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1. Introduction

The Banach’s contraction mapping principle is one of the most
versatile elementary results of mathematical analysis. It is
widely applied in different branches of mathematics and is re-
garded as the source of metric fixed point theory. There is a
vast literature dealing with technical extensions and generaliza-
tions of Banach’s contraction principle, some instances of
these works are in [1-16].

In recent times, fixed point theory has developed rapidly in
partially ordered metric spaces, that is, metric spaces endowed
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with a partial ordering. The theory originated at a relatively
later point of time. An early result in this direction was estab-
lished by Turinici in ordered metrizable uniform spaces [17].
Application of fixed point results in partially ordered metric
spaces was made subsequently, for example, by Ran and
Reurings [18] to solving matrix equations and by Nieto and
Rodriguez-Lopez [19] to obtain solutions of certain partial
differential equations with periodic boundary conditions.
Recently, many researchers have obtained fixed point,
common fixed point results in partially ordered metric spaces,
some of which are in [20-33].

The purpose of this paper is to establish some fixed point
results satisfying a generalized contraction mapping of rational
type in metric spaces endowed with partial order using some
auxiliary functions. Four illustrative examples are given.

2. Mathematical preliminaries

In [34], Dass and Gupta proved the following fixed point
theorem.
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Theorem 2.1 [34]. Let (X, d) be a complete metric space and
T:X— X a mapping such that there exist o, f = 0 with
o+ B < 1 satisfying

d(y, Ty) [1 +d(x, Tx)]
T dix, 1) + B d(x, y),

for all x, y € X. (2.1)

d(Tx, Ty) < o

Then T has a unique fixed point.

In [35], Cabrera, Harjani and Sadarangani proved the
above theorem in the context of partially ordered metric
spaces.

Definition 2.1. Suppose (X, <) is a partially ordered set and
T:X— X. T is said to be monotone nondecreasing if for all
x, y€X,

x<y = Tx<Ty. (2.2)

Theorem 2.2 [35]. Let (X, <) be a partially ordered set and
suppose that there exists a metric d in X such that (X, d) is a
complete metric space. Let T : X — X be a continuous and non-
decreasing mapping such that (2.1) is satisfied for all x, y € X
with x < y. If there exists xo € X such that xo < Tx, then T has
a fixed point.

Theorem 2.3 [35]. Let (X, <) be a partially ordered set and
suppose that there exists a metric d in X such that (X, d) is a
complete metric space. Assume that if {x,} is a nondecreasing
sequence in X such that x, — x, then x, < x, for all n € N.
Let T: X — X be a nondecreasing mapping such that (2.1) is
satisfied for all x, y € X with x < y. If there exists xo € X such
that xy < Txq then T has a fixed point.

Theorem 2.4 [35]. In addition to the hypotheses of Theorem 2.2
(or Theorem 2.3), suppose that for every x, y € X, there exists
u € X such that u < x and u < y. Then T has a unique fixed
point.

Khan et al. [36] initiated the use of a control function that
alters distance between two points in a metric space, which
they called an altering distance function.

Definition 2.2 [36]. A function ¢ : [0,00) — [0,0) is called an
altering distance function if the following properties are
satisfied:

(i) ¢ is monotone increasing and continuous,
(i) ¢(¢#) =0 if and only if + = 0.

In our results in the following section we will use the follow-
ing class of functions.
We denote

& ={¢:[0,00) — [0,00) : ¢ an altering distance function} and

Y ={y:]0,00) — [0,00) : for any sequence {x,} in [0, co)
with x, — ¢ > 0, lim ¥(x,) > 0}.

We note that ¥ is nonempty. For, we define i on [0, c0) by
Y(t)=¢', t€[0,00). Then € ¥. Here we observe that

¥(0) = 1 > 0. On the other hand, if ¥(r) = ¢?, ¢ € [0, 00), then
Y € ¥ and y(0) = 0.

Note: For any € P, it is clear that () > 0 for ¢ > 0; and
¥(0) need not be equal to 0.

3. Main results

Theorem 3.1. Let (X, <) be a partially ordered set and suppose
that there exists a metric d on X such that (X, d) is a complete
metric space. Let T : X — X be a continuous and nondecreasing
mapping such that for all x, y € X with x < y,

¢(d(Tx, Ty)) < p(M(x, y)) — Y (N(x, y)), (3.1)
where ¢ € @, Yy € ¥,

dy, T) [1 +dex, T9)] dly, T) [1+d(x, )
1+d(x, y) ’ 1+d(x, y)

M(x, y) = max { , d(x, J’)}

and

d(y, Ty) [1 +d(x, Tx)]
Trde, y)}'

If there exists xo € X with xo < Txy, then T has a fixed point.

N(x, y) = max {

Proof. If Tx, = x,, then we have the result. Suppose that
Xo < Txy. Then we construct a sequence {x,} in X such that

Xpe1 = Tx,, for every n > 0. (3.2)

Since T is a nondecreasing mapping, we obtain by induc-
tion that

Xo<Txo=x1<Tx; =< - <Tx,.1 =x, < Tx,
= Xpp <o (3.3)

If there exists n > 1 such that x,., =x,, then from
(3.2), x,41 = Tx, = x,,, that is, x, is a fixed point of T and
the proof is finished. Suppose that x,,,#x,, that is,
d(xy41, x,)70, for all n = 1. Let R, = d(x,1, Xx,), for all
n=0.

Since x,,_; < x,, for all n > 1, from (3.1), we have

D(d(x; Xn51)) = P(d(TX1, Txn))
<é (max {d(xw Tx,)[1 + d(x-1, Txy1)) ‘ d(x, Tx-1)[1 + d(x,-1, Tx,)] d, 11"(,,)})

1+ d(x, 1, %) L+ d(x, 1, %)
— (max {d(x"’ Tx]”ﬂldzjfi"x:;Tx" )l , d(x-1s x”)}>
_ S d(x v ) [U+ d(xmn, X)) d(x X0) [+ d(X-15 X))
= 4’(“““{ o) T doa) ‘“‘“’*“"”)})
(0, X[+ d(x,1,%,)] :
- W(m”{ T+d0o %) d(‘*”""\”)D
= dp(max{d(x,, x,11), d(xu-1,50)}) = Y(max{d(x,, xu11), d(Xu-1,X0)}),
that is,
¢(R,) = p(max{R,, R, i}) —Y(max{R,, R, }). (3.4)

If R, > R,_,, then from (3.4), we have

G(Ry) < ¢(Ry) = Y(Ry), thatis, Y(R,) <0,

which is a contradiction. So, R, < R,_, that is, {R,} is a
decreasing sequence. Then the inequality (3.4) yields that

(:b(Rn) < ¢(R7171) - l,//(R,,,l). (35)
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Since { R, } is a decreasing sequence of positive real numbers
and is bounded below, there exists » > 0 such that
R, = d(x,11,x,) — 1 as n — oo. (3.6)

Now, we shall show that r = 0. Assume, to the contrary,
that r > 0. Taking limit supremum in both sides of (3.5), using
(3.6), the property of y and the continuity of ¢, we obtain

¢(r) < ¢(r) +lim (=(R,1)).
Since im (—/(R,_1)) = —lim ¥(R,_,), it follows that

¢(r) < ¢(r) —lim (Y(R,-1)), thatis, lim (Y(R,-1)) <0,

which, by the property of i, is a contradiction unless r = 0.
Therefore,

R, =d(x,,1,x,) — 0 as n — oo. (3.7)
Next we show that {x,} is a Cauchy sequence.

Suppose that {x,} is not a Cauchy sequence. Then there
exists an € > 0 for which we can find two sequences of positive
integers {m(k)} and {n(k)} such that for all positive integers
k, n(k) > m(k) >k and d(x,u), Xux)) = €. Assuming that
n(k) is the smallest such positive integer, we get

I’l(k) > m(k) > k, d(xm(k), x,,(k)) =€ and d(xm(k), X,,(k),]) < €.
Now,

€ < d(Xm(tys Xnt) < A Xy, Xn-1) + d(Xn)=1, Xntx)),

that is,

€ < d(Xnry, X)) < €+ d(Xn-15 Xagr))-

Letting £ — oo in the above inequality and using (3.7), we have

I(ILH'}O d(xm(/c)7 xn(k)) =€ (38)
Again,

d(xm(k)—l, Xn(k)—l) < d(xm(k)—la xm(k)) + d(xm(k)7 xn(k))
+ d(Xugys Xnwy-1),
and
A(Xm(kys Xne)) < dXmrys Xmk)=1) + d(Xmg—1, Xn(r)—1)
+ d(Xn)-1, Xn(k))-

Letting £ — oo in the above inequalities and using (3.7) and
(3.8), we have
kllll’l d(xm(k),l, xn(k)—l) = €. (39)

Again,

d(Xuwy-15 X)) < d(Xmiy-1, Xngo—1) + d( X -1, Xim(r))

and

d(Xmio-15 Xn-1) < dXm—15 Xm(iy) + d(Xno-15 Xmr))-
Letting £ — oo in the above inequalities and using (3.7) and

(3.9), we have

lim d(xn(k)—lu xm(k)) = €.

k—o0

(3.10)

Similarly, we have

ILHDIQ Ad(Xim()—15 Xn(r)) = € (3.11)
Let
dﬂfvn 1 dvm—w
Mk:max{ (Vg1 Xt L+ Ay 1, Xmtg)].
1+ d(Xim@) -1, Xn(i)-1)
A(Xn(k)—15 X)) [1 4 d(Xmigoy—1, Xn))] Aoy 1, (k)_l)}
14 d(Xm()-1, Xn(e-1) ’ ’
(3.12)
and
(Xt 15 X)) [T+ d(Xmg) -1, Xme))] }
N =max s (X -1, Xn()—1) ¢+
! { 1+ d(Xm()-1> Xni)-1) (-1 %ate-1)

(3.13)

Letting k£ — oo in (3.12) and (3.13), using 3.7, 3.9, 3.10 and
3.11, we have

I}im M =max{0, ¢, ¢} =¢ (3.14)
and
klim N, = max{0, e} =e. (3.15)

Since X)-1 < Xu)-1, applying (3.1) and using (3.12) and
(3.13), we have

¢(d(xm(k)7 xn(k))) = ¢(d(Txm(k)717 Txn(/{)fl))
< G(Mi) = (N).

Taking limit supremum in both sides of the above inequal-
ity, using 3.8, 3.14, 3.15, the property of y and the continuity
of ¢, we obtain

b(e) < $le) +Tim (—Y(N)).
Since im (—y/(Ny)) = —lim ¥(Ny), it follows that

d(e) < d(e) —lim (Y(Ny)), that is, lim ((Ni)) <0,

which, by (3.15) and the property of i, is a contradiction. Thus
{x,} is a Cauchy sequence in a complete metric space X.
Therefore, there exits u € X such that lim, . x, = u. Then
the continuity of 7 implies that Tu = T(lim, . x,) =
lim, o Tx, =1lim,_, X, =u, that is, u is a fixed point
of 7. O

In our next theorem we relax the continuity assumption of
the mapping 7 in Theorem 3.1 by imposing the following order
condition of the metric space X:

If {x,} is a non-decreasing sequence in X such that x, — x,
then x, < x, for all n € N.

Theorem 3.2. Let (X, <) be a partially ordered set and suppose
that there exists a metric d on X such that (X, d) is a complete
metric space. Assume that if {x,} is a nondecreasing sequence in
X such that x,, — x, then x, < x, foralln e N. Let T: X - X
be a nondecreasing mapping. Suppose that (3.1) holds, where
M(x, y), N(x, y) and the conditions upon (¢, ) are the same
as in Theorem 3.1. If there exists xo € X with xo < Txo, then T
has a fixed point.



98

S. Chandok et al.

Proof. We take the same sequence {x,} as in the proof of The-
orem 3.1. Thenwe have xo < x; <0 <...<x, < X1 < ..y
that is, {x,} is a nondecreasing sequence. Also, this sequence
converges to u. Then x, < u, for all n € N.

Suppose that u#Tu, that is, d(u, Tu) > 0.

Let
B d(u, Tu)[1 + d(x,, Tx,)] d(u, Tx,)[1 + d(x,, Tu))
My = max { 1+ d(x,, ) T ”)}
- d(u, Tu)[1 + d(x,, xp41)]  d(u, x,01)[1 + d(x,, Tu)]
- max{ 1+ d(x,,u) ’ 1+ d(x,,u) s dlon, u)} (3.16)
and
d(u, Tu)|1 ws 1X,
Nn:max{ (o, Tu){1 + d(x Y)]7 d(x,, u)}
1+ d(x,,u)
d Tu)(1 d( ny n
= max{ (w, ul)[—f—;(x(xu) a2 s d(xy, u)} (3.17)

Letting n — oo in (3.16) and (3.17), using the fact that
X, — u as n — oo, we have

lim M, = max{d(u, Tu), 0, 0} = d(u, Tu) >0 (3.18)
and
lim N, = max{d(u, Tu), 0} = d(u, Tu) > 0. (3.19)

Since x, < u for all n, applying (3.1) and using (3.16),
(3.17), we have

P(d(xns1, Tu)) = P(d(Txy, Tu)) < G(My) = Y(Ny).

Taking limit supremum in both sides of the above inequal-
ity, using (3.18), (3.19), the property of { and the continuity of
¢, we obtain

¢(d(u, Tu)) < p(d(u, Tu)) +1im (=h(N,)).

Since lim (—y/(N,)) = —lim (N,), it follows that

¢(d(u7 Tu)) < ¢(d(u7 Tu)) 7li—m (l//(Nn))v thatis7 h_m (l//(Nn)) <O,

which, by (3.19) and the property of y, is a contradiction.
Hence, u = Tu, that is, u is a fixed point of 7. [

Now, we shall prove the uniqueness of the fixed point.

Theorem 3.3. In addition to the hypotheses of Theorem 3.1 (or
Theorem 3.2), suppose that for every x, y € X, there exists
ue X such that u < x and u<y. Then T has a unique fixed
point.

Proof. It follows from the Theorem 3.1 (or Theorem 3.2) that
the set of fixed points of 7 is non-empty. We shall show that if
x* and y* are two fixed points of 7, that is, if x* = Tx" and
y* = Ty", then x* = y*.

By the assumption, there exists uy € X such that uy < x*
and uy < y*. Then, similarly as in the proof of Theorem 3.1, we
define the sequence {u,} such that

Upey = Ty = T Muy, n=0,1,2,... (3.20)

Monotonicity of 7 implies that

T'uy=u, < X" =T'x"and T'up = u, <y = T"y".

If there exists a positive integer m such that x* = u,,, then
x*=Tx" = Tu, = u,y;, for all n > m. Then u, — x* as
n — oo. Now we suppose that x*#u,, for all n > 0. So
u, < x*, for all n = 0. Then d(u,, x*)#0, for all n > 0.

Let P, = d(u,, x*), for all n > 0. Since u, < x*, for all
n = 0, applying (3.1), we have

D(duni1,x7)) = p(d(Tun, Tx"))

A dx, X[+ d(u, Tu,)] d(x*, Tu) [+ d(un, Tx"))] .
< d)<max{ 1+ d(uy,, x*) ’ 1+ d(uy,, x*) > dlun, x )})

R )

= ¢<1llax {0‘ W d(u,,gc*)}) — y(max{0, d(u,,x*)})

= ¢(max{d(x", uys1), d(un,x")}) — (d(u,, x7)),
that is,
G(Pri1) = p(max{Pyi1, Po}) —(Py).

If P, > P,, then from the above inequality, we have

(3.21)

d)(PnJrl) < ¢(P’l+1) - l//(P’l)7 that iS, IP(P,,) < 07

which is a contradiction. So, P, < P,, that is, {P,} is a
decreasing sequence. Then it follows from the inequality
(3.21) that

¢(Pn+l) < d)(Pn) - lp(Pn)

Since {P,} is a decreasing sequence of positive real numbers
and is bounded below, there exists r > 0 such that

(3.22)

P, =d(u,, x*)—rasn— oo.

(3.23)

Arguing similarly as in the proof of Theorem 3.1 we can
show that = 0. Then,

P, =d(u,, x*) — 0asn— oo, thatis, u, — x* as n

oo (3.24)
Using a similar argument, we can prove that
u, — y* as n — oo. (3.25)

Finally, the uniqueness of the limit implies x* = y*. Hence
T has a unique fixed point. [

Example 3.4. Let X = {(0, 1), (1, 0), (1, 1)} C R? with the
Euclidean distance d. We consider the partial order R in X
as follows:

R={(x, x):xeXtu{((0, 1), (1, 1)}
Let T: X — X be given by
70, 1) = (0, 1), T(1, 0) = (1, 0) and T(1, 1) = (0, 1).

Let ¢, v : [0, c0) —
formulas

[0, 0o) be given respectively by the
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if 3<t<4,

otherwise,

where [f] denotes the greatest integer not exceeding 7.

Here all the conditions of Theorems 3.1 and 3.2 are satisfied
and 7T has two fixed points which are (0, 1) and (1, 0).
Example 3.5. Let X = {(0, 0), (, 0), (0, 1)} be a subset of
R? with the order “<” defined as: for (x1, ¥,), (x2, y,) €
X, (x1, y;) < (x2, »,) if and only if x; < x2,y, <y,. Let
d: X x X — R be given as

d(x, y) = max {|x; —xa|, |y, —»nl},
for x = (x1, y1), ¥y = (%2, y5) € X.

Let T: X — X be defined as follows:

7(0, 0) = (0, 0), T(0, 1) = (%, 0) and TG 0) = (0, 0).

Let us consider the functions ¢ and y as defined in Example
3.4. Here all the conditions of Theorems 3.1, 3.2 and 3.3 are
satisfied and (0, 0) is the unique fixed point of 7.

Example 3.6. Let X = [1.5, 2] with usual partial order “<”
and usual metric “d” be a partially ordered metric space. Let
T: X — X be defined as follows:

181, it 15<x<1.75,
Ix = L1
x+;7§7 if 175<x<2

Let ¢, Yy :[0, c0) — [0, c0) be given respectively by the
formulas

[ ;
- if3<r<4,
o) =1, (1) = { |
000, otherwise,
where [f] denotes the greatest integer not exceeding 7.
Here all the conditions of Theorems 3.2 and 3.3 are satisfied

and x = 2 is the unique fixed point of 7.

Note. In the above example the mapping 7 is not continu-
ous. Therefore, the above example is not applicable to
Theorem 3.1.

Corollary 3.7. Let (X, <) be a partially ordered set and suppose
that there exists a metric d on X such that (X, d) is a complete
metric space. Let T : X — X be a continuous and nondecreasing
mapping such that for all x, y € X with x < y,

¢(d(Tx1 Ty)) < ¢(N(X, y)) - lﬁ(N()@ y))>

where N(x, y) and the conditions upon ($, ) are the same as in
Theorem 3.1. If there exists xy € X with xo < Txy, then T has a
fixed point.

(3.26)

Proof. Since the inequality (3.26) implies the inequality (3.1),
by Theorem 3.1, we have the required proof. [J

Corollary 3.8. Let (X, <) be a partially ordered set and suppose
that there exists a metric d on X such that (X, d) is a complete
metric space. Assume that if {x,} is a nondecreasing sequence in
X such that x, — x, then x, < x, foralln e N. Let T: X - X

be a nondecreasing mapping. Suppose that (3.26) holds, where
N(x, y) and the conditions upon (¢, ) are the same as in The-
orem 3.1. If there exists xo € X with xo < Txo, then T has a

fixed point.

Proof. Since the inequality (3.26) implies the inequality (3.1),
by Theorem 3.2, we have the required proof. O

Corollary 3.9. In addition to the hypotheses of Corollary 3.7 (or
Corollary 3.8), suppose that for every x, y € X, there exists
u € X such that u < x and u < y. Then T has a unique fixed
point.

Example 3.10. Let X =CJ[0, 1] ={x:[0, 1] — R, continuous}
with the partial order given by x<y<= x(1) <y(?),
for t € [0, 1]. Let the metric d on X be given by

d(x, y) =Sup {|x(1) = y(1)| : 1€[0, 1]}, forx, y€ X.
Let T: X — X be defined as Tx =3, x€X.

Let ¢, ¥ : [0, c0) — [0, c0) be given respectively by the
formulas

if 3<t<4,

otherwise,

where [7] denotes the greatest integer not exceeding .

Here, all the conditions of Corollaries 3.7 and 3.8 are
satisfied. Moreover, as for x, y € X = C[0, 1], the function
min (x, y)(¢#) = min {x(¢), y(¢)} is continuous, the conditions
of Corollary 3.9 are satisfied. It is seen that x = 0 is the unique
fixed point of 7T in X.

In the Corollaries 3.7 and 3.8, taking ¢ to be the identity
mapping and ¥(¢f) = (1 —k)t for all 7€][0,00), where
k € (0, 1), we have the following results.

Corollary 3.11. Let (X, <) be a partially ordered set and
suppose that there exists a metric d on X such that (X, d) is a
complete metric space. Let T: X — X be a continuous and
nondecreasing mapping. Suppose there exists k € (0, 1) such
that for all x, y € X with x < y,

d(y, Ty)[1 +d(x, Tx)]
1+d(x, y)

d(Tx, Ty) <k max{ , d(x, y)}

(3.27)

If there exists xo € X with xo < Txo, then T has a fixed point.

Corollary 3.12. Let (X, <) be a partially ordered set and sup-
pose that there exists a metric d on X such that (X, d) is a com-
plete metric space. Assume that if {x,} is a nondecreasing
sequence in X such that x, — x, then x, < x, for all n € N.
Let T:X — X be a nondecreasing mapping. Suppose that
(3.27) holds. If there exists xy, € X with xy < Txy, then T has
a fixed point.

Remark 3.1. Theorems 3.1, 3.2 and 3.3 are respectively gener-
alizations of Theorems 2, 3 and 4 in [35] which are also noted
here as Theorems 2.2, 2.3 and 2.4 respectively.
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Other consequences of our results are the following for the
mappings involving contractions of integral type.

Denote by A the set of functions p : [0, 00) — [0, c0) satisfy-
ing the following hypotheses:

(h1) u is a Lebesgue-integrable mapping on each compact
subset of [0, c0);
(h2) for any e > 0, we have [j u(t)dt > 0.

Corollary 3.13. Let (X, <) be a partially ordered set and
suppose that there exists a metric d on X such that (X, d) is a
complete metric space. Let T:X — X be a continuous and
nondecreasing mapping. Suppose that there exist t € A and for
all x, y € X with x < y,

H(d(Tx, Ty)) dM(x, y)) W(N(x, »))
/ (1) dt < / (1) dt—/ (1) dt,

0 0 0
(3.28)

where M(x, y), N(x, y) and the conditions upon (¢, ) are the
same as in Theorem 3.1. If there exists xo € X with xo < Txo,
then T has a fixed point.

Corollary 3.14. Let (X, <) be a partially ordered set and sup-
pose that there exists a metric d on X such that (X, d) is a com-
plete metric space. Assume that if {x,} is a nondecreasing
sequence in X such that x, — x, then x, < x, for all n € N.
Let T: X — X be a nondecreasing mapping. Suppose that there
exist T € A for which (3.28) holds, where M(x, y), N(x, y)
and the conditions upon (¢, ) are the same as in Theorem
3.1. If there exists xo € X with xo < Txy, then T has a fixed
point.

Corollary 3.15. Let (X, <) be a partially ordered set and sup-
pose that there exists a metric d on X such that (X, d) is a com-
plete metric space. Let T:X — X be a continuous and
nondecreasing mapping. Suppose that there exist t € A and for
all x, y € X with x < y,

P(d(Tx, Ty)) $(N(x, 7)) YN, 7))
/ (1) dt < / (1) dt—/ (1) dt,
0 0 0
(3.29)

where N(x, y) and the conditions upon ($, ) are the same as in
Theorem 3.1. If there exists xo € X with xo < Txo, then T has a
fixed point.

Corollary 3.16. Let (X, <) be a partially ordered set and sup-
pose that there exists a metric d on X such that (X, d) is a com-
plete metric space. Assume that if {x,} is a nondecreasing
sequence in X such that x, — x, then x, < x, for all n € N.
Let T: X — X be a nondecreasing mapping. Suppose that there
exist T € A for which (3.29) holds, where N(x, y) and the con-
ditions upon (¢, V) are the same as in Theorem 3.1. If there
exists xo € X with xo < Txy, then T has a fixed point.
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