MILGRAM'S CLASSIFYING SPACE OF A TOPOLOGICAL GROUP \dagger

N. E. Steenrod
(Received 10 January 1968)

§1. INTRODUCTION

A classifying space for a topological group G is the base space B_{G} of a principal G-bundle $E_{G} \rightarrow B_{G}$ such that E_{G} is a contractible space. It is a universal object in the sense that any principal G-bundle over a complex K admits a bundle mapping into E_{G}. General properties of G-bundles and their characteristic classes are obtained by studying $E_{G} \rightarrow B_{G}$.

The first functorial construction of an $E_{G} \rightarrow B_{G}$ was given by Milnor in 1956 [5]. In 1959, Dold and Lashof [1] reformulated Milnor's construction in such a way that it applies when G is a topological monoid (i.e. an associative H-space with a two-sided unit). Recently Milgram [4] gave a different functorial construction, and proved two useful properties: first, if G is an abelian monoid, then B_{G} has a natural (functorial) structure as an abelian monoid; secondly, if G is a complex such that the multiplication $G \times G \rightarrow G$ is skeletal (i.e. for each q, it maps the q-skeleton into the q-skeleton), then B_{G} becomes a complex in a natural way so that the chain group $C\left(B_{G}\right)$ is isomorphic to the bar resolution of $C(G)$. Thus Milgram's construction can be regarded as the geometric analog of the algebraic bar construction.

In this paper, we present a reformulation of Milgram's construction. It has three advantages: it is well motivated, the degree of generality of the results can be precisely stated, and the relation of Milgram's construction to that of Dold and Lashof becomes apparent (it is a quotient of the latter).

We shall establish two further properties. First, the construction preserves products $E_{G \times H}=E_{G} \times E_{H}$. Secondly, if G is a group (or an abelian monoid), then E_{G} has a natural structure as a topological group (abelian monoid) such that G is a subgroup (submonoid), B_{G} is the coset space E_{G} / G, and, when G is abelian, B_{G} is a quotient group (monoid).

The fact that B_{G} preserves products combined with its functorial property implies immediately that it carries an abelian monoid (group) into an abelian monoid (group); one need only observe that the multiplication $G \times G \rightarrow G$, and the inverse mapping $G \rightarrow G$ are morphisms. In the category of semisimplicial monoids, the W-construction of EilenbergMacLane [3] has exactly these properties (see John Moore [6]). In view of this, it appears

[^0]likely that Milgram's resolution, applied to the geometric realization of a semi-simplicial monoid, gives a space that is naturally equivalent to the geometric realization of the W-construction applied to the monoid.

§2. ENLARGING AN ACTION

We assume throughout this paper that G denotes a topological monoid (equivalently, an associative H-space with a two-sided unit e). All spaces are assumed to be compactly generated (a set that meets every compact set in a closed set is closed); and product spaces are formed in the sense of the category of these spaces $[8,4.1]$.

An action of G in a space X is a mapping $X \times G \rightarrow X$ (the image of (x, g) is written $x g$) satisfying the associativity law $x\left(g g^{\prime}\right)=(x g) g^{\prime}$, and the unit condition $x e=x$. A space X with an action is called a G-space. A mapping $f: X \rightarrow Y$ of one G-space in another is a G-mapping if $f(x g)=(f x) g$ for all x, g. For any product of the form $X \times G$, the right action of G is defined by $(x, g) g^{\prime}=\left(x, g g^{\prime}\right)$ for all x, g, g^{\prime}. Then, if X is a G-space, the action mapping $X \times G \rightarrow X$ is a G-mapping relative to right action by virtue of the associative law.
2.1. Definition. Let A be closed in X, and $h: A \times G \rightarrow A$ an action. Form the adjunction space $\bar{X}=A \cup_{h}(X \times G)$; this is the quotient space obtained from $X \times G$ by collapsing $A \times G$ into A by h. Right action of G in $X \times G$ induces an action of G in \bar{X}. The resulting G-space is called the enlargement to X of the G-action on A.

We identify X with the image in \vec{X} of $X \times e$; this identification on A preserves the action of G. In this way \bar{X} is the union of the closed set A with the action h and the open set $(X-A) \times G$ with right action.

Let us recall $[8,6.2]$ that A is called a neighborhood deformation retract of X (briefly, (X, A) is an NDR) if there is a mapping $u: X \rightarrow I=[0,1]$ and a homotopy $k: X \times I \rightarrow X$ such that $u^{-1} 0=A, k(x, 0)=x$ for all $x \in X, k(a, t)=a$ for all $a \in A, t \in I$, and $k(x, 1) \in A$ for all x such that $u x<1$.
2.2. Lemma. If (X, A) is an $N D R$, then (\bar{X}, A) is an $N D R$. If also (G, e) is an $N D R$, then (\bar{X}, X) is an $N D R$.

Proof. It is easily seen that ($X \times G, A \times G$) is an NDR (see [8, 6.3]), then the first statement follows from the general proposition [8;8.5] about adjunction spaces. By [8;6.3]

$$
(X, A) \times(G, e)=(X \times G, X \times e \cup A \times G)
$$

is an NDR. Since the quotient mapping $X \times G \rightarrow \bar{X}$ is a relative homeomorphism $(X, A) \times(G, e) \rightarrow(\bar{X}, X)$, the second statement follows from [8; 8.4].

Remark. Our definition of a compactly generated space includes the Hausdorff condition. As a quotient space, the enlargement \bar{X} may fail to be Hausdorff. However, when (X, A) is an NDR, \bar{X} is Hausdorff. This follows from Lemma 8.5 of [8] where it is stated that any adjunction space $Y \cup_{h} X$ is compactly generated if X and Y are compactly generated, and (X, A) is an NDR. Since the proof of the Hausdorff condition was omitted, we give it here. Since $X-A$ maps topologically onto $Y \cup_{h} X-Y$, this open subset is Hausdorff. Suppose $x_{1} \in Y$ and $x_{2} \in Y \cup_{h} X-Y$. Set

$$
U=\left\{x \in X \mid u x<\left(u x_{2}\right) / 2\right\}, \quad V=\left\{x \in X \mid u x>\left(u x_{2}\right) / 2\right\} .
$$

Then $Y \cup U, V$ map onto open sets separating x_{1} and x_{2}. Suppose next that $x_{1}, x_{2} \in Y$. Let U_{1}, U_{2} be open disjoint sets separating x_{1}, x_{2} in Y. Let $r: W \rightarrow A$ retract a neighborhood of A in X into A. Then $U_{1} \cup r^{-1} h^{-1} U_{1}$ and $U_{2} \cup r^{-1} h^{-1} U_{2}$ map onto disjoint open sets of $Y \cup_{h} X$ scparating x_{1} and x_{2}.
2.3. Lemma. Let G, H be topological monoids, and let $\dot{n}: G \rightarrow H$ be a continuous morphism. Let $f:(X, A) \rightarrow(Y, B)$ be a mapping of NDR pairs such that A is a G-space, B is an H-space, and $f \mid A$ is h-equivariant, i.e., $f(a g)=(f a)(h g)$ for all $a \in A, g \in G$. Then $f \times h: X \times G \rightarrow Y \times H$ is h-equivariant relative to right action, and it induces an h-equivariant mapping of quotient spaces $\bar{f}:(\bar{X}, A) \rightarrow(\bar{Y}, B)$ called the enlargement of f. In this way, enlargement becomes a functor.

Proof. Two distinct points $\left(x_{1}, g_{1}\right),\left(x_{2}, g_{2}\right)$ of $X \times G$ are equivalent in \bar{X} if $x_{1}, x_{2} \in A$ and $x_{1} g_{1}=x_{2} g_{2}$. Since $f \mid A$ is h-equivariant, we have $f\left(x_{i} g_{i}\right)=\left(f x_{i}\right)\left(h g_{i}\right)$ for $i=1,2$, hence $\left(f x_{1}, h g_{1}\right)$ and ($f x_{2}, h g_{2}$) are equivalent in \bar{Y}. Therefore the composition $X \times G \rightarrow Y \times H \rightarrow \bar{Y}$ factors into $X \times G \rightarrow \bar{X} \rightarrow \bar{Y}$. Since \bar{X} has the quotient topology, \bar{f} is continuous. Since the quotient mappings $X \times G \rightarrow \bar{X}$ and $Y \times H \rightarrow \bar{Y}$ are G - and H-mappings, it follows that \bar{f} is h-equivariant. It is routine to check the functorial properties of enlargement.
2.4. Remark. The enlargement $\bar{X} \supset X$ is characterized up to a G-equivalence by the property: if Y is any G-space, and f any map $X \rightarrow Y$ such that $f \mid A$ is a G-mapping, then there exists a unique G-mapping $f^{\prime}: \bar{X} \rightarrow Y$ extending f.

By a complex we shall mean a $C W$-complex. A mapping $f: K \rightarrow L$ of two complexes is called skeletal if f maps the q-skeleton of K into that of L for each $q \geqq 0$. A product of two complexes is regarded as a complex whose cells are the products of cells of the factors.
2.5. Lemma. Let G be a complex such that the multiplication $G \times G \rightarrow G$ is skeletal. Let (X, A) be a complex and subcomplex, and suppose the action $A \times G \rightarrow A$ is skeletal. Then the enlargement \bar{X} inherits a unique structure as a complex from that of $X \times G, X$ is a subcomplex of \bar{X}, and the mapping $\bar{X} \times G \rightarrow \bar{X}$ is skeletal.

Proof. It is a general proposition that, if L is a subcomplex of K, M is a complex, and $f: L \rightarrow M$ is skeletal, then $M \cup_{f} K$ inherits a unique structure as a complex from the disjoint union $M \cup K$ such that M is a subcomplex and the quotient map $M \cup K \rightarrow M \cup_{f} K$ is skeletal. This becomes obvious if we picture K as being built out of L by successive adjunctions of cells ordered by dimension; for we may build $M \cup_{f} K$ out of M by adjoining the same cells to M using adjunction maps modified by f. If we apply this proposition to the case $K=X \times G, L=A \times G$ and $M=A$, it follows that \bar{X} inherits a structure as a complex such that $X \times G \rightarrow \bar{X}$ is skeletal and X is a subcomplex. Since each cell of \bar{X} is the image of a cell of $X \times G$ of the same dimension and $X \times G \times G \rightarrow X \times G \rightarrow \bar{X}$ are skeletal, it follows that $\bar{X} \times G \rightarrow \bar{X}$ is skeletal.

§3. CONTRACTIONS OF SPACES

The unit interval $I=[0,1]$ is a topological monoid under ordinary multiplication. An I-action $X \times I \rightarrow X$ is of course a homotopy which, for $t=1$, is the identity map of X. It is a special kind of homotopy, the associative law requires that each point on the path of a point follows a path contained in the first path; the homotopy is a 1-parameter semigroup of motions with a reversed parameter. The base point of I is defined to be 0 .
3.1. Definition. A contraction of a space X to a base point x_{0} is an I-action $h: X \times I \rightarrow X$ that factors through the smash product $X \times I \rightarrow X \wedge I \rightarrow X$. In other words, $h(x, 0)=x_{0}=$ $h\left(x_{0}, t\right)$ for all $x \in X, t \in I$.

For example, the multiplication mapping $m: I \times I \rightarrow I$ is a contraction of I to 0 .
We shall restrict ourselves to spaces with base points (X, x_{0}) that are NDR's. Then, by [8;6.3], the product pair $\left(X, x_{0}\right) \times(I, 0)$ is an NDR. The reduced cone $X \wedge I$ is just the adjunction space determined by the map of $X \times 0 \cup x_{0} \times I$ to a point x_{1}. Then, by [8;8.5], ($X \wedge I, x_{1}$) is an NDR; in particular $X \wedge I$ is Hausdorff.

The proof of the following lemma is trivial.
3.2. Lemma. The right action of I on $X \times I$ induces a contraction on $X \wedge I$ called the canonical contraction. The cone with this contraction is a functor from the category of pointed spaces to the category of pointed spaces with contractions.
3.3. Lemma. Let $x_{0} \in A \subset X$ be such that $(X, A),\left(X, x_{0}\right)$ and $\left(A, x_{0}\right)$ are NDR's, and let $h: A \wedge I \rightarrow A$ be a contraction of A to x_{0}. Set $\tilde{X}=A \cup_{h}(X \wedge I)$ so that \tilde{X} is the quotient space of $X \wedge I$ obtained by collapsing $A \wedge I$ into A by h. Then all of the pairs $\left(\tilde{X}, x_{0}\right),(\tilde{X}, A)$ and (\tilde{X}, X) are $N D R$'s, and the canonical contraction of $X \wedge I$ induces a contraction of \tilde{X} to x_{0} which extends h. We call $\left(\tilde{X}, x_{0}\right)$ with this contraction the enlargement to X of the contraction on A. It is functorial for maps $f:\left(X, A, x_{0}\right) \rightarrow\left(Y, B, y_{0}\right)$ such that A and B have contractions and $f \mid A$ is an I-mapping.

Proof. By the product theorem $[8 ; 6.3],(X, A) \times(I, 0)$ is an NDR. It maps by a relative homeomorphism onto $(X \wedge I, A \wedge I)$, hence, by [8; 8.4], $(X \wedge I, A \wedge I)$ is an NDR. It follows from the lemma $[8 ; 8.5]$ on adjunction spaces, that (\tilde{X}, A) is an NDR. Since $\left(A, x_{0}\right)$ and (\tilde{X}, A) are NDR's, the lemma $[8 ; 7.2]$ yields that $\left(\tilde{X}, x_{0}\right)$ is an NDR. If \dot{I} denotes the set of cndpoints of I , then (I, \dot{I}) is an NDR. Hence, by the product theorem $(X, A) \times(I, \dot{I})$ is an NDR, and, since it maps onto (\tilde{X}, X) by a relative homeomorphism, the latter is also an NDR.

In the diagram

p and p^{\prime} are the natural quotient mappings, and m is the multiplication of I. To show that there is a unique function k such that $k p^{\prime}=p(1 \times m)$, let (x, t, τ) and $\left(x^{\prime}, t^{\prime}, \tau^{\prime}\right)$ be distinct
points of $X \times I \times I$ having the same image under p^{\prime}. If both map to the base point, we have $x=x_{0}$ or $t=0$ or $\tau=0$; and this implies $x=x_{0}$ or $t \tau=0$, hence $(x, t \tau)$ maps to the base point. Similarly ($x^{\prime}, t^{\prime} \tau^{\prime}$) maps to the base point. If neither maps to the base point, then we must have that x, x^{\prime} are in $A, x t=x^{\prime} t^{\prime}$ and $\tau=\tau^{\prime} \neq 0$. These imply $x t \tau=x^{\prime} t^{\prime} \tau^{\prime}$, hence $(x, t \tau)$ and $\left(x^{\prime}, t^{\prime} \tau^{\prime}\right)$ have the same image in \tilde{X}. Thus k is uniquely defined.

To prove that k is continuous it suffices to show that p^{\prime} is proclusive (a quotient mapping). Since a composition of proclusions $X \times I \rightarrow X \wedge I \rightarrow \tilde{X}$ is a proclusion $X \times I \rightarrow \tilde{X}$, we may apply [8; 4.4] to conclude that $X \times I \times I \rightarrow \tilde{X} \times I$ is proclusive. Composing this with the proclusion $\tilde{X} \times I \rightarrow \tilde{X} \wedge I$ gives p^{\prime}, hence p^{\prime} is also proclusive.

The construction of $\tilde{f}:(\tilde{X}, A) \rightarrow(\tilde{Y}, B)$ and the verification of functorial properties is routine and will be omitted. This concludes the proof.
3.4. Lemma. Let (X, A) be a complex and subcomplex, and let the contraction $A \wedge I \rightarrow A$ be a skeletal mapping where I is the complex with two vertices and one edge. Then the enlargement \tilde{X} inherits a unique structure as a complex from that of $X \wedge I$, and the mappings $X \wedge I \rightarrow \tilde{X}$ and $\tilde{X} \wedge I \rightarrow \tilde{X}$ are skeletal.

Proof. Apply the argument proving 2.5 with K, L, M replaced by $X \wedge I, A \wedge I$, and A, respectively.

Remark. Just as in 2.4, the enlargement \tilde{X} is characterized by the property: if $f: X \rightarrow Y$ is a map of X into a space Y having a contraction, and $f \mid A$ is an I-mapping, then f extends to a unique I-mapping $\tilde{X} \rightarrow Y$.

§4. CONSTRUCTION OF THE RESOLUTION

For any topological monoid G with unit e such that (G, e) is an NDR, we have the following construction obtained by alternating the constructions of $\S 2$ and $\S 3$. By an induction on n, we define spaces D_{n}, E_{n} such that

$$
D_{0} \subset E_{0} \subset D_{1} \subset \cdots \subset D_{n} \subset E_{n} \subset D_{n+1} \subset \cdots
$$

Moreover each D_{n} has a contraction $D_{n} \wedge I \rightarrow D_{n}$ and each E_{n} is a G-space. Let D_{0} consist of the single point e with the obvious contraction. Let E_{0} denote the enlargement to D_{0} of the G-action on the empty subset of D_{0}. A check of definition 2.1 shows that $E_{0}=D_{0} \times G$ is just a copy of G and the action is right translation. Now define D_{1} to be the enlargement to E_{0} of the contraction of D_{0}. A check of the definition (see 3.3) shows that D_{1} is just the reduced cone on E_{0}. Define E_{1} to be the enlargement to D_{1} of the G-action on E_{0}. In general D_{n} is the enlargement to E_{n-1} of the contraction of D_{n-1}, and E_{n} is the enlargement to D_{n} of the G-action on E_{n-1}. The G - and I-actions are denoted by

$$
\phi_{n}: E_{n} \times G \rightarrow E_{n} \quad \text { and } \quad \psi_{n}: D_{n} \times I \rightarrow D_{n}
$$

We now pass to the limit by setting

$$
E_{G}=\bigcup_{n=0}^{\infty} E_{n}=\bigcup_{n=0}^{\infty} D_{n}
$$

and giving E the topology of the union (weak topology). Since the G-action ϕ_{n} on E_{n} extends
ϕ_{n-1} for each n, the union of the ϕ_{n} 's defines a G-action $\phi: E \times G \rightarrow E$. Since the contraction ψ_{n} of D_{n} extends ψ_{n-1} for each n, the union of the ψ_{n} 's is a contraction $\psi: E \wedge I \rightarrow E$.
4.1. Theorem. If (G, e) is an $N D R$, then the E_{G} constructed above is a G-resolution in the sense of $[7,1.1]$. Moreover, iff $: G \rightarrow H$ is a continuous morphism of topological monoids, there is an associated functorial f-mapping of resolutions $\tilde{f}: E_{G} \rightarrow E_{H}$.

Proof. Clearly $\left\{E_{n}\right\}$ represents E as a filtered G-space. It is an acyclic filtration because the contraction of E contracts E_{n} to the point e in E_{n+1} for each n. It is a free filtered G-space because, for each $n, E_{n}=E_{n-1} \cup_{\phi}\left(D_{n} \times G\right)$, hence the quotient mapping $\left(D_{n}, E_{n-1}\right) \times G \rightarrow\left(E_{n}, E_{n-1}\right)$ is a relative homeomorphism. Finally we must show that (D_{n}, E_{n-1}) is an NDR for each n. The proof of this proceeds by induction on n; the case $n=0$ is trivial. Assume inductively that (D_{n}, E_{n-1}) is an NDR. Since (G, e) is an NDR, it follows from 2.2 that $\left(E_{n}, D_{n}\right)$ is an NDR. Then it follows from 3.3 that $\left(D_{n+1}, E_{n}\right)$ is an NDR. This completes the inductive step, and the proof that E_{G} is a resolution.

The functorial nature of the construction is shown by proving the same for each D_{n}, E_{n} using 2.3, 3.3, and passing to the limit.
4.2. Lemma. If G is as in 4.1, then, for each $n,\left(E_{n}, E_{n-1}\right)$ and $\left(E_{G}, E_{n}\right)$ are G-NDR's, i.e. the functions u and h in the definition of an NDR satisfy $u(x g)=u x$ and $h(x g, t)=h(x, t) g$ for all x, g and t.

Proof. Let u, h represent $\left(D_{n}, E_{n-1}\right)$ as an NDR. Define $u^{\prime}: D_{n} \times G \rightarrow I$ and $h^{\prime}: D_{n} \times G \times I \rightarrow D_{n} \times G$ by

$$
u^{\prime}(x, g)=u x, \quad h^{\prime}(x, g, t)=(h(x, t), g) \quad \text { for all } \quad x, g, t .
$$

Then, with respect to right action in $D_{n} \gg G, u^{\prime}$ and h^{\prime} represent $\left(D_{n} \times G, E_{n-1} \times G\right)$ as a G-NDR. Since the quotient mapping

$$
\phi:\left(D_{n}, E_{n-1}\right) \times G \rightarrow\left(E_{n}, E_{n-1}\right)
$$

is a relative homeomorphism, it follows from [8;8.4] that u^{\prime}, h^{\prime} induce a representation v, k of $\left(E_{n}, E_{n-1}\right)$ as an NDR such that $v \phi=u^{\prime}$ and $k(\phi \times 1)=\phi h^{\prime}$. Since ϕ is a G-mapping, it follows that v, k represent $\left(E_{n}, E_{n-1}\right)$ as a G-NDR.

According to $[8 ; 7.1]$ the NDR property of $\left(E_{m}, E_{m-1}\right)$ is equivalent to the existence of a retraction r_{m} of $I \times E_{m}$ into $0 \times E_{m} \cup I \times E_{m-1}$. It is easily checked that the G-NDR property is equivalent to r being a G-map. Apply now the argument of [8;9.4] to construct a retraction s of $I \times E$ into $0 \times E \cup I \times E_{n}$. Since s is essentially a composition of various r_{m} 's, it follows that s is a G-map; hence (E, E_{n}) is a G-NDR, and the lemma is proved.

Since G is not required to be a group, the orbit of a point of E_{G} under G need not be a copy of G. However, each point lies in a maximal orbit which is a copy of G because E_{G} is the union of the sets $E_{n}-E_{n-1}$ homeomorphic to $\left(D_{n}-E_{n-1}\right) \times G$. These maximal orbits are closed sets.
4.3. Definition. The base space B_{G} of the G-resolution E_{G} is the quotient space of E_{G} by its maximal G-orbits. Let $p: E_{G} \rightarrow B_{G}$ be the natural map. Set $B_{n}=p E_{n}$. The base space with this filtration we call Milgram's classifying space for G.

It is readily seen that B_{n} is obtained from B_{n-1} by adjoining D_{n} by the projection $p: E_{n-1} \rightarrow B_{n-1}$. Since (D_{n}, E_{n-1}) is an NDR, it follows from [8; 8.5] that (B_{n}, B_{n-1}) is an NDR. Applying [8;9.4] we obtain that B_{G} is a Hausdorff space, and each $\left(B, B_{n}\right)$ is an NDR. It follows now from $[8 ; 2.6]$ that B_{G} is compactly generated, and by $[8 ; 9.5]$ that B_{G} has the topology of the union of $\left\{B_{n}\right\}$.
4.4. Remark. The construction of Dold and Lashof differs from ours only in that each D_{n} is the cone $E_{n-1} \wedge I$ rather than the space obtained from the cone by collapsing $D_{n-1} \wedge I$ into D_{n-1}. It follows that there is a functorial mapping of the Dold-Lashof resolution onto the Milgram resolution. This is a quotient mapping when G is compact, but may not be in general due to the intricate topology Dold and Lashof gave their resolution.

§5. SIMPLICIAL PARAMETERS FOR E_{G}

The proofs of our main results are based on a parametric representation of E_{G}, essentially that of Milgram's definition.

Let Δ_{n} denote the n-simplex of R^{n} defined by the inequalities $0 \leqq t_{1} \leqq t_{2} \leqq \cdots \leqq t_{n} \leqq 1$; and let δ_{n} denote its interior: $0<t_{1}<\cdots<t_{n}<1$. The standard imbedding of Δ_{n} in Δ_{n+1} adjoins the $(n+1)$ st coordinate $t_{n+1}=1$.

A point of $G^{n} \times \Delta_{n}$ will be represented by its coordinates in shuffled form $\left[g_{1}, t_{1}, g_{2}\right.$, $\left.t_{2}, \ldots, g_{n}, t_{n}\right]$. Imbed $G^{n} \times \Delta_{n}$ in $G^{n+1} \times \Delta_{n+1}$ by adjoining the coordinates $g_{n+1}=e$ and $t_{n+1}=1$. Let $G^{\omega} \times \Delta_{\omega}$ denote the union $\bigcup_{n=0}^{\infty} G^{n} \times \Delta_{n}$.
5.1. Theorem. For each n there is a natural transformation $k_{n}: G^{n} \times \Delta_{n} \rightarrow D_{n}$ with the following properties.
(a) Each k_{n} is proclusive.
(b) The restriction of k_{n} to $G^{n-1} \times \Delta_{n-1}$ is k_{n-1}; hence the union of the k_{n} 's is defined and is a mapping $k: G^{\omega} \times \Delta_{\omega} \rightarrow E_{G}$.
(c) Each k_{n} restricts to homeomorphisms

$$
(G-e)^{n} \times \delta_{n} \xrightarrow{\alpha_{n}} D_{n}-E_{n-1} \quad \text { and } \quad(G-e)^{n} \times \delta_{n-1} \xrightarrow{\beta_{n}} E_{n-1}-D_{n-2} .
$$

(d) The restriction of k_{n} to $G^{n} \times \Delta_{n-1} \rightarrow E_{n-1}$ is a G-map where G acts only on the nth G-factor by right translation.
(e) If the action of I on $G^{n} \times \Delta_{n}$ is defined by

$$
\left[g_{1}, t_{1}, g_{2}, t_{2}, \ldots, g_{n}, t_{n}\right] \tau=\left[g_{1}, t_{1} \tau, g_{2}, t_{2} \tau, \ldots, g_{n}, t_{n} \tau\right]
$$

then k_{n} is an I-mapping.
(f) If $x-\left[g_{1}, s_{1}, \ldots, g_{n}, s_{n}\right]$ and $y=\left[h_{1}, t_{1}, \ldots, h_{n}, t_{n}\right]$ in $G^{n} \times \Delta_{n}$ are such that, for some $j<n$,

$$
k_{j}\left[g_{1}, s_{1}, \ldots, g_{j}, s_{j}\right]=k_{j}\left[h_{1}, t_{1}, \ldots, h_{j}, t_{j}\right]
$$

and $g_{i}=h_{i}$ and $s_{i}=t_{i}$ for $i=j+1, \ldots, n$, then $k_{n} x=k_{n} y$.
Proof. The proof proceeds by induction on n. In case $n=0, G^{0} \times \Delta_{0}$ and D_{0} are single points. Interpreting Δ_{-1} and E_{-1} to be empty, the six properties hold in a trivial way.

Assume inductively that k_{n-1} has been constructed to satisfy (a)-(f). We shall define k_{n} so that the following diagram is commutative

The mapping T interchanges the two middle factors, ψ is defined by

$$
\psi\left(\left(t_{1}, \ldots, t_{n-1}\right), \tau\right)=\psi\left(t_{1} \tau, \ldots, t_{n-1} \tau, \tau\right)
$$

and λ, μ are the quotient mappings occurring in the definitions of E_{n-1} and D_{n}. It is readily verified that if $(1 \times \psi) T$ brings two points together then their G-coordinates are equal, and also their I-coordinates; if the latter are non-zero, then all coordinates are equal; and if the I-coordinates are zero, then $\mu(\lambda \times 1)\left(k_{n-1} \times 1 \times 1\right)$ carries both points to the base point of D_{n}. This shows that there is a unique k_{n} making the diagram commutative. The continuity of k_{n} follows from the proclusive property of $(1 \times \psi) T$. The functorial property of k_{n} follows readily from that of the other mappings of the diagram.

To prove (a), we note first that $\psi, T, k_{n-1}, \lambda$ and μ are proclusive. Since a product of proclusions is a proclusion [8;4.4], it follows that all mappings of the diagram, other than k_{n}, are proclusions. Suppose then that $U \subset D_{n}$ is such that $k_{n}^{-1} U$ is open; since $(1 \times \psi) T$ is continuous and the diagram commutes, we have that

$$
\left(k_{n}(1 \times \psi) T\right)^{-1} U=\left(\mu(\lambda \times 1)\left(k_{n-1}^{\prime} \times 1 \times 1\right)\right)^{-1} U
$$

is open. Since the composition $\mu(\lambda \times 1)\left(k_{n-1} \times 1 \times 1\right)$ is proclusive, it follows that U is open. Hence k_{n} is proclusive.

To prove (b), let x be a point of $G^{n-1} \times \Delta_{n-1}$ considered as a point of $G^{n} \times \Delta_{n}$ with last two coordinates $e, 1$. Then $x=(1 \times \psi) T(x, e, 1)$; and, recalling the definitions of λ, μ, we have

$$
k_{n} x=\mu(\lambda \times 1)\left(k_{n-1} \times 1 \times 1\right)(x, e, 1)=\mu(\lambda \mid \times 1)\left(k_{n-1} x, e, 1\right)=k_{n-1} x
$$

The proof that β_{n} is a homeomorphism is based on the diagram

$$
\begin{array}{rll}
(G-e)^{n-1} \times \delta_{n-1} \times(G-e) & \xrightarrow{1 \times T}(G-e)^{n} \times \delta_{n-1} \\
\left.\right|_{\alpha_{n-1} \times 1} & & \\
\left(D_{n-1}-E_{n-2}\right) \times(G-e) & \xrightarrow{\lambda_{n}} & E_{n-1}-D_{n-1}
\end{array}
$$

where T interchanges the last two factors and λ^{\prime} is the restriction of λ. Since the quotient mapping λ in the construction of E_{n-1} out of E_{n-2} defines a homeomorphism of $\left(D_{n-1}-E_{n-2}\right)^{\prime} \times G$ onto $E_{n-1}-E_{n-2}$, it follows that λ^{\prime} is a homeomorphism. Since T is a homeomorphism, and α_{n-1} is assumed to be so, it follows from the commutativity of the diagram that β_{n} is a homeomorphism.

To prove the same for α_{n}, we use the diagram

$$
\begin{array}{ccc}
(G-e)^{n} \times \delta_{n-1} \times \delta_{1} & \xrightarrow{1 \times \psi^{\prime}}(G-e)^{n} \times \delta_{n} \\
\downarrow_{\beta_{n} \times 1} & & \\
\left(E_{n-1}-{\underset{D}{n-1}}^{\beta_{n}}\right) \times \delta_{1} & \longrightarrow \mu^{\prime} & D_{n}-E_{n-1}
\end{array}
$$

where ψ^{\prime} is the restriction of ψ, and μ^{\prime} is the restriction of μ. It is readily checked that ψ^{\prime} and μ^{\prime} are homeomorphisms. Since β_{n} is a homeomorphism and the diagram is commutative, it follows that α_{n} is a homeomorphism. This proves (c).

To prove (d), consider the diagram of subspaces of 5.2 obtained by replacing Δ_{n} by Δ_{n-1}, each I-factor by the point $1 \in I$, and each mapping by its restriction. With respect to right action of G on the right-hand G-factors, $1 \times \psi, T$ and $k_{n-1} \times 1 \times 1$ are clearly G-mappings. Since the G-action in E_{n-1} is induced by that in $D_{n-1} \times G$ through the quotient map λ, it follows that λ and $\lambda \times 1$ are G-maps. Since $\mu \mid E_{n-1} \times 1$ is just the identification of E_{n-1} as a subspace of D_{n}, it too is a G-map. Since the diagram is commutative and all mappings, other than k_{n}, are G-maps, it follows that k_{n} is also a G-map.

To prove (e), let I act on each of the four spaces on the left of 5.2 by standard right action on its factor I. After verifying that all mappings of 5.2 , other than k_{n}, are I-mappings, it follows from the commutativity of the diagram that k_{n} is also an I-mapping.

To prove (f), note that the hypothesis implies $s_{n}=t_{n}$. If both are zero, then k_{n} maps both to $e \in D_{n}$. Suppose $s_{n}=t_{n}=\tau$ is not zero. Let $s_{i}{ }^{\prime}=s_{i} / \tau$ and $t_{i}{ }^{\prime}=t_{i} / \tau$ for $1 \leqq i \leqq n-1$, and set $x^{\prime}=\left[g_{1}, s_{1}{ }^{\prime}, \ldots, g_{n-1}, s_{n-1}^{\prime}\right], y^{\prime}=\left[h_{1}, t_{1}{ }^{\prime}, \ldots, h_{n-1}, t_{n-1}^{\prime}\right]$. Since k_{j} for $j<n$ satisfies (e), we have

$$
\begin{aligned}
k_{j}\left[g_{1}, s_{1}^{\prime}, \ldots, g_{j}, s_{j}^{\prime}\right] & =\left(k_{j}\left[g_{1}, s_{1}, \ldots, g_{j}, s_{j}\right]\right) \tau^{-1} \\
& =\left(k_{j}\left[h_{1}, t_{1}, \ldots, h_{j}, t_{j}\right]\right) \tau^{-1}=k_{j}\left[h_{1}, t_{1}^{\prime}, \ldots, h_{j}, t_{j}^{\prime}\right] .
\end{aligned}
$$

We conclude from this that $k_{n-1} x^{\prime}=k_{n-1} y^{\prime}$ because either $j=n-1$, or $j<n-1$ and x^{\prime}, y^{\prime} satisfy the hypotheses of (f) with n replaced by $n-1$. It follows that $k_{n-1} \times 1 \times 1$ maps $\left(x^{\prime}, g_{n}, s_{n}\right)$ and $\left(y^{\prime}, h_{n}, t_{n}\right)=\left(y^{\prime}, g_{n}, s_{n}\right)$ to the same point. It follows now that $k_{n} x=k_{n} y$. This completes the proof of the theorem.
5.3. Definition. Let $N_{n}=\bigcup_{j=0}^{n}(G-e)^{j} \times\left(\delta_{j} \bigcup \delta_{j-1}\right)$. If $x \in D_{n}, u \in G^{n} \times \Delta_{n}$, and $k_{n} u=x$, then u is said to represent x; if also $u \in N_{n}, u$ is called the representation in normal form. Two elements $u, v \in G^{n} \times \Delta_{n}$ are called equivalent if $k_{n} u=k_{n} v$.
5.4. Corollary. The restriction of k_{n} to $N_{n} \rightarrow D_{n}$ is bijective. Thus ihe representation of an element of D_{n} in normal form is unique.

The corollary follows from $5.1 \mathrm{~b}, \mathrm{c}$ and the observation that D_{n} is the disjoint union $\bigcup_{j=0}^{n}\left(D_{j}-D_{j-1}\right)$.

The condition for $u=\left[g_{1}, t_{1}, \ldots, g_{n}, t_{n}\right]$ to be in N_{n} is that there is a j such that $g_{1}, \ldots, g_{j} \in G-e, 0<t_{1}<\cdots<t_{j} \leqq 1$, and $g_{i}=e$ and $t_{i}=1$ for $i=j+1, \ldots, n$.

Starting with a u that is not in normal form we reduce it to its equivalent normal form by a series of elementary reductions of the following two types:
(5.5) If some $g_{i}=e$ or $t_{i}=0$, delete the pair g_{i}, t_{i} and adjoint $e, 1$ on the right.
(5.6) If some $t_{i-1}=1$, replace g_{i-1} by $g_{i-1} g_{i}$ and g_{i} by e.

One verifies these equivalences in the case $i=n$ by checking the definition 5.2 of k_{n}. The cases $i<n$ follow from the case (i, i) by applying 5.1f.

§6. THE NATURAL EQUIVALENCE $E_{G \times H} \approx E_{G} \times E_{H}$

6.1. Definition. Let G, H be topological monoids, and let p, q denote the projections of $G \times H$ into G and H respectively. Define $\xi_{G, H}: E_{G \times H} \rightarrow E_{G} \times E_{H}$ to be the mapping whose components are \tilde{p}, \tilde{q} (see 4.1).

It is obvious that ξ is continuous, it is a natural transformation of functors, it is a mapping of $(G \times H)$-spaces, and hence it induces a mapping $B_{G \times H} \rightarrow B_{G}!\times B_{H}$.

If K is a third topological monoid, and p, q, r are the projections $G_{1} \times H \times K$ into G, H, K respectively, then we have the associative law

$$
\left(1 \times \xi_{H, K}\right) \xi_{G, H \times K}=\left(\xi_{G, H} \times 1\right) \xi_{G \times H, K}: E_{G \times H \times K} \rightarrow E_{G} \times E_{H} \times E_{K}
$$

because both sides have the components $\tilde{p}, \tilde{q}, \tilde{r}$.
If $T: G \times H \rightarrow H \times G$ interchanges the factors, and also $T^{\prime}: E_{G} \times E_{H} \rightarrow E_{H} \times E_{G}$, then we have the commutative law $T^{\prime} \xi_{G, H}=\xi_{H, G} \tilde{T}$ because both sides have the components \tilde{q}, \tilde{p}.

If $d: G \rightarrow G \times G$ and $d^{\prime}: E_{G} \rightarrow E_{G} \times E_{G}$ are diagonal maps, we have $\xi_{G . G} \tilde{d}=d^{\prime}$. This holds because $\tilde{p} \tilde{d}=(p d)^{\sim}=\tilde{1}$ and similarly $\tilde{q} \tilde{d}=\tilde{1}$.

Let us assign to $E_{G} \times E_{H}$ the standard filtration for a product:

$$
\left(E_{G} \times E_{H}\right)_{n}=\bigcup_{i=0}^{n} E_{G, i} \times E_{H, n-i}
$$

Since \tilde{p} and \tilde{q} preserve filtrations, it follows that ξ maps filtration n into filtration $2 n$ for each n.
6.2. Theorem. The mapping $\xi_{G, H}$ of 6.1 is a homeomorphism, hence ξ is a natural equivalence. Moreover, $\xi_{G, H}^{-1}$ preserves filtrations.

Proof. In the diagram

let k_{n} be defined as in 5.2 , and define ξ_{n} by

$$
\begin{equation*}
\xi_{n}\left[\left(g_{1}, h_{1}\right), t_{1}, \ldots,\left(g_{n}, h_{n}\right), t_{n}\right]=\left(\left[g_{1}, t_{1}, \ldots, g_{n}, t_{n}\right],\left[h_{1}, t_{1}, \ldots, h_{n}, t_{n}\right]\right) \tag{6.3}
\end{equation*}
$$

It is readily checked that the diagram is commutative for each n. Define $N_{n}(G)$ and $N_{n}(H)$ as in 5.3. If ξ_{n} in 6.3 is applied to an element in normal form of length $\leqq n$, the components on the right need not be in normal form, but may be reduced to normal form by deleting
factors of the form (e, t) (see 5.5). Let $\xi_{n}{ }^{\prime}$ be the resulting map of normal forms, giving a commutative diagram:

Define a $\operatorname{map} \zeta_{p, q}: N_{p}(G) \times N_{q}(H) \rightarrow N_{p+q}(G \times H)$ as follows. Let $x=\left[g_{1}, s_{1}, \ldots, g_{a}, s_{a}\right]$ and $y=\left[h_{1}, t_{1}, \ldots, h_{b}, t_{b}\right]$ be in normal form (5.3) where $a \leqq p$ and $b \leqq q$. Let u_{1}, \ldots, u_{r} denote the union of the distinct s and t-values of x, y arranged in ascending order $0<u_{1}<\cdots<u_{r} \leqq 1$. For each $j=1, \ldots, r$, define g_{j}^{\prime} to be g_{i} if $u_{j}=s_{i}$ for some i, otherwise $g_{j}^{\prime}=e$. Similarly, $h_{j}^{\prime}=h_{i}$ if $u_{j}=t_{i}$ for some i, otherwise $h_{j}{ }^{\prime}=e$. Define

$$
\zeta(x, y)=\left[\left(g_{1}^{\prime}, h_{1}^{\prime}\right), u_{1}, \ldots,\left(g_{r}^{\prime}, h_{r}^{\prime}\right), u_{r}\right]
$$

It is readily checked that $\zeta(x, y)$ is in normal form. It is also readily checked that ζ is an inverse of ξ^{\prime} in the sense that $\xi_{p+q}^{\prime} \zeta_{p, q}$ is the inclusion of $N_{p}(G) \times N_{q}(H)$ in $N_{p+q}(G) \times N_{p+q}(H)$, and $\zeta_{2 n} \xi_{n}{ }^{\prime}$ is the inclusion of $N_{n}(G \times H)$ in $N_{2 n}(G \times H)$. Since k_{n} restricted to normal forms is bijective (5.4), it follows now from 6.4 that ξ is bijective. Since ζ maps filtration p, q into filtration $p+q$, it follows that ξ^{-1} preserves filtrations.

We shall now show that ξ^{-1} is continuous. The proof is based on the following diagram:

The mapping T interchanges the two middle factors. Let α be any (m, n)-shuffle, let K_{α} be the subset of those elements of $\Delta_{m} \times \Delta_{n}$ whose coordinates are brought into (weakly) increasing order by the shuffle α, and let i_{α} be the indicated inclusion map. The map $\alpha^{\prime}: G^{m} \times H_{n} \rightarrow(G \times H)^{m+n}$ replaces each $g \in G$ by $(g, e) \in G \times H$, each $h \in H$ by $(e, h) \in G \times H$, and then performs the shuffle α on the resulting factors.

Since $\left(k_{m} \times k_{n}\right) T$ is proclusive, the continuity of ξ^{-1} will follow from that of $\xi^{-1}\left(k_{m} \times k_{n}\right) T$. Since each K_{α} is a closed set and their union is $\Delta_{m} \times \Delta_{n}$, it suffices to show that $\xi^{-1}\left(k_{m} \times k_{n}\right) T i_{\alpha}$ is continuous for each α where i_{α} is the inclusion. The mappings on the bottom row are obviously continuous. Thus we have only to prove that the diagram is commutative. Let $r=m+n$, and form the following diagram

where ξ_{r} is defined in 6.3 and b is the obvious inclusion mapping. We observed earlier that
the right rectangle is commutative. The left rectangle is not commutative; however, the lower route gives an element differing from that of the upper route only in the presence of a number of extra factors (e, t), and these have the same image under $k_{r} \times k_{r}$. Thus the long rectangle is commutative. Since it contains the preceding rectangle, it too is commutative. This completes the proof.

§7. TOPOLOGICAL GROUPS

In this section we assume that G is a topological monoid with a morphism

$$
\begin{equation*}
\text { Ad: } G \rightarrow \text { Auto } G \tag{7.1}
\end{equation*}
$$

such that $g g^{\prime}=\left((\mathrm{Ad} g) g^{\prime}\right) g$ for all $g, g^{\prime} \in G$, and $(\mathrm{Ad} g) g^{\prime}$ is continuous from $G \times G$ to G. If G is a topological group, we have $(\mathrm{Ad} g) g^{\prime}=g g^{\prime} g^{-1}$. If G is an abelian $I I$-space, we have $(\operatorname{Ad} g) g^{\prime}=g^{\prime}$. For convenience we shall write $g g^{\prime} g^{-1}$ instead of $(\mathrm{Ad} g) g^{\prime}$ even when g has no inverse.

Let \tilde{E} be the free associative monoid generated by all pairs $(g, t) \in G \times I$. As a set it is $(G \times I)^{\omega}=\bigcup_{n=0}^{\infty}(G \times I)^{n}$, each element being a monomial $\left(g_{1}, t_{1}\right) \cdots\left(g_{n}, t_{n}\right)$. Multiplication is defined by the usual identifications $(G \times I)^{m} \times(G \times I)^{n}=(G \times I)^{m+n}$ (the juxtaposition of monomials). The unit is the empty monomial corresponding to $n=0$.
7.2. Definition. Let $E_{G}{ }^{\prime}$ be the quotient monoid obtained by reducing \widetilde{E} by the following three sets of relations:
(1) $(g, 0)=(e, t)=$ the unit e of $E_{G}{ }^{\prime}$ for all $g \in G, t \in I$,
(2) $(g, t)\left(g^{\prime}, t\right)=\left(g g^{\prime}, t\right)$ for all $g, g^{\prime} \in G, t \in I$,
(3) if $0<t^{\prime}<t \leqq 1$ and $g, g^{\prime} \in G$, then

$$
(g, t)\left(g^{\prime}, t^{\prime}\right)=\left(g g^{\prime} g^{-1}, t^{\prime}\right)(g, t)
$$

To be precise, two monomials m, m^{\prime} of \tilde{E} are equivalent if there is a sequence of monomials $m=m_{1}, m_{2}, \ldots, m_{k}=m^{\prime}$ such that one may pass from any m_{i} to m_{i+1} by an operation of type 1,2 or 3 or its inverse applied to some factor or pair of successive factors of m_{i}. The equivalence classes in \tilde{E} are the elements of $E_{G}{ }^{\prime}$. It is readily seen that the multiplication in \tilde{E} induces one in $E_{G}{ }^{\prime}$ so that the natural mapping $\widetilde{E} \rightarrow E_{G}{ }^{\prime}$ preserves products. We do not assign any topology to $E_{G}{ }^{\prime}$ until Theorem 7.6 below.

For a fixed $t>0$, the set of (g, t) for all $g \in G$ forms a submonoid isomorphic to G. We identify G with the submonoid corresponding to $t=1$.

If G is abelian, it follows from the relations of type 3 that $E_{G}{ }^{\prime}$ is abelian. In case G has inverses so also $E_{G}{ }^{\prime}$ because, by (2), $(g, t)^{-1}=\left(g^{-1}, t\right)$. Thus if G is a group so also is $E_{G}{ }^{\prime}$.
7.3. Definition. A monomial $\left(g_{1}, t_{1}\right) \cdots\left(g_{k}, t_{k}\right)$ is said to be in semi-normal form if $0 \leqq t_{1} \leqq \cdots \leqq t_{k} \leqq 1$. It is said to be in normal form if $0<t_{1}<\cdots<t_{k} \leqq 1$ and each $g_{i} \in G-e$. The empty monomial representing e is also said to be in normal form.
7.4. Lemma. Each monomial is equivalent to one and only one monomial in normal form.

Proof. Starting with an arbitrary monomial, we may reduce it to semi-normal form
using only type 3 operations. Then, if there are any factors with equal t 's we combine them by type 2 relations, obtaining thus a monomial such that $0 \leqq t_{1}<t_{2}<\cdots<t_{k} \leqq 1$. Finally, using type 1 relations, we may delete all factors of the forms $(g, 0)$ and (e, t). The resulting monomial is in normal form.

To prove uniqueness, we define for each monomial $m=\left(g_{1}, t_{1}\right) \cdots\left(g_{k}, t_{k}\right)$ a function $m:(0,1] \rightarrow G$ as follows. For each $j=1,2, \ldots, k$, let b_{j} denote the product in order of those g_{i} such that $i<j$ and $t_{i}>t_{j}$, and set $\bar{g}_{j}=b_{j} g_{j} b^{-1}$. Now set

$$
m(t)=\text { the product in order of all } \bar{g}_{j} \text { such that } t_{j}=t .
$$

In case $t \neq t_{j}$ for all j, we set $m(t)=e$. Notice that if m is in normal form, then $m\left(t_{j}\right)=g_{j}$ for each factor $\left(g_{j}, t_{j}\right)$, and otherwise $m(t)=e$. We must show that an equivalence $m \equiv m^{\prime}$ of two monomials implies $m(t)=m^{\prime}(t)$ for all t. It is enough to show this when m, m^{\prime} are related by a single application of a relation of one of the three types.

There are four cases to distinguish. In all cases $m=\left(g_{1}, t_{1}\right) \cdots\left(g_{k}, t_{k}\right)$ and m^{\prime} is obtained by an operation involving the factor $\left(g_{s}, t_{s}\right)$ of m. In case $1, t_{s}=0$ and m^{\prime} is obtained by deleting $\left(g_{s}, t_{s}\right)$. In case $2, g_{s}=e$ and m^{\prime} is obtained by the same deletion. In case $3, t_{s}=t_{s+1}$ and m^{\prime} is obtained by replacing the two factors $\left(g_{s}, t_{s}\right)\left(g_{s+1}, t_{s+1}\right)$ by one $\left(g_{s} g_{s+1}, t_{s}\right)$. In case $4, t_{s}>t_{s+1}$ and m^{\prime} is obtained by replacing $\left(g_{s}, t_{s}\right)\left(g_{s+1}, t_{s+1}\right)$ by $\left(g_{s} g_{s+1} g_{s}^{-1}, t_{s+1}\right)\left(g_{s}, t_{s}\right)$. Since the complete proof that $m(t)=m^{\prime}(t)$ is lengthy and mostly routine, we will outline the main steps and give details for case 4 only.

We compare first the computations of \bar{g}_{j} and $\bar{g}_{j}{ }^{\prime}$ in m and m^{\prime}. Since m and m^{\prime} coincide in all factors preceding the s th, and \bar{g}_{j} depends only on the factors up to and including the j th, it follows that $\bar{g}_{j}=\bar{g}_{j}^{\prime}$ for $j<s$. For the same reason, the factor b_{s} used to conjugate g_{s} is also used for g_{s}^{\prime}. In case 4, we obtain

$$
\begin{array}{ll}
\bar{g}_{s}=b_{s} g_{s} b_{s}^{-1}, & \bar{g}_{s+1}=\left(b_{s} g_{s}\right) g_{s+1}\left(b_{s} g_{s}\right)^{-1} \\
\bar{g}_{s}^{\prime}=b_{s}\left(g_{s} g_{s+1} g_{s}^{-1}\right) b_{s}^{-1}, & \bar{g}_{s+1}^{\prime}=b_{s} g_{s} b_{s}^{-1}
\end{array}
$$

Consider now a $j>s+1$, and case 4 . If $t_{s} \leqq t_{j}$, then also $t_{s+1} \leqq t_{j}$, hence the s and $(s+1)$ st factors of m contribute only e 's to the factor b_{j} in $\bar{g}_{j}=b_{j} g_{j} b_{j}^{-1}$. Interchanging t_{s}, t_{s+1} does not alter this conclusion, hence $b_{j}{ }^{\prime}=b_{j}$. Since $g_{j}{ }^{\prime}=g_{j}$, we have $\bar{g}_{j}{ }^{\prime}=\bar{g}_{j}$. If $t_{s+1} \leqq t_{j}<t_{s}$, b_{j} obtains the factor g_{s} from the s th factor of m, and e from the $(s+1) \mathrm{st}$, while $b_{j}{ }^{\prime}$ obtains e from the s th factor of m^{\prime}, and g_{s} from the $(s+1)$ st. Since $b_{j}, b_{j}{ }^{\prime}$ have otherwise the same factors it follows that $b_{j}=b_{j}{ }^{\prime}$, whence $\bar{g}_{j}=\bar{g}_{j}{ }^{\prime}$. If $t_{j}<t_{s+1}, b_{j}$ obtains the factors g_{s} and g_{s+1} from the factors s and $s+1$ of m respectively, whilc b_{j}^{\prime} obtains $g_{s} g_{s+1} g_{s}^{-1}, g_{s}$ instead. Since $b_{j}, b_{j}{ }^{\prime}$ have otherwise the same factors, it follows that $b_{j}=b_{j}{ }^{\prime}$, hence $\bar{g}_{j}=\bar{g}_{j}{ }^{\prime}$. Thus in case $4, \bar{g}_{j}=\bar{g}_{j}{ }^{\prime}$ except for $j=s$ and $s+1$, and these are given above.

Consider now the computations of $m(t)$ and $m^{\prime}(t)$. If t is not one of the t_{1}, \ldots, t_{k} in m, it also does not occur in m^{\prime}, hence, by definition, $m(t)=e=m^{\prime}(t)$. If $t=t_{j}$ for some j but $t \neq t_{s}$ or t_{s+1} (case 4), we have $\bar{g}_{j}=\bar{g}_{j}^{\prime}$ for every j such that $t=t_{j}$, hence their products $m(t)$ and $m^{\prime}(t)$ are equal. If $t=t_{s}$, we have $\bar{g}_{j}=\bar{g}_{j}{ }^{\prime}$ for $j \neq s$ and $t_{j}=t$, hence $m(t)$ and $m^{\prime}(t)$ receive the same factors from corresponding factors of m and m^{\prime} except that $m(t)$ obtains $b_{s} g_{s} b_{s}^{-1}$ from factor s and an e from factor $s+1$, while m^{\prime} obtains an e and $b_{s} g_{s} b_{s}^{-1}$ from the
corresponding factors. Hence $m\left(t_{s}\right)=m^{\prime}\left(t_{s}\right)$. Now take $t=t_{s+1}$. Again $m(t)$ and $m^{\prime}(t)$ receive the same factors from corresponding factors of m and m^{\prime} except for the factors s and $s+1$, and, for these, $m(t)$ obtains e, \bar{g}_{s+1} as given above, and $m^{\prime}(t)$ obtains $\bar{g}_{s}{ }^{\prime}, e$. Since $\bar{g}_{s}{ }^{\prime}=\bar{g}_{s+1}$ it follows that $m\left(t_{s+1}\right)=m^{\prime}\left(t_{s+1}\right)$. This completes our proof that $m(t)=m^{\prime}(t)$ in case 4. The other cases are less difficult.

As observed earlier, a monomial m in normal form can be reconstructed from its $m(t)$ because $m\left(t_{i}\right)=g_{i}$ for each of its factors $\left(g_{i}, t_{i}\right)$ and $m(t)=e$ for other t 's. The invariance of $m(t)$ under equivalence implies therefore the uniqueness of the normal form. This completes the proof of lemma 7.4.

Remark. In case G is a group, a simpler proof is obtained by defining $m(t)$ to be the product of those g_{i} occurring in m such that $t_{i}>t$. Inverses are needed to reconstruct from this $m(t)$ the normal form of m.
7.5. Definition. Define $k: E_{G}{ }^{\prime} \rightarrow E_{G}$ by assigning to the element of $E_{G}{ }^{\prime}$ whose normal form is $\left(g_{1}, t_{1}\right) \cdots\left(g_{m}, t_{m}\right)$ the element $k_{m}\left[g_{1}, t_{1}, \ldots, g_{m}, t_{m}\right]$ of E_{G} (see 5.1). In the special case $m=0, k$ maps $e \in E_{G}{ }^{\prime}$ into $e=D_{0}$ in E_{G}.
7.6. Theorem. Assuming that G satisfies 7.1, then the following hold.
(a) The mapping k defined in 7.5 is bijective.
(b) For each $m, D_{m}-D_{m-1}$ corresponds bijectively under k to precisely those elements whose normal forms have length m, and $E_{m-1}-D_{m-1}$ corresponds to the subset with $t_{m}=1$.
(c) Under k the submonoid G of $E_{G}{ }^{\prime}$ corresponds to E_{0}, and the action mapping $\phi: E_{G} \times G \rightarrow E_{G}$ of $\S 4$ coincides under k with right translation.
(d) Let ϕ denote the multiplication defined in E_{G} by taking over the multiplication in $E_{G}{ }^{\prime}$ under k. Then ϕ is continuous, hence E_{G} is a topological monoid.
(e) If G is a group (i.e. G has a continuous inverse), then E_{G} is also a group.
(f) If both G and H satisfy 7.1 and $f: G \rightarrow H$ is a morphism, then the natural mapping $f: E_{G} \rightarrow E_{H}$ is a morphism of monoids.
(g) If both G and H satisfy 7.1, then the natural equivalence $\xi: E_{G \times H} \rightarrow E_{G} \times E_{H}$ is an isomorphism of monoids.
Proof. (b) is an immediate consequence of 5.1c; and (a) follows from (b). It is easy to verify (c).

To prove (d) it suffices to show that the multiplication mapping $\phi: D_{m} \times D_{n} \rightarrow D_{m+n}$ is continuous for all m, n because $E_{G} \times E_{G}$ has the topology of the union of the sets $D_{m} \times D_{n}$ (see [8; 10.3]). For each (m, n)-shuffle α, let K_{α} denote the set of those points of $\Delta_{m} \times \Delta_{n}$ whose coordinates $\left(\left(s_{1}, \ldots, s_{m}\right),\left(t_{1}, \ldots, t_{n}\right)\right)$ are brought into weakly increasing order by the shuffle α. We have then the diagram

where i_{α} is an inclusion, T interchanges the two middle factors G^{n} and Δ_{m}, and $\alpha^{\prime}\left(g_{1}, \ldots, g_{m} ; h_{1}, \ldots, h_{n}\right)$ is obtained by first replacing each h_{j} by $c_{j} h_{j} c_{j}^{-1}$ where c_{j} is the product of the g_{i} 's that h_{j} must pass in the shuffle α, and then performing the shuffle α.

Commutativity of the diagram is seen as follows. Starting with $u \in G^{m} \times G^{n} \times K_{\alpha}$, we obtain $(1 \times T \times 1) i_{a} u=\left(u_{1}, u_{2}\right)$ where u_{1}, u_{2} represent the elements $k_{m} u_{1}$ and $k_{n} u_{2}$ in seminormal form. Similarly $\left(\alpha^{\prime} \times \alpha\right) u$ represents $k_{m+n}\left(\alpha^{\prime} \times \alpha\right) u$ in semi-normal form. Now the product $\phi\left(k_{m} u_{1}, k_{n} u_{2}\right)$ of these elements in the semi-normal forms u_{1}, u_{2} can be reduced to a semi-normal form by applying type 3 operations alone, and the result is seen to be ($\alpha^{\prime} \times \alpha$) u. Therefore $k_{m+n}\left(\alpha^{\prime} \times \alpha\right) u=\phi\left(k_{m} u_{1}, k_{n} u_{2}\right)$ as required.

By 5.1a, the maps k_{m}, k_{n} are proclusive, hence also their product [8;4.4], and also $\left(k_{m} \times k_{n}\right) T$. Thus to prove that ϕ is continuous, it suffices to prove that $\phi\left(k_{m} \times k_{n}\right) T$ is continuous. Since the sets $G^{m} \times G^{n} \times K_{\alpha}$, for all shuffles α, cover $G^{m} \times G^{n} \times \Delta_{m} \times \Delta_{n}$ and are closed, it suffices to prove the continuity on each of them. But commutativity of the diagram implies that $\phi\left(k_{m} \times k_{n}\right) T$ restricted to $G^{m} \times G^{n} \times K_{\alpha}$ is $\left(\alpha^{\prime} \times \alpha\right) k_{m+n}$, and this mapping is clearly continuous.

To prove (e), it suffices to prove the continuity of $\lambda x=x^{-1}$ on each D_{m} because E_{G} has the topology of their union. This is based on the diagram

The mapping μ is defined by $\mu\left[g_{1}, t_{1}, \ldots, g_{m}, t_{m}\right]=\left[g_{1}{ }^{\prime}, t_{1}, \ldots, g_{m}{ }^{\prime}, t_{m}\right]$ where

$$
g_{k}^{\prime}=\left(g_{k+1} \cdots g_{m}\right)^{-1} g_{k}^{-1}\left(g_{k+1} \cdots g_{m}\right) \quad \text { for } \quad k=1,2, \ldots, m
$$

It is readily checked that the diagram commutes. Since k_{m} is a proclusion and μ is obviously continuous, it follows that λ is continuous.

To prove (f), it is enough to show that f (see 4.1) preserves products. This is a triviality one has only to check that the construction from G to $E_{G}{ }^{\prime}$ is a functor, and that the mapping $k: E_{G}{ }^{\prime} \rightarrow E_{G}$ is a natural transformation of functors.

To prove (g), it suffices to show that ξ preserves products. Since the projections of $G \times H$ into G and H preserve products, it follows from (f) that the associated mappings $E_{G \times H}$ into E_{G} and $E_{I I}$ also preserve products. Since these are the components of ξ and $E_{G} \times E_{H}$ is a direct product, the assertion follows.

§8. THE FIBRATION $E_{G} \rightarrow B_{G}$

Recall the definition of Dold and Thom [2]: a mapping $p: E \rightarrow B$ is called a quasifibration if $p E=B$, and

$$
p_{*}: \pi_{i}\left(E, p^{-1} x, y\right) \approx \pi_{i}(B, x) \text { for all } x \in B, y \in p^{-1} x, i \geqq 0 .
$$

8.1. Theorem. Let G be a topological monoid with unit e such that (G, e) is an NDR.

Assume also that each left translation of G induces isomorphisms of all homotopy groups. Then $p: E_{G} \rightarrow B_{G}$ is a quasifibration.

Proof. Our proof, in outline, is the same as that of Dold and Lashof [1; Prop. 2.3]. Since B_{0} is a point, $E_{0} \rightarrow B_{0}$ is a quasifibration. Assume inductively that, for some n, $E_{n} \rightarrow B_{n}$ is a quasifibration. We shall show that $E_{n+1} \rightarrow B_{n+1}$ is a quasifibration. By 4.2, there is a representation \bar{u}, \bar{h} of $\left(E_{n+1}, E_{n}\right)$ as a G-NDR; let \tilde{u}, \tilde{h} denote the induced representation of the quotient (B_{n+1}, B_{n}) as an NDR (see 4.3). Set $V=B_{n+1}-B_{n}$ and $U=\tilde{u}^{-1}[0,1)$. Then $B_{n+1}=U \cup V$. Since $E_{n+1}-E_{n}=p^{-1} V \rightarrow V$ is the projection of a product structure, V is a distinguished set (i.e. $p^{-1} V \rightarrow V$ is a quasifibration). For the same reason $U \cap V$ is a distinguished set.

The homotopy \bar{h} restricted to $p^{-1} U \times I$ is a deformation retraction of $p^{-1} U$ into E_{n}, and covers the deformation $\tilde{h} \mid(U \times I)$ of U into B_{n}. Let $\bar{h}_{1}=\bar{h} \mid E_{n+1} \times 1$ and $\tilde{h}_{1}=\tilde{h} \mid B_{n+1} \times 1$. We claim that

$$
\begin{equation*}
\left(\bar{h}_{1} \mid p^{-1} x\right)_{*}: \pi_{i}\left(p^{-1} x\right) \approx \pi_{i}\left(p^{-1} \tilde{h}_{1} x\right) \text { for all } x \in B_{n+1} \quad \text { and } i \geqq 0 \tag{8.2}
\end{equation*}
$$

For $x \in B_{n}$, this is trivial since \tilde{h}_{1} and \tilde{h}_{1} restrict to identities. For $x \in B_{n+1}-B_{n}, p^{-1} x$ is a copy of G under its action on the point $y=p^{-1} x \cap D_{n+1}$. Since $p^{-1} \tilde{h}_{1} x$ is a copy of G, it has the form $b G$ for some $b \in p^{-1} \tilde{h}_{1} x$, and then $\bar{h}_{1} y=b g_{0}$ for some $g_{0} \in G$. Since \bar{h}_{1} is a G-mapping, we have $\bar{h}_{1}(y g)=b g_{0} g$. Thus \bar{h}_{1} on $p^{-1} x$ is just a copy of the left translation of G by g_{0}; hence 8.2 holds. Since B_{n} is a distinguished set by the inductive hypothesis, it follows now from [2;2.10] that U is a distinguished set. Since U, V and $U \cap V$ are distinguished, we may apply [2;2.2] to conclude that $U \cup V=B_{n+1}$ is distinguished. This concludes the inductive step; hence B_{n} is distinguished for every n. Since B_{G} has the topology of the union $\bigcup_{0}^{\infty} B_{n}$, it follows from $[2 ; 2.15]$ that B_{G} itself is distinguished. This completes the proof.
8.3. Theorem. Let G be a topological group such that (G, e) is an NDR. Then E_{G} is a principal G-bundle over B_{G} with the action $E_{G} \times G \rightarrow E_{G}$ as principal map.

Proof. Since E_{G} is a topological group and G is a closed subgroup, it suffices to prove that G has a neighborhood W which is a product space over $p W=V$. By 4.2, the pair (E_{G}, E_{0}) has a representation as a G-NDR by mappings u, h. Set $W=u^{-1}[0,1$). Since W is open and is G-invariant, it follows that $V=p W$ is open in B_{G}. Define $r: W \rightarrow G$ by $r y=h(y, 1)$. Note that r is a G-mapping. Define

$$
\xi: W \times G \rightarrow W \quad \text { by } \quad \xi(y, g)=y(r y)^{-1} g \quad \text { for all } \quad(y, g) \in W \times G .
$$

(It is in this definition of ξ that the existence of inverses in G is needed.) All the maps of the diagram

have been defined excepting ζ. We shall show that ξ induces a map ζ of its quotient space
$V \times G$ such that $\zeta(p \times 1)=\xi$. Clearly a point of $W \times G$ has the same image as (y, g) under $p \times 1$ if and only if it has the form $\left(y g^{\prime}, g\right)$ for some $g^{\prime} \in G$. Then

$$
\begin{aligned}
\xi\left(y g^{\prime}, g\right) & =y g^{\prime}\left(r\left(y g^{\prime}\right)\right)^{-1} g=y g^{\prime}\left((r y) g^{\prime}\right)^{-1} g=y g^{\prime} g^{\prime-1}(r y)^{-1} g \\
& =y(r y)^{-1} g=\xi(y, g) .
\end{aligned}
$$

Therefore ξ induces a unique function ζ such that $\zeta(p \times 1)=\xi$. Since V is a quotient space of W, it follows from $[8 ; 4.4]$ that $V \times G$ is a quotient space of $W \times G$, and this implies that ζ is continuous.

Since ξ is a G-mapping, so also is ζ. Now $p \xi(y, g)=p\left(y(r y)^{-1} g\right)=p y$, and

$$
r \xi(y, g)=r\left(y(r y)^{-1} g\right)=(r y)\left((r y)^{-1} g\right)=g
$$

Therefore ζ composed with (p, r) is the identity of $V \times G$. On the other hand, if $y \in W$, $\xi(y, r y)=y(r y)^{-1}(r y)=y$, and this shows that (p, r) composed with ζ is the identity of W. Therefore ζ is the required representation of W as a product $V \times G$. This concludes the proof.

§9. COMPLEXES ON G, E_{G} AND $B_{G}{ }^{\circ}$, AND THE BAR RESOLUTION

We assume in this section that G is also a complex such that e is a vertex and the multiplication $G \times G \rightarrow G$ is skeletal. Let $I=[0,1]$ have the cellular structure consisting of two vertices $\overline{0}, \bar{I}$ and one edge denoted by $\delta_{1}=(0,1)$. We shall construct now the associated complexes (or reticulations) of D_{n}, E_{n} and B_{n}.

The reticulation of E_{0} comes from its identification with G, each cell of G is a cell of E_{0}. The I-structure on $D_{0}=e$ is given by a skeletal map $e \times I \rightarrow e$, hence, by $3.5, D_{1}$ has a reticulation such that the natural maps $E_{0} \times I \rightarrow D_{1}$ and $D_{1} \times I \rightarrow D_{1}$ are skeletal. Recall that the first map is a homeomorphism from $\left(E_{0}-D_{0}\right) \times \delta_{1}$ to $D_{1}-E_{0}$. We denote by [σ] the image cell of $\sigma \times \delta_{1}$ in $D_{1}-E_{0}$. The general stage is described as follows.

$$
\begin{align*}
& \text { 9.1. Tinorem. Starting with the reticulation of } E_{0}=G \text { and alternating the constructions } \\
& \text { of Lemmas } 3.4 \text { and } 2.5 \text {, we obtain reticulations of } D_{n}, E_{n} \text { for each } n \text {; their union is a functorial } \\
& \text { reticulation of } E_{G} \text { such that the action } E_{G} \times G \rightarrow E_{G} \text { and the contraction } E_{G} \times I \rightarrow E_{G} \text { are } \\
& \text { skeletal. The cells of } D_{n}-E_{n-1} \text { are in } 1-1 \text { correspondence with sequences of cells of } G-e \\
& \text { of length } n \text {; the cell corresponding to } \sigma_{1}, \cdots, \sigma_{n} \text { is denoted by }\left[\sigma_{1}|\cdots| \sigma_{n}\right] \text {. The cells of } \\
& E_{n}-D_{n} \text { are in } 1-1 \text { correspondence with sequences of cells of } G-e \text { of length } n+1 \text {; the cell } \\
& \text { corresponding to } \sigma_{1}, \cdots, \sigma_{n+1} \text { is denoted by }\left[\sigma_{1}|\cdots| \sigma_{n}\right] \sigma_{n+1} \text {. These cells are defined by the } \\
& \text { inductive conditions } \\
& \text { (9.2) } \tag{9.2}\\
& \text { (9.3) }\left[\sigma_{1}|\cdots| \sigma_{n}\right]=\mu\left(\left(\left[\sigma_{1}|\cdots| \sigma_{n-1}\right] \sigma_{n}\right) \times \delta_{1}\right) \tag{9.3}\\
& \qquad\left[\sigma_{1}|\cdots| \sigma_{n}\right] \sigma_{n+1}=\lambda\left(\left[\sigma_{1}|\cdots| \sigma_{n}\right] \times \sigma_{n+1}\right)
\end{align*}
$$

where $\mu: E_{n-1} \times I \rightarrow D_{n}$ and $\lambda: D_{n} \times G \rightarrow E_{n}$ are the quotient maps occurring in the constructions of D_{n} and E_{n}. In case $n=0$, the cell [] corresponding to the empty sequence is e, and [] σ is the cell σ of $G-e=E_{0}-D_{0}$. Moreover, k_{n} maps the cell $\sigma_{1} \times \cdots \times \sigma_{n} \times \delta_{n}$ of $G^{n} \times \Delta_{n}$ homeomorphically onto $\left[\sigma_{1}|\cdots| \sigma_{n}\right]$, and k_{n+1} maps the cell $\sigma_{1} \times \cdots \times \sigma_{n+1} \times \delta_{n}$ of $G^{n+1} \times \Delta_{n+1}$ homeomorphically onto $\left[\sigma_{1}|\cdots| \sigma_{n}\right] \sigma_{n+1}$.

Proof. The proofs of the statements of the first sentence are straightforward. To prove that the cells are as described, assume inductively that the cells of $E_{n-1}-D_{n-1}$ have the form $\left[\sigma_{1}|\cdots| \sigma_{n-1}\right] \sigma_{n}$. Now μ maps $\left(E_{n-1}-D_{n-1}\right) \times \delta_{1}$ homeomorphically onto $D_{n}-E_{n-1}$, hence each cell of $D_{n}-E_{n-1}$ has the form $\mu\left(\tau \times \delta_{1}\right)$ where τ is a cell of $E_{n-1}-D_{n-1}$. Since τ has the form $\left[\sigma_{1}|\cdots| \sigma_{n-1}\right] \sigma_{n}$, it follows from the definition 9.2, that each cell of $D_{n}-E_{n-1}$ has the form $\left[\sigma_{1}|\cdots| \sigma_{n}\right]$. Now λ maps $\left(D_{n}-E_{n-1}\right) \times(G-e)$ homeomorphically onto $E_{n}-D_{n}$, hence each cell of $E_{n}-D_{n}$ has the form $\lambda(\rho \times \sigma)$ where ρ is a cell of $D_{n}-E_{n-1}$ and σ is a cell of $G-e$. Since ρ has the form $\left[\sigma_{1}|\cdots| \sigma_{n}\right]$, it follows from the definition 9.2 that each cell of $E_{n}-D_{n}$ has the form $\left[\sigma_{1}|\cdots| \sigma_{n}\right] \sigma$.

To prove the cellular property of k_{n}, let $\sigma_{1}, \ldots, \sigma_{n}$ be a sequence of cells of $G-e$. Consider the cell $\rho=\sigma_{1} \times \cdots \times \sigma_{n-1} \times \delta_{n-1} \times \sigma_{n} \times \delta_{1}$ of $G^{n-1} \times \Delta_{n-1} \times G \times I$ (see 5.2). Since ψ maps $\delta_{n-1} \times \delta_{1}$ homcomorphically onto δ_{n}, we have that $(1 \times \psi) T$ maps ρ homeomorphically onto $\sigma_{1} \times \cdots \times \sigma_{n} \times \delta_{n}$. Thus the k_{n}-image of $\sigma_{1} \times \cdots \times \sigma_{n} \times \delta_{n}$ is the $\mu(\lambda \times 1)\left(k_{n-1} \times 1 \times 1\right)-$ image of ρ. The inductive hypothesis on k_{n-1} and 9.2, 9.3 give

$$
\begin{aligned}
\mu(\lambda \times 1)\left(k_{n-1} \times 1 \times 1\right) \rho & =\mu(\lambda \times 1)\left(\left[\sigma_{1}|\cdots| \sigma_{n-1}\right] \times \sigma_{n} \times \delta_{1}\right) \\
& =\mu\left(\left[\sigma_{1}|\cdots| \sigma_{n-1}\right] \sigma_{n} \times \delta_{1}\right)=\left[\sigma_{1}|\cdots| \sigma_{n}\right]
\end{aligned}
$$

and this is the required form.
Corresponding to a sequence $\sigma_{1}, \ldots, \sigma_{n+1}$ of cells of $G-e$, form the cell $\tau=\sigma_{1} \times \cdots$. $\times \sigma_{n} \times \delta_{n} \times \sigma_{n+1} \times 1$ of $G^{n} \times \Delta_{n} \times G \times I$ (see 5.2 with n replaced by $n+1$). Since $(1 \times \psi) T$ maps τ homeomorphically onto $\sigma_{1} \times \cdots \times \sigma_{n+1} \times \delta_{n}$, the k_{n+1}-image of this latter cell is the $\mu(\lambda \times 1)\left(k_{n} \times 1 \times 1\right)$-image of τ. Using what was proved above for k_{n} and $9.2,9.3$, we obtain

$$
\begin{aligned}
\mu(\lambda \times 1)\left(k_{n} \times 1 \times 1\right) \tau & =\mu(\lambda \times 1)\left(\left[\sigma_{1}|\cdots| \sigma_{n}\right] \times \sigma_{n+1} \times 1\right) \\
& =\mu\left(\left[\sigma_{1}|\cdots| \sigma_{n}\right] \sigma_{n+1} \times 1\right)=\left[\sigma_{1}|\cdots| \sigma_{n}\right] \sigma_{n+1}
\end{aligned}
$$

which is the stated form. This completes the proof.
9.4. Theorem. There is a unique reticulation of B_{G} satisfying the conditions: (1) each B_{n} is a subcomplex, (2) each projection $E_{n} \rightarrow B_{n}$ is skeletal, and (3) B_{n} is the complex formed by attaching the complex D_{n} to B_{n-1} by the (skeletal) projection $E_{n-1} \rightarrow B_{n-1}$.

Proof. Clearly the conditions provide an inductive definition of the reticulations of the B_{n} 's provided we show at each stage that $p: E_{n} \rightarrow B_{n}$ is skeletal. Let τ be any cell of E_{n}; by 9.3, either τ is in D_{n} or it has the form $\lambda(\rho \times \sigma)$ where $\rho \times \sigma$ is a cell of $D_{n} \times G$ of the same dimension as τ. If τ is in D_{n}, we also have $\lambda(\tau \times e)=\tau$. Now $p \lambda: D_{n} \times G \rightarrow B_{n}$ can be factored into the projection $q: D_{n} \times G \rightarrow D_{n}$ followed by $p^{\prime}=p \mid D_{n}$. Since p^{\prime} and q are skeletal, so is $p \lambda$, hence $p \tau=p \lambda(\rho \times \sigma)$ lies in the r-skeleton of B_{n} where $r=\operatorname{dim}(\rho \times \sigma)=$ $\operatorname{dim} \tau$. Therefore p is skelctal, and the proof is complete.
9.5. Theorem. If G and H have reticulations such that the multiplications $G \times G \rightarrow G$ and $H \times H \rightarrow H$ are skeletal, then the mapping $\xi^{-1}: E_{G} \times E_{H} \rightarrow E_{G \times H}$ of 6.2 is skeletal.

To prove the theorem it suffices to show that ξ^{-1} in the diagram 6.5 is skeletal. Using 9.1, any cell $\sigma \times \tau$ of $D_{m}(G) \times D_{n}(H)$ has the form $k_{m} \sigma^{\prime} \times k_{n} \tau^{\prime}$; hence it is the
image of a cell of $G^{m} \times H^{n} \times \Delta_{m} \times \Delta_{n}$ of the same dimension. Thus it suffices to show that $k_{m+n}\left(\alpha^{\prime} \times \alpha\right) i_{\alpha}^{-1}$ is skeletal for each α. Since k_{m+n} is skeletal, we are reduced to studying $\left(\alpha^{\prime} \times \alpha\right) i_{\alpha}^{-1}$. Since α^{\prime} imbeds $G^{m} \times H^{n}$ as a subcomplex of $(G \times H)^{m+n}$, we need only study α on K_{α}.

Let σ be a face of Δ_{m} of dimension q, and τ a face of Δ_{n} of dimension q. Let $s=\left(s_{1}, \ldots, s_{m}\right)$ be a point of σ, and $t=\left(t_{1}, \ldots, t_{n}\right)$ a point of τ such that $\alpha(s, t)$ is in increasing order, i.e. $(s, t) \in K_{\alpha} \cap(\sigma \times \tau)$. Of the possible equalities that may hold among the coordinates of s, namely, $0=s_{1}, s_{1}=s_{2}, \ldots, s_{m-1}=s_{m}, s_{m}=1$, let $N(s)$ be the number that do hold. Then the smallest face of Δ_{m} containing s has dimension $m-N(s)$. Since σ is a face containing s, we have $q \geqq m-N(s)$, or $N(s) \geqq m-q$. Similarly, $N(t) \geqq n-r$. Set $u=\alpha(s, t)$. It is easily seen that $N(u) \geqq N(s)+N(t)$ bccause any equality of elements in s or t still holds after shuffling. Therefore $\alpha(s, t)$ is on a face of Δ_{m+n} of dimension

$$
m+n-N(u) \leqq m-N(s)+n-N(t) \leqq q+r .
$$

This completes the proof.
9.6. Theorem. If G is abelian, then the multiplications in E_{G} and B_{G} are skeletal mappings. If also G is a group, and $v: G \rightarrow G$, defined by $v g=g^{-1}$, is skeletal, then the induced maps \tilde{v} and \bar{v}, defining inverses in E_{G} and B_{G}, are likewise skeletal.

Proof. To prove that the multiplication ϕ for E_{G} is skeletal it suffices to prove that its restriction to $D_{m} \times D_{n}$ is skeletal for each m, n. Let σ be a q-cell of D_{m}, and τ an r-cell of D_{n}. By 9.1, $\sigma=k_{m}\left(\sigma_{1} \times \sigma_{2}\right)$ where σ_{1}, σ_{2} are cells of G^{m}, Δ_{m} of dimensions q_{1} and $q_{2}=q-q_{1}$, respectively. Similarly, $\tau=k_{n}\left(\tau_{1} \times \tau_{2}\right)$. Referring to the diagram 7.7, we have

$$
\phi(\sigma \times \tau)=\phi\left(k_{m} \times k_{n}\right) T\left(\sigma_{1} \times \tau_{1} \times \sigma_{2} \times \tau_{2}\right)
$$

Let $s=\left(s_{1}, \ldots, s_{m}\right)$ be a point of $\sigma_{2}, t=\left(t_{1}, \ldots, t_{n}\right)$ a point of τ_{2}, and α an (m, n)-shuffle such that $\alpha(s, t)$ is in increasing order, i.e. $(s, t) \in K_{\alpha} \cap\left(\sigma_{2} \times \tau_{2}\right)$. Define $N(s)$ and $N(t)$ as in the proof of 9.5 . Arguing exactly as in 9.5 , we conclude that $\alpha(s, t)$ is on a face of Δ_{m+n} of dimension at most $q_{2}+r_{2}$. Let $x \in \sigma_{1}$ and $y \in \tau_{1}$. Since G is abelian, $\alpha^{\prime}: G^{m} \times G^{n} \rightarrow G^{m+n}$ is just the shuffle α of the factors; since this is a skeletal mapping, $\alpha^{\prime}(x, y)$ lies on a cell of dimension $q_{1}+r_{1}$. Therefore $\left(\alpha^{\prime} \times \alpha\right) i_{\alpha}^{-1}(x, y, s, t)$ lies on a $(q+r)$-cell. Since k_{m+n} is skeletal,

$$
k_{m+n}\left(\alpha^{\prime} \times \alpha\right) i_{\alpha}^{-1}(x, y, s, t)=\phi\left(k_{m} \times k_{n}\right) T(x, y, s, t)
$$

lies in the $(q+r)$-skeleton. It follows that $\phi(\sigma \times \tau)$ is in the $(q+r)$-skeleton; hence ϕ is skeletal.

Let σ, τ be cells of B_{G} of dimensions q, r, respectively. By 9.2 , there are cells $\sigma^{\prime}, \tau^{\prime}$ of E_{G} of dimensions q, r, respectively, mapped by $p: E_{G} \rightarrow B_{G}$ onto σ and τ. Since B_{G} is a quotient group of $E_{G}, p \phi\left(\sigma^{\prime} \times \tau^{\prime}\right)$ coincides with the image $\sigma \tau$ of $\sigma \times \tau$ under multiplication. Since ψ and p are skeletal, $\sigma \tau=p \phi\left(\sigma^{\prime} \times \tau^{\prime}\right)$ lies in the $(q+r)$-skeleton. Hence the multiplication in B_{G} is skeletal.

When G is an abelian group, the mapping v is a morphism of groups. If v is also skeletal, it follows from the functorial nature of the reticulations that \tilde{v} and \tilde{v} are skeletal.

REFERENCES

1. A. Dold and R. Lashof: Principal quasifibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305.
2. A. Dold and R. Thom: Quasifaserungen und unendliche symmetrische Produkte, Ann. Math. (2) 67 (1958), 239-281.
3. S. Eilenberg and S. Maclane: On the groups $H(\pi, n)-\mathrm{I}$, II, Ann. Math. 58 (1953), 55-106; and 60 (1954), 49-139.
4. R. Milgram: The bar construction and abelian H-spaces, Illinois J. Math. 11 (1967), 242-250.
5. J. Milnor: Construction of universal bundles-II, Ann. Math. (2) 63 (1956) 430-436.
6. J. Moore: Comparaison de la bar construction à la construction W et aux complexes $K(\pi, n)$, Sémin. Henri Cartan 1954/55, No. 13.
7. M. Rothenberg and N. E. Steenrod: The cohomology of classifying spaces of H-spaces, Bull. Am. math. Soc. 71 (1965) 872-875.
8. N. E. Steenrod: A convenient category of topological spaces, Mich. math. J. 14 (1967) 133-152.

Princeton University

[^0]: \dagger Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Contract No. AF49(638)-1750.

