid corresponding to 7 = 1.

If G is abelian, it follows from the relations of type 3 that E’ is abelian. In case G has
inverses so also E;’ because, by (2), (g, )™ = (g~ ', 7). Thus if G is a group so also is Eg".

7.3. Definition. A monomial (gy, ;) -* - {9k, t,) is said to be in semi-normal form if
0 -2 < 1 It is said to be in normal form if 0 <ty <--- <, £1 and each
g: € G — e. The empty monomial representing e is also said to be in normal form.

7.4. LemMA. Each monomial is equivalent to one and only one monomial in normal form.

Proof. Starting with an arbitrary monomial, we may reduce it to semi-normal form
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using only type 3 operations. Then, if there are any factors with equal ’s we combine them
by type 2 relations, obtaining thus a monomial such that 0 < ¢, < ¢, < --- < f; £ 1. Finally,

using type 1 relations, we may delete all factors of the forms (g, 0) and (e, ). The resulting
monomial is in normal form.

To prove uniqueness, we define for each monomial m = (gy, t;) - - (g, %) a function
m: (0, 1]— G as follows. Foreachj =1, 2, ..., k, let b; denote the product in order of those
g: such that i < jand ;> t;, and set gj = b-gjb“. Now set

.l
Incaset+¢. all 7. we set m(7) = e. Notice that if m is in normal form, then m(¢.) = g. for
In case ¢ # 1; for all j, we set m(¢) tice 118 in nor ,thenm(t;) = g;
each factor (g ;»;), and otherwise m(t) = e. We must show that an equivalence m = m’ of
’

two monomials implies m(t) = () for all z. It is enough to show this when m, m’ are
related by a single application of a relation of one of the three types.

There are four cases to distinguish. In all cases m = (g4, #,) " (gy . t,) and ' is obtained
by an operation involving the factor (g,, ¢,) of m. In case 1, f, =0 and m’ is obtained by
deleting (g, #,). In case 2, g, = ¢ and m' is obtained by the same deletion. In case 3, £,= ¢,
and m' is obtained by replacing the two factors (g,, #.)(gss 1> ts+1) by one (g,gs+1, £;). In case
4, t;> 1,y and m' is obtained by replacing (g;, t)0(gs+ 1> t+1) bY (95954195 e 1)(Gs> 1)-
Since the complete proof that m(¢) = m’'(¢) is lengthy and mostly routine, we will outline the

main steps and give details for case 4 only.

We compare first the computations of §; and §;" in m and m’. Since m and m’ coincide
in all factors preceding the sth, and §; depends only on the factors up to and including the
Jjth, it follows that g; = g, for j < 5. For the same reason, the factor &, used to conjugate g,
is also used for g,’. In case 4, we obtain

gs = byg.b; ", Gov1=(0:9.)9,+1(bsg,)”

G5 = by(9s9:+195 Db Yy Gews = byg, b
Considernowaj> s+ 1,and case 4. If 1, < ¢;, then also 7., ; = t] , hence the s and (s + 1)st
factors of m contribute only ¢’s to the factor b ing;=b;g;b; !, Interchanging t,, 4, does
not alter this conclusion, hence b;" = b;. Smce g/ =g;, we have g/ =g;. Ift. St;<t,
b; obtains the factor g, from the sth factor of m, and e from the (s + 1)st, while 5, obtams e
from the sth factor of m’, and g, from the (s + I)st. Since b;, b;” have otherwise the same
factors it follows that b; = b;’, whence g; =g, If t; < t,.,, b; obtains the factors gs and

J
tha farntare c and ¢ L 1 AfF 11 reaanectivaly whila b/ ~htaing 7 . Tatnnd
Fs+1 uu;u the factorssand s+ 1 ot m reSpeCiiviy, winnc Uj gotains IsGs+1Ys , ys isLCall.

Since b;, b;’ have otherwise the same factors, it follows that b; = b;', hence §; = §;'. Thus in
case 4, g; = g, except for j = s and 5 4 1, and these are given above.

Consider now the computations of m(¢) and m'(t). If ¢ is not one of the ¢, ..., #, in m,
it also does not occur in m’, hence, by definition, m(t) = e = m'(t). If t = t; for some j but
t # t,or t,,, (case 4), we have g; = g; forevery jsuch that r = ¢;, hence the1r products m(t)
and m'(¢) are equal. If 1 =#,, we have §; =g, for j # s and ¢; = ¢, hence m(¢t) and m'(¢)
receive the same factors from corresponding factors of m and m’ except that m(¢) obtains

b, g,b3* from factor s and an e from factor s + 1, while m’ obtains aneand b, g, b; * from the
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corresponding factors. Hence m(t,) = m'(¢t;). Now take t =¢,,,. Again m(t) and m'(z)
receive the same factors from corresponding factors of m and m’ except for the factors s and
s + 1, and, for these, m(r) obtains e, g,,, as given above, and m'(¢) obtains g,’, e. Since
g = G+, it follows that m(t,,,) = m'(¢,, ). This completes our proof that m(z) = m'(¢) in
case 4. The other cases are less difficult.

As observed earlier, a monomial m in normal form can be reconstructed from its m(t)
because m(t)) = g, for each of its factors (g;, ¢;) and m(t) = e for other ¢’s. The invariance of
m(?) under equivalence implies therefore the uniqueness of the normal form. This completes
the proof of lemma 7.4.

Remark. In case G is a group, a simpler proof is obtained by defining m(t) to be the
product of those g; occurring in m such that 7; > ¢. Inverses are needed to reconstruct from
this m(z) the normal form of m.

7.5. Definition. Define k: E;' — E; by assigning to the element of E;’ whose normal
formis (gy, £,) - (g » 1) the element k,,[gy, 81, . . ., Gm > 1] Of Eg (see 5.1). In the special case
m=0, k maps e E;' into e = Dy in E;.

7.6. THEOREM. Assuming that G satisfies 7.1, then the following hold.

(a) The mapping k defined in 7.5 is bijective.

(b) For each m, D, — D,,_, corresponds bijectively under k to precisely those elements
whose normal forms have length m, and E,,_, — D,,_, corresponds to the subset with
t,=1.

(c) Under k the submonoid G of Eg' corresponds to Ey, and the action mapping
¢: Eg x G- Eg of §4 coincides under k with right translation.

(d) Let ¢ denote the multiplication defined in Eg by taking over the multiplication in Eg’'
under k. Then ¢ is continuous, hence Eg is a topological monoid.

(©) If G is agroup (i.e. G has a continuous inverse), then Eg is also a group.

(f) If both G and H satisfy 1.1 and f: G — H is a morphism, then the natural mapping
f: Eg— Ey is a morphism of monoids.

(g) If both G and H satisfy 7.1, then the natural equivalence &: Eg.pq— Eg X Ey is an
isomorphism of monoids.

Proof. (b) is an immediate consequence of 5.1c; and (a) follows from (b). It is easy to
verify (c).

To prove (d) it suffices to show that the multiplication mapping ¢: D,, X D, = Dy s,
is continuous for all m, n because E; x Eg has the topology of the union of the sets D, x D,
(see [8; 10.3]). For each (m, n)-shuffle o, let K, denote the set of those points of A, x A,
whose coordinates ((sy, . . ., S,), (¢1, - - - » 1,)) are brought into weakly increasing order by the
shuffle «. We have then the diagram

k> kn T
D,xD, «—— G"xA,xG" x4,

G"x G"x A, XA,

a.mn ¢ e
km+n a'xa
Dpyipy +——— G"*""x Ay, «— " xG"x K,
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where i, is an inclusion, T interchanges the two middle factors G" and A,, and
@' (G1s - -+ > Gm Pys - -» hy) is obtained by first replacing each k; by c;hjc; ' where c; is the
product of the g;’s that h; must pass in the shuffle «, and then performing the shuffle «.

Commutativity of the diagram is seen as follows. Starting with u e G™ x G" x K, we
obtain (1 x T x 1)i,u = (u;, u,) where u;, u, represent the elements k,, »; and k,u, in semi-
normal form. Similarly (o’ x a)u represents k,, ., (a" X c)u in semi-normal form. Now the
product ¢{k,, u,, k,u,) of these elements in the semi-normal forms u,, ¥, can be reduced to a
semi-normal form by applying type 3 operations alone, and the result is seen to be (¢’ x o)u.
Therefore k,,, (o' x w)u = ¢(k,,uy, k,u,) as required.

By 5.1a, the maps k,,, k, are proclusive, hence also their product [8; 4.4], and also
(k,, x k,)T. Thus to prove that ¢ is continuous, it suffices to prove that ¢(k,, x k)T is
continuous. Since the sets G™ x G" x K, for all shuffles «, cover G™ x G” x A, X A, and
are closed, it suffices to prove the continuity on each of them. But commutativity of the
diagram implies that ¢(k,, x k,)T restricted to G™ x G"x K, is (o' x &)k, +,, and this
mapping is clearly continuous.

To prove (e), it suffices to prove the continuity of 1x = x~! on each D,, because E;
has the topology of their union. This is based on the diagram

km
G"x A, —> D,

km
G"x A, — D,
The mapping u is defined by ulg;, t1, ..., Gus tul = [91's tis -+ > Gu's tm] Where

9 =(Gs1 " Gm) 95 (Gow1 " 9w)  for  k=1,2,...,m.

It is readily checked that the diagram commutes. Since &, is a proclusion and g is obviously
continuous, it follows that A is continuous.

To prove (f), it is enough to show that f (see 4.1) preserves products. This is a triviality
one has only to check that the construction from G to E;’ is a functor, and that the mapping
k: Eg' — Eg is a natural transformation of functors.

To prove (g), it suffices to show that £ preserves products. Since the projections of
G x H into G and H preserve products, it follows from (f) that the associated mappings
Eg.y into Eg and Ej also preserve products. Since these are the components of ¢ and
E; x Ey is a direct product, the assertion follows.

§8. THE FIBRATION E;— B;

Recall the definition of Dold and Thom [2]: a mapping p: E — B is called a quasifibra-
tion if pE = B, and

PrindE, p  x, )~ (B, x) forall xeB,yep lx,i=0.
8.1. THEOREM. Let G be a topological monoid with unit e such that (G, e) is an NDR.
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Assume also that each left translation of G induces isomorphisms of all homotopy groups. Then
p: Eg — Bg is a quasifibration.
Proof. Our proof, in outline, is the same as that of Dold and Lashof [1; Prop. 2.3).

Since B, is a point, E, — B, is a quasifibration. Assume inductively that, for some #,
E, — B,isaquasifibration. We shall show that E,,, — B, ., is a quasifibration. By 4.2, there
is a representation i, h of (E, ,, E,) as a G-NDR; let i, i denote the induced representation
of the quotient (B, , B,) as an NDR (see 4.3). Set ¥= B,,; — B, and U = i ![0, 1). Then
B,.,,=UuV.Since E,,; — E,=p V- Visthe projectlon of a product structure, Visa
distinguished set (i.e. p~'¥V — V is a quasifibration). For the same reason U n V is a dis-
tinguished set.
The homotopy /i restricted to p~1U x I is a deformation retraction of p~*U into E,,

and covers the deformation # [((UxI) of U into B,. Let hy =h|E,;; x 1 and
h, = h|B,,; x 1. We claim that

(8.2) (A lp7 ' X):np™ ')~ n(p~*h;x) forall xeB,,, and i=0.

For x € B,, this is trivial since /; and /1, restrict to identities. For xe B,,, — B,, p” xis a
copy of G under its action on the point y = p~*x n D, . Since p~'h,x is a copy of G, it has
the form bG for some b € p~'h,x, and then h, y = bg, for some g, € G. Since /1, is a G-map-
ping, we have h,(yg) = bg,g. Thus h, on p~'x is just a copy of the left translation of G by gy;
hence 8.2 holds. Since B, is a distinguished set by the inductive hypothesis, it follows now

from {2; 2.10] that U is a distinguished set. Since U, ¥ and U n ¥V are distinguished, we may
apply [2; 2.2] to conclude that Uu V=B, s dlstmgulshed This concludes the inductive

ished for everv n. Since has the tongcloevy of the union {]® R
1Sheg Ior every n. since u(’ has the topoiogy of the union /4 5,

it follows from [2; 2.15] that By itself is distinguished. This completes the proof.

+ 43 ho o tannlaooieal aroun e L thrs (17
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that G has a neighborhood W which is a product space over pW = V. By 4.2, the pair
(E;, E;) has a representation as a G-NDR by mappings v, h. Set W=u ~1[0, 1). Since Wis

open and is G-invariant, it follows that V' = pWis openin B; . Definer: W— G by ry=h(y, 1).
Note that » is a G-mapping. Define
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have been defined excepting {. We shall show that £ induces a map { of its quotient space
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=y(ry) " 'g =&, 9)-
Therefore ¢ induces a unique function { such that {(p x 1) = &. Since V is a quotient space of
W, it follows from [8; 4.4] that ¥V x G is a quotient space of W x G, and this implies that {
is continuous.

Since ¢ is a G-mapping, so also is {. Now p&(y, ) = p(»(ry)"'g) = py, and

&, 9) = r(y(ry) "'g) = () 9 = g.
Therefore { composed with (p, r) is the identity of ¥ x G. On the other hand, if ye W,
&y, ry) = y(ry) " (ry) = y, and this shows that (p, r) composed with { is the identity of W.
Therefore { is the required representation of W as a product ¥ x G. This concludes the
proof.

§9. COMPLEXES ON G, E; AND B;, AND THE BAR RESOLUTION

We assume in this section that G is also a complex such that e is a vertex and the multi-
plication G x G — G is skeletal. Let I = [0, 1] have the cellular structure consisting of two
vertices 0, T and one edge denoted by J, = (0, 1). We shall construct now the associated
complexes (or reticulations) of D,, E, and B,.

The reticulation of E, comes from its identification with G, each cell of G is a cell of Ej, .
The I-structure on D, = e is given by a skeletal map e x / — e, hence, by 3.5, D, has a
reticulation such that the natural maps E, x I— D, and D, x I— D, are skeletal. Recall
that tha firct ma ismfrom(E,.— DYx 8, tc D, — E.. We den

" 1q o o
Liidl UL 1oL 1iap 1S a nomeomo l.luASUL 11Vl \ 12 2] N O W oy g.e ¥Y

the image cell of ¢ x &, in D, — E,. The general stage is described as follows.

Q1 Taporcwm
~.1. 1HEGREM.

of Lemmas 3.4 and 2.5, we obtain reticulations of D, , E, for each n; their union is a functorial
reticulation of Eg such that the action Eq x G — Eg and the contraction Eg x I - E; are
skeletal. The cells of D, — E,_, are in 1-1 correspondence with sequences of cells of G — e

of length n; the cell corresponding to o, ..., 0, is denoted by [o,]--|0,]. The cells of
E, — D, are in 1--1 correspondence with sequences of cells of G — e of length n + 1; the cell
corresponding 1o 6y, ..., 6,4, is denoted by [o(| -+ | 6,]0,+1. These cells are defined by the
inductive conditions

9.2) [oy] - 10,] = ({1 ] " | 64—1l0m) X O1)

(93) [o'll ,Gn]o-n+1 ':l([o-ll lan] X O-n+1)

where yi: E,_y x I - D, and 1: D, x G - E, are the quotient maps occurring in the construc-
tions of D, and E,. In case n =0, the cell [ ] corresponding to the empty sequence is e, and
[ o is the cell 6 of G — e = E, — D,. Moreover, k, maps the cell ¢, X -+ X g, x 8, of
G" x A, homeomorphically onto [oy| -+~ |6,], and k, ., maps the cell 6; X *+* X6, X 8,
of G**! x A, homeomorphically onto [6,] -+ |6,10n+1-
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Proof. The proofs of the statements of the first sentence are straigl . 0
that the cells are as descrlbed, assume inductively that the cells of E,_; — D,_; have the
form [oy| -*- |64~ ]0,. Now umaps (E,., — D,_,) x &, homeomorphlcally onto D,—F,_,,
hence each cell of D, — E,_, has the form pu(r x ;) where 7 is a cell of E,_;, — D,_,. Since
7 has the form [o,] - - - | 0, ]6,, it follows from the definition 9.2, that each cell of D,—E, _,
has the form [oy| - |o,]. Now A maps (D, — E,_,) x (G — ¢) homeomorphically onto
E, — D,, hence each cell of £, — D, has the form A(p x o) where pisacellof D, — E,_; and
o is a cell of G — e. Since p has the form {g,| - | 6,], it follows from the definition 9.2 that
each cell of £, — D, has the form [a,] --- | 5,]0.

To prove the cellular property of k,, let a4, ..., o, be a sequence of cells of G — e.
Consider the cell p =0y X *** X 6,_; X §,_; X 6, X d; of G"‘1 X A,y x Gx I (see 5.2).

neo iy rrhiaally ~wis S Lo t{15s PR P
Since ¥ maps 5,, 1 X 51 homcor Olphlbally ointo o,, we have tha t{r X (,U)l maps p homeo-

morphically onto oy x - X0, x d,. Thus the k,-image of ¢, x --- x 6, x 6, is the
u(A x Dk, _, x 1 x 1) —image of p. The inductive hypothesis on k,_; and 9.2, 9.3 give

VASK > -1

HA X D,y x 1 x Dp = p(Ax D[oy| -+ [6,-4] x 0, X &)
= #([Gli e iﬁn—lloll X 51) =[ali T ia-n],
and this is the required form.

Corresponding to a sequence oy, ..., 6,,; of cells of G — e, form the cell T =g, x *--
X0, X 0,% 0,41 %1 of G" x A, x G x I (see 5.2 with n replaced by # + 1). Since (1 x Y)T
maps © homeomorphically onto o, x -+ X 6, X J,, the k,, -image of this latter cell is
the u(A x 1)(k, x 1 x 1)-image of 7. Using what was proved above for k, and 9.2, 9.3, we

| AP

obtain
p(2 x Dk, x 1x D= p(d x D([o4] | ,] X 6,41 x 1)
=p(loy] - [0,10,41 % 1) = [oy] -~ | 6,105+ 1,
which is the stated form. This completes the proof.

9.4. THEOREM. There is a unique reticulation of B satisfying the conditions: (1) each
B, is a subcomplex, (2) each projection E,— B, is skeletal, and (3) B, is the complex formed
by attaching the complex D, to B,_, by the (skeletal) projection E,_; — B, _,

Proof. Clearly the conditions provide an inductive definition of the reticulations of the
B,’s provided we show at each stage that p: E, - B, is skeletal. Let © be any cell of E,; by
9.3, either 7 is in D, or it has the form A(p X ¢) where p x o is a cell of D, x G of the same
dimension as 7. If 7 is in D,, we also have A(t x ¢) = 7. Now pi: D, x G— B, can be
factored into the projection g: D, x G — D, followed by p’' = p| D,. Since p’ and g are
skeletal, so is p4, hence pr = pA(p X o) lies in the r-skeleton of B, where r = dim(p x o) =
dim t. Therefore p is skeletal, and the proof is complete.

9.5. THEOREM. If G and H have reticulations such that the multiplications G X G - G
and H x H— H are skeletal, then the mapping ¢ ': Eg x Ey — Eg .y of 6.2 is skeletal.

To prove the theorem it suffices to show that £~* in the diagram 6.5 is skeletal.
Using 9.1, any cell o x 7 of D,(G) x D,(H) has the form k, ¢’ x k,7’; hence it is the
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image of a cel e same 8 it suf o sh
Kpen(a' x )it is skeletal for each «. Since k., is keletal we are educed to studymg
(o x a)izt. Smce o imbeds G™ x H™as a subcomplex of (G x H)*™" we need only study «

- 151 and 7 a face of A, of dimension g. Let
s = (81, ..., 5,) be apoint of &, and = (t, ..., t,) a point of 7 such that a(s, t) is in increas-
ing order, i.e. (s,2) € K, n (o x t). Of the possible equalities that may hold among the
coordinates of s, namely, 0 = 5, 51 = 53, -5 Sm_1 = Sm>» Sm = 1, let N(s) be the number that
do hold. Then the smallest face of A,, containing s has dimension m — N(s). Since ¢ is a face
containing s, we have g = m — N(s), or N(s) = m — ¢. Similarly, N(t) = n — r. Set u = a(s, t).
It is easily seen that N(u) = N(s) + N(r) because any equality of elements in s or ¢ still holds
after shuffiing. Therefore (s, ¢) is on a face of A,,., of dimension

m+n—NuwWSm—-—N@E)+n—Nt=g+r.

This completes the proof.

0 K TwueorReM. I G ic abelian then the multinlication
1 HEOREM. 4] & 15 4oed ine cdhipacailio

pings. If also G is a group, and v: G — G, defined by vg =g~ ", is skeletal then the induced
maps ¥ and v, defining inverses in Eg and B, are likewise skeletal.

Proof. To prove that the multiplication ¢ for Ej is skeletal it suffices to prove that its

restriction to D,, x D, is skeletal for each m, n. Let o be ag-cell of D, , and 7 an r-cell of D,.

.............. Ly X L7y 25 SxCICial 10 Caldl L0 DL ag-Lll O L f=3.0L8 ra CLL 01

By 9.1, ¢ = k,(0, X 0;) where ¢,, g, are cells of G™, A,, of dlmensmns g, and g, =g — q4,
respectively. Similarly, t = k,(7; % 7,). Referring to the diagram 7.7, we have

¢(o x 1) = Plk,, X k)T(0, X T, X 6, X 7).

Lets=(s,...,5,) beapointofo,, r=(z,..., t,,) a point of 7,, and « an (m, n)-shuffie
such that a(s, ) is in increasing order, i.e. (s, 1) € K, 0 (0, % 7,). Define N(s) and N(¢) as in
tha smanw~n~f AFQ K Awrconing avantlu ag 1 Q5 wa on “nlnfiln thaot af o #) 3 o Fana ~f A

Uiv pruuvl vl 7.J. nlsuxué bAabLly ad lll ZJy WU LULIVIUUL LAl K D, l} D ona 1aCc 01 I_\m+n Ul
dimension at most g, + r,. Let x € ¢, and y € ;. Since G is abelian, a': G™ x G" > G™* " s
just the shuffle o of the factors; since this is a skeletal mapping, o'(x, ¥) lies on a cell of

dimension g, + r;. Therefore (&’ x )i, (x, ¥, 5, t) lieson a (g + r)-cell. Since k,, +nis skeletal,

1 (m e aYi~ W o o Y — AL v L) v e
Am+a\& N KLy A5 Vs 0, 8] = Wy X RpjliA, Y, 0, ¢8)

lies in the (g + r)-skeleton. It follows that ¢(o x 7) is in the (g + r)-skeleton; hence ¢ is
skeletal.

Let o, © be cells of B; of dimensions g, r, respectively. By 9.2, there are cells ¢, " of Ej
of dimensions ¢, r, respectivel;f, mapped by p: E; - B onto ¢ and 7. Since B is a quotient
group of E;, pd(a’ x ') coincides with the image ot of ¢ x 7 under multiplication. Since
¢ and p are skeletal, ot = pg(o’ x ') lies in the (g + r)-skeleton. Hence the muiliiplication in
B; is skeletal.

When G is an abelian group, the mapping v is a morphism of groups. If v is also skeletal,
it follows from the functorial nature of the reticulations that ¥ and v are skeletal.
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