Invariance Principles for Changepoint Problems

MIKLÓS CSÖRGŐ*

Carleton University, Ottawa, Canada K1S 5B6

AND

LAJOS HORVÁTH†

Szeged University, Szeged, Hungary

Communicated by the Editors

We study the asymptotic behaviour of U-statistics type processes which can be used for detecting a changepoint of a random sequence. Invariance principles are proved for these processes. © 1988 Academic Press, Inc.

1. INTRODUCTION

Let X_1, \ldots, X_n be independent random variables. Suppose we want to test the null hypothesis

H_0. $X_i, 1 \leq i \leq n$, have the same distribution

versus the alternative hypothesis that there is a changepoint in the sequence X_1, \ldots, X_n, namely that we have

H_1. There is a $\lambda \in (0, 1)$ such that $P\{X_{[n\lambda]} \leq t\} = P\{X_{[n\lambda]}+1 \leq t\} = \cdots = P\{X_{[n]} \leq t\}, \quad -\infty < t < \infty,$ and $P\{X_{[n\lambda]} \leq t_0\} \neq P\{X_{[n\lambda]}+1 \leq t_0\}$ for some t_0.

The changepoint problem has been considerably studied in the literature from the parametric as well as the nonparametric point of view. Non-
parametric results are summarized in Wolfe and Schechtman [15]. Recently Csörgő and Horváth [2] proposed statistics based on processes of linear rank statistics with quantile scores. In this paper we study tests for the changepoint problem which are based on processes of U-statistics. They are generalizations of Wilcoxon–Mann–Whitney type statistics.

Let $h(x, y)$ be a symmetric function and consider

$$
Z_k = \sum_{1 \leq i < k} \sum_{k + 1 \leq j \leq n} h(X_i, X_j), \quad 1 \leq k < n.
$$

We study Z_k under the null hypothesis in Section 2, and under the alternative hypothesis in Section 3. Typical choices of h are $x y$, $(x - y)^2/2$ (sample variance), $|x - y|$ (Gini’s mean difference), $\text{sign}(x + y)$ (Wilcoxon’s one-sample statistic) (cf. Serfling [13]). The case of $h(x, y) = \text{sign}(x - y)$ has gained special attention in the literature. We cannot apply our results directly in this case, because $\text{sign}(x - y)$ is not a symmetric function. However, $\text{sign}(x - y) = -\text{sign}(y - x)$ ($\text{sign}(0) = 0$), i.e., $\text{sign}(x - y)$ is an antisymmetric kernel. We show in Section 4 that our method can be also used in the case of an antisymmetric kernel.

2. ASYMPTOTICS UNDER H_0

In Sections 2 and 3 we assume that h is symmetric, i.e., $h(x, y) = h(y, x)$. Given H_0, X_1, \ldots, X_n are i.i.d.r.v.’s. We assume

$$
E h^2(X_1, X_2) < \infty
$$

and let $E h(X_1, X_2) = \Theta$. \(\tilde{h}(t) = E\{h(X_1, t) - \Theta\} \). Condition (2.1) implies that $E \tilde{h}^2(X_1) < \infty$ and we assume

$$
0 < \sigma^2 = E \tilde{h}^2(X_1).
$$

Here we investigate

$$
U_k = Z_k - k(n - k) \Theta, \quad 1 \leq k < n,
$$

which can be expressed as

$$
U_k = U_n^{(3)} - \{U_k^{(1)} + U_k^{(2)}\},
$$

where

$$
U_k^{(1)} = \sum_{1 \leq i < j \leq k} h(X_i, X_j) - \binom{k}{2} \Theta,
$$

$$
U_k^{(2)} = \sum_{k + 1 \leq i < j \leq n} h(X_i, X_j) - \binom{n - k}{2} \Theta.
$$
and
\[U^{(3)}_n = \sum_{1 \leq i < j \leq n} h(X_i, X_j) - \binom{n}{2} \Theta. \]

The latter are nondegenerate U-statistics under the conditions (2.1) and (2.2). Thus while \(U_k \) itself is not a U-statistic, in (2.3) we concluded that it can be expressed as a linear combination of U-statistics. Hence the basic idea of studying \(U_k \) can be based on the projection of a U-statistic on the basic observations (cf. Chap. 5 of Serfling \[3\]).

In order to state our results we define the Gaussian process \(I \) by
\[I(t) = (1-t) W(t) + t \{ W(1) - W(t) \}, \quad 0 \leq t \leq 1, \quad (2.4) \]
where \(\{ W(t), 0 \leq t < \infty \} \) is a Wiener process.

Theorem 2.1. We assume that \(H_0 \) holds, and (2.1), (2.2) are satisfied. Then we can define a sequence of Gaussian processes \(\{ \Gamma_n(t), 0 \leq t \leq 1 \} \) such that, as \(n \to \infty \),
\[\sup_{0 \leq t \leq 1} \left| \frac{n^{-3/2}}{\sigma} U_{\lfloor (n+1)t \rfloor} - \Gamma_n(t) \right| = o_p(1), \quad (2.5) \]
where for each \(n \geq 1 \)
\[\{ \Gamma_n(t), 0 \leq t \leq 1 \} \overset{d}{=} \{ \Gamma(t), 0 \leq t \leq 1 \}. \quad (2.6) \]

Proof. By Theorem 1 of Hall [6] we have
\[\max_{1 \leq k \leq n} \left| U_k^{(1)} - k \sum_{i=1}^{k} \tilde{h}(X_i) \right| = O_p(n), \quad (2.7) \]
\[\max_{1 \leq k \leq n} \left| U_k^{(2)} - (n-k) \sum_{i=k+1}^{n} \tilde{h}(X_i) \right| = O_p(n), \quad (2.8) \]
\[\left| U_n^{(3)} - n \sum_{i=1}^{n} \tilde{h}(X_i) \right| = O_p(n). \quad (2.9) \]

Hence
\[\max_{1 \leq k \leq n} \left| U_k - \left\{ (n-k) \sum_{i=1}^{k} \tilde{h}(X_i) + k \left(\sum_{i=1}^{n} \tilde{h}(X_i) - \sum_{i=1}^{k} \tilde{h}(X_i) \right) \right\} \right| = O_p(n). \quad (2.10) \]

Thus the result follows from Donsker's theorem (cf. Theorem 2.1.2 and Lemma 4.4.4 in Csörgő and Révész [3]).
One can say more about the weak convergence of U_k if the existence of higher moments is assumed.

Theorem 2.2. We assume that H_0 holds,

$$E |h(X_1, X_2)|^v < \infty \quad \text{for some } \ v > 2,$$

(2.11)

and (2.2) is satisfied. Then we can define a sequence of Gaussian processes $\{\Gamma_n(t), 0 \leq t \leq 1\}$ such that (2.5) holds,

$$\sup_{1/(n+1) \leq t \leq n/(n+1)} \left| n^{-3/2} \frac{U_{\Gamma_n(t)} - \Gamma_n(t)}{(t(1-t))^{1/2}} \right| = O_p(1),$$

(2.12)

and we have (2.6) for each $n \geq 1$.

Proof. First we note that by (2.11) we have $E |h(X_1)|^v < \infty$. We introduce

$$S^{(1)}_n(x) = \sigma^{-1} \sum_{1 \leq i \leq x} h(X_i), \quad 1 \leq x \leq [n/2],$$

$$S^{(2)}_n(x) = \sigma^{-1} \sum_{n-x \leq i \leq n} h(X_i), \quad 1 \leq x \leq n - [n/2],$$

and show that there exist two independent Wiener processes $\{W^{(1)}_n(x), 0 \leq x < \infty\}$ and $\{W^{(2)}_n(x), 0 \leq x < \infty\}$ such that

$$\sup_{1 \leq x \leq [n/2]} x^{-1/2} |S^{(1)}_n(x) - W^{(1)}_n(x)| = O_p(1),$$

(2.13)

$$\sup_{1 \leq x \leq n} x^{-1/2} |S^{(2)}_n(x) - W^{(2)}_n(x)| = O_p(1).$$

(2.14)

Using the Skorohod embedding scheme or the Komlós–Major–Tusnády approximation (cf. Theorem 2.2.4 and Theorem 2.6.3 in Csörgő and Révész [3]), we can define a sequence of Wiener processes $\{W^{(1)}_n(x), 0 \leq x < \infty\}$ so that

$$\max_{1 \leq k \leq [n/2]} k^{-1/2} |S^{(1)}_n(k) - W^{(1)}_n(k)| = O_p(1).$$

(2.15)

By Theorem 1.2.1 of Csörgő and Révész [3] we obtain

$$\sup_{1 \leq x \leq [n/2]} x^{-1/2} |W^{(1)}_n(x) - W^{(1)}_n([x])| \leq \sup_{1 \leq x \leq [n/2]} x^{-1/2} \sup_{0 \leq s \leq 1} |W^{(1)}_n([x] + s) - W^{(1)}_n([x])| = O_p(1).$$

(2.16)

Now (2.15) and (2.16) imply (2.13). The proof of (2.14) is similar. Due to the independence of $S^{(1)}_n(x)$ and $S^{(2)}_n(x)$, the Wiener processes $W^{(1)}_n$ and
\(W_n^{(2)} \) can be defined independently. Next we define the Wiener process \(\{ W_n(x), 0 \leq x \leq n \} \) by

\[
W_n(x) = \begin{cases}
W_n^{(1)}(x), & 0 \leq x \leq [n/2], \\
W_n^{(1)}(n) + W_n^{(2)}(n) - W_n^{(2)}(n-x), & [n/2] < x \leq n,
\end{cases}
\]

and conclude from (2.13) and (2.14) that

\[
\sup_{1/(n+1) < t < n/(n+1)} \left| \left(1 - \left[\frac{(n+1)t}{n} \right] \right) \sum_{i=1}^{\left[(n+1)t \right]} \bar{h}(X_i)
+ \left[\frac{(n+1)t}{n} \right] \left(\sum_{i=1}^{n} \bar{h}(X_i) - \sum_{i=1}^{\left[(n+1)t \right]} \bar{h}(X_i) \right)
- \sigma \{(1-t) W_n((n+1)t) + t(W_n(n+1) - W_n((n+1)t))\} \right| / (nt(1-t))^{1/2}
= O_p(1).
\]

The latter in turn by (2.10) implies (2.12).

By the construction of the Wiener processes \(W_n^{(1)} \) and \(W_n^{(2)} \) we obtain

\[
\sup_{0 < t < 1} \left| \left(1 - \left[\frac{(n+1)t}{n} \right] \right) \sum_{i=1}^{\left[(n+1)t \right]} \bar{h}(X_i)
+ \left[\frac{(n+1)t}{n} \right] \left(\sum_{i=1}^{n} \bar{h}(X_i) - \sum_{i=1}^{\left[(n+1)t \right]} \bar{h}(X_i) \right)
- \sigma \{(1-t) W_n((n+1)t) + t(W_n(n+1) - W_n((n+1)t))\} \right| = o_p(n^{1/\nu}),
\]
resulting also in (2.5) via (2.10).

Let \(Q^* \) be the class of functions \(q: (0, 1) \to (0, \infty) \) which are monotone nondecreasing near 0 and monotone nonincreasing near one, and \(\inf_{\delta \leq t \leq 1-\delta} q(t) > 0 \) for all \(\delta \in (0, 1/2) \). If \(q \in Q^* \), we define the integral

\[
I(q, c) = \int_0^1 (t(1-t))^{-1} \exp(-cq^2(t)/(t(1-t))) \, dt, \quad c > 0.
\]

This integral appears in the characterization of upper class functions of a Wiener process (cf., e.g., Csörgő et al. [1]).

Corollary 2.1. We assume that \(H_0 \) holds, and (2.2), (2.11) are satisfied:
(a) If $q \in Q^*$, then
\[
\sup_{0 < t < 1} \left| \frac{n^{-3/2}}{\sigma} \left(U_{(n+1)\cdot t} - \Gamma_n(t) \right) \right| / q(t) = o_P(1) \tag{2.17}
\]
if and only if $I(q, c) < \infty$ for all $c > 0$.

(b) If $q \in Q^*$, then
\[
\frac{n^{-3/2}}{\sigma} \sup_{0 < t < 1} \left| U_{(n+1)\cdot t} \right| / q(t) \overset{D}{\to} \sup_{0 < t < 1} \left| \Gamma(t) \right| / q(t) \tag{2.18}
\]
if and only if $I(q, c) < \infty$ for some $c > 0$.

Proof. First we note that $I(q, c) < \infty$ for some $c > 0$ implies (cf. Theorem 3.3 in Csörgő et al. [1])
\[
\lim_{t \to 0} q(t) / t^{1/2} = \infty. \tag{2.19}
\]

We have
\[
\sup_{\delta \leq t \leq 1 - \delta} \left| \frac{n^{-3/2}}{\sigma} \left(U_{(n+1)\cdot t} - \Gamma_n(t) \right) \right| / q(t) = o_P(1) \tag{2.20}
\]
for all $\delta \in (0, \frac{1}{n})$ by Theorem 2.2. Also, by (2.12) and (2.19),
\[
\sup_{0 < t \leq 1/(n+1)} \left| \frac{n^{-3/2}}{\sigma} \left(U_{(n+1)\cdot t} - \Gamma_n(t) \right) \right| / q(t) = O_P(1) \quad \sup_{0 < t \leq \delta} \frac{t^{1/2}}{q(t)} \overset{P}{\to} 0 \tag{2.21}
\]
as $\delta \to 0$. Next
\[
\sup_{0 < t \leq 1/(n+1)} \left| \Gamma(t) \right| / q(t) \leq \sup_{0 < t \leq 1/(n+1)} \left| W(t) \right| / q(t)
\]
\[
+ \sup_{0 < t \leq 1/(n+1)} \sup_{0 < r \leq 1/(n+1)} \left| t/q(t) \right| \left| W(1) - W(r) \right|
\]
\[
= o_P(1)
\]
by (2.19) and Theorem 3. of Csörgő et al. [1]. One estimates near 1 in a similar way, and the "if" part of (a) is proven.

Assuming now (2.17), we must have
\[
\sup_{0 < t \leq 1/(n+1)} \left| \Gamma(t) \right| / q(t) = o_P(1) \tag{2.22}
\]
and

$$\sup_{\frac{n}{n+1} \leq t < 1} |\Gamma(t)|/q(t) = o_P(1).$$ \hfill (2.23)

It is easy to see that (2.22) and (2.33) imply

$$E \Gamma^2(t)/q^2(t) \to 0 \quad \text{as} \quad t \to 0 \quad \text{or} \quad t \to 1.$$ \hfill (2.24)

Consequently we have (2.22) if and only if

$$\sup_{0 < t < 1/(n+1)} |W(t)|/q(t) = o_P(1).$$ \hfill (2.25)

Similarly, we have (2.23) if and only if

$$\sup_{\frac{n}{n+1} \leq t < 1} |W(1) - W(t)|/q(t) = o_P(1),$$ \hfill (2.26)

which is equivalent to

$$\sup_{0 < t \leq 1/(n+1)} |W(t)|/q(1 - t) = o_P(1).$$ \hfill (2.27)

Now Theorem 3.4 of Csörgö et al. [1] combined with (2.25) and (2.27)
results in the second part of (a).

As to the proof of (b) we first note that (2.19) implies

$$\sup_{1/(n+1) \leq t \leq n/(n+1)} \left\{ \frac{n^{-3/2}}{\sigma} U_{\left[\frac{n}{n+1} t \right]} - \frac{1}{n} \right\} / q(t) = o_P(1).$$ \hfill (2.28)

Hence it suffices to show that

$$\sup_{1/(n+1) \leq t \leq n/(n+1)} |\Gamma(t)|/q(t) \xrightarrow{p} \sup_{0 < t < 1} |\Gamma(t)|/q(t),$$

which follows immediately from Theorem 3.3 of Csörgö et al. [1]. The
proof of the necessary part of (b) is similar to that of (a). Only here we
have to use Theorem 3.3 of Csörgö et al. [1] instead of their Theorem 3.4.

Remark 2.1. The proof of the necessary part of Corollary 2.1(a) shows
that if we have (2.17) with any sequence of Gaussian processes having the
same distribution for each $n \geq 1$ as that of Γ, then $I(q, c)$ must be finite for
all $c > 0$. This means that the necessary part does not depend on our
construction.

The desirability of having weight functions q around like in Corollary 2.1
is to make our statistical test more sensitive on the tails. A typical choice of
g in (2.18) is the function $(t(1-t) \log \log(1/t(1-t)))^{1/2}$. The variance of $I(t)$ is $t(1-t)$, hence another choice of a weight function is $(t(1-t))^{1/2}$. However $I(t(1-t))^{1/2} c = \infty$ for every $c > 0$, and hence we cannot apply Corollary 2.1. This case is studied in the next theorem. Let $a(y \cdot \log n) = (y + 2 \log \log n + \frac{1}{2} \log \log n - \frac{1}{2} \log \pi)(2 \log \log n)^{-1/2}, -\infty < y < \infty$.

Theorem 2.3. We assume that H_0 holds, and (2.2), (2.11) are satisfied. Then

$$\lim_{n \to \infty} P \left\{ \max_{1 \leq k \leq n} \frac{U_k}{(k(n-k+1)n)^{1/2}} \leq a(y, \log n) \right\} = \exp(-\exp(-y)), \quad (2.29)$$

and

$$\lim_{n \to \infty} P \left\{ \max_{1 \leq k \leq n} \frac{|U_k|}{(k(n-k+1)n)^{1/2}} \leq a(y, \log n) \right\} = \exp(-2 \exp(-y)). \quad (2.30)$$

We note that it will also follow from the proof of this theorem that the same two limit statements hold for $(n^{-3/2}/\sigma) U_{[\log n]}(t(1-t))^{1/2}, 0 < t < 1$. The proof will be based on the following lemma. Let $b(y, \log n) = (y + 2 \log \log n + \frac{1}{2} \log \log n - \frac{1}{2} \log(24\pi))(2 \log \log n)^{-1/2}, -\infty < y < \infty$.

Lemma. Let Y_1, Y_2, \ldots be i.i.d.r.v.'s with $EY_1 = 0$, $EY_1^2 = 1$, and $E|Y_i|^{2+\delta} < \infty$ for some $\delta > 0$. Then

$$\lim_{n \to \infty} P \left\{ \max_{1 \leq k \leq n} k^{-1/2} \sum_{i=1}^k Y_i \leq b(y, \log n) \right\} = \exp(-\exp(-y)) \quad (2.31)$$

and

$$\lim_{n \to \infty} P \left\{ \max_{1 \leq k \leq n} k^{-1/2} \left| \sum_{i=1}^k Y_i \right| \leq b(y, \log n) \right\} = \exp(-2 \exp(-y)). \quad (2.32)$$

Also, if $m_n \to \infty$ and $m_n/n \to 0$ ($n \to \infty$), then

$$\lim_{n \to \infty} P \left\{ \max_{m_n \leq k \leq n} k^{-1/2} \sum_{i=1}^k Y_i \leq h(y, \log(n/m_n)) \right\} = \exp(-\exp(-y)) \quad (2.33)$$
and

\[
\lim_{n \to \infty} P \left\{ \max_{m_n \leq k \leq n} k^{-1/2} \left| \sum_{i=1}^{k} Y_i \right| \leq b(n, \log(n/m_n)) \right\} = \exp(-2 \exp(-y)).
\]

(2.34)

Proof. For the proof of (2.31) and (2.32) we refer to Darling and Erdős [4] and Shorack [14].

Of the two statements (2.33) and (2.34) we verify only (2.34). The proof of (2.33) is similar. First let \(1 < m_n < \log n \). Then by (2.32)

\[
(2 \log \log n)^{1/2} \max_{1 \leq k \leq m_n} k^{-1/2} \left| \sum_{i=1}^{k} Y_i \right| \log \log n \to -\infty,
\]

and

\[
\lim_{n \to \infty} P \left\{ \max_{m_n \leq k \leq n} k^{-1/2} \left| \sum_{i=1}^{k} Y_i \right| \leq b(n, \log n) \right\} = \exp(-2 \exp(-y)).
\]

Observing now

\[
2 \log \log n + \frac{1}{2} \log \log \log n = o(1)
\]

we get (2.34). Similarly to the proof of Theorem 2.2, there is a Wiener process \(W \) such that

\[
\sup_{m_n \leq x \leq n} x^{-1/2} \left| \sum_{1 \leq i \leq x} Y_i - W(x) \right| = o_p((\log n)^{1/2}) = o_p((\log n)^{-\delta/(2 + \delta)}).
\]

Let \(\{ V(t), -\infty < t < \infty \} \) be an Ornstein–Uhlenbeck process. Then we have

\[
\sup_{m_n \leq x \leq n} x^{-1/2} |W(x)| = \sup_{(1/2) \log m_n \leq t \leq (1/2) \log n} |V(t)| = \sup_{0 \leq t \leq (1/2) \log(n/m_n)} |V(t)|,
\]

and consequently by Darling and Erdős [4] we obtain (2.34). For the general \(m_n \) sequence of the lemma we consider its subsequence with values in \([0, \log n]\) and that with values in \((\log n, \infty)\).
Proof of Theorem 2.3. Let \(k_n^{(1)} = (\log n)^3 \) and \(k_n^{(2)} = n/(\log n)^2 \), and consider

\[
\max_{1 \leq k \leq n} \left| U_k \right| (k(n-k+1)n)^{1/2} = \max_{1 \leq k \leq k_n^{(1)}} \frac{\left| U_k \right|}{(k(n-k+1)n)^{1/2}}
\]

\[
\vee \max_{k_n^{(1)} < k \leq k_n^{(2)}} \frac{\left| U_k \right|}{(k(n-k+1)n)^{1/2}}
\]

\[
\vee \max_{k_n^{(1)} < k \leq n/2} \frac{\left| U_k \right|}{(k(n-k+1)n)^{1/2}}
\]

\[
\vee \max_{n/2 < k \leq n - k_n^{(1)}} \frac{\left| U_k \right|}{(k(n-k+1)n)^{1/2}}
\]

\[
\vee \max_{n - k_n^{(1)} < k < n} \frac{\left| U_k \right|}{(k(n-k+1)n)^{1/2}}
\]

\[
= A_n^{(1)} \vee \ldots \vee A_n^{(8)},
\]

where \(a \vee b = \max(a, b) \). It is easy to see that

\[
A_n^{(1)} \leq 2 \max_{1 \leq k \leq k_n^{(1)}} k^{-1/2} \left| \sum_{1 \leq i < k} \sum_{k+1 \leq j \leq n} \{ h(X_i, X_j) - \overline{h}(X_j) \} \right|
\]

\[
+ \max_{1 \leq k < k_n^{(1)}} k^{-1/2} \left| \sum_{i=1}^k \overline{h}(X_i) \right|
\]

\[
- A_n^{(1,1)} + A_n^{(1,2)}.
\]

(2.36)

First we note that by the definition of \(\overline{h} \) we have

\[
E \left(n^{-1} \sum_{1 \leq i < k} \sum_{k+1 \leq j \leq n} \{ h(X_i, X_j) - \overline{h}(X_j) \} \right)^2 = O(k^2/n),
\]

and so

\[
P \left(A_n^{(1,1)} > 1 \right) \leq \sum_{k=1}^{k_n^{(1)}} P \left(n^{-1} \left| \sum_{1 \leq i < k} \sum_{k+1 \leq j \leq n} \{ h(X_i, X_j) - \overline{h}(X_j) \} \right| > k^{1/2} \right)
\]

\[
= O(1) n^{-1} \sum_{k=1}^{k_n^{(1)}} 1/k = o(1).
\]

(2.37)
By Lemma we have

\[A_n^{(1,2)} = O_p((\log \log \log n)^{1/2}), \]

and thus by (2.36) and (2.37) we obtain

\[(2 \log \log n)^{1/2} A_n^{(1)} - \sigma \log \log n \xrightarrow{p} - \infty. \tag{2.38} \]

By (2.10) we get

\[
A_n^{(2)} = \max_{k_n^{(1)} \leq k \leq k_n^{(2)}} \left| \frac{n-k}{(n(n-k+1))^{1/2}} \sum_{i=1}^{k} \tilde{h}(X_i) \right|
\]
\[+ \frac{k}{(n(n-k+1))^{1/2}} \sum_{i=k+1}^{n} \tilde{h}(X_i) + O_p(1/\log n). \tag{2.39} \]

It is easy to verify that

\[
\max_{k_n^{(1)} \leq k \leq k_n^{(2)}} \left(\frac{k}{n} \right)^{1/2} \frac{1}{(n-k+1)^{1/2}} \left| \sum_{i=k+1}^{n} \tilde{h}(X_i) \right|
\]
\[= O(1/\log n) \max_{n-k_n^{(2)} \leq m \leq n-k_n^{(1)}} \left(\frac{n-m}{n} \right)^{1/2} \frac{1}{(m+1)^{1/2}} \left| \sum_{i=1}^{m} \tilde{h}(X_i) \right|
\]
\[= O(1/\log n) \max_{1 \leq m \leq n} \frac{1}{n^{1/2}} \left| \sum_{i=1}^{m} \tilde{h}(X_i) \right|
\]
\[= O_p(1/\log n). \tag{2.40} \]

Using the lemma we have

\[
\max_{k_n^{(1)} \leq k \leq k_n^{(2)}} \left| \frac{n-k}{(n(n-k+1))^{1/2}} - 1 \right| k^{-1/2} \left| \sum_{i=1}^{k} \tilde{h}(X_i) \right|
\]
\[= O_p((\log \log n)^{1/2}/(\log n)^2), \]

and hence (2.39) and (2.40) yield

\[
A_n^{(2)} = \max_{k_n^{(1)} \leq k \leq k_n^{(2)}} k^{-1/2} \left| \sum_{i=1}^{k} \tilde{h}(X_i) \right| + O_p(1/\log n). \tag{2.41} \]

By the lemma again,

\[
(2 \log \log k_n^{(2)})^{1/2} \max_{1 \leq k \leq k_n^{(1)}} k^{-1/2} \left| \sum_{i=1}^{k} \tilde{h}(X_i) \right| - \sigma \log \log k_n^{(2)} \xrightarrow{p} - \infty,
\]
and therefore,

\[\lim_{n \to \infty} P \left\{ \frac{1}{\sigma} \max_{k \in k^{(1)}_n, k \in k^{(2)}_n} k^{-1/2} \left| \sum_{i=1}^k \tilde{h}(X_i) \right| \leq b(y, \log k^{(2)}_n) \right\} = \exp(-2 \exp(-y)). \tag{2.42} \]

Observing now that

\[|(2 \log \log n)^{1/2} - (2 \log \log k^{(1)}_n)^{1/2}| \cdot (\log \log k^{(1)}_n)^{1/2} = o(1) \]

and

\[|2 \log \log n + \frac{1}{2} \log \log \log n - (2 \log \log k^{(1)}_n) + \frac{1}{2} \log \log \log k^{(1)}_n| = o(1), \]

(2.41) and (2.42) imply

\[\lim_{n \to \infty} P \left\{ \frac{1}{\sigma} A^{(2)}_n \leq b(y, \log n) \right\} = \exp(-2 \exp(-y)). \tag{2.43} \]

Towards estimating \(A^{(3)}_n \), we first note that

\[\max_{k^{(2)}_n \leq k \leq n/2} \frac{1}{(n-k)^{1/2}} \left| \sum_{i=k+1}^n \tilde{h}(X_i) \right| \]

\[= O(1) \max_{n/2 \leq m \leq n - k^{(2)}_n} \frac{1}{m^{1/2}} \left| \sum_{k=1}^m \tilde{h}(X_k) \right| = O(1). \]

Hence from (2.10) and (2.34) we obtain

\[A^{(3)}_n \leq \max_{k^{(2)}_n \leq k \leq n/2} \frac{n-k}{(k(n-k+1) n)^{1/2}} \left| \sum_{i=1}^k \tilde{h}(X_i) \right| \]

\[+ \max_{k^{(2)}_n \leq k \leq n/2} \frac{k}{(n(n-k+1))^{1/2}} \left| \sum_{i=1}^n \tilde{h}(X_i) \right| + O_\rho(\log n/n^{1/2}) \]

\[= O_\rho(\log \log \log n)^{1/2}. \]

This in turn implies

\[(2 \log \log n)^{1/2} A^{(3)}_n - \sigma^{-1} \log \log n \overset{p}{\to} -\infty. \tag{2.44} \]
The estimation of the r.v.'s $A_n^{(4)}$, $A_n^{(5)}$, and $A_n^{(6)}$ is similar, resulting in the statements

$$
(2 \log \log n)^{1/2} A_n^{(i)} - \sigma^{-1} \log \log n \xrightarrow{p} -\infty, \quad i = 4, 6, \quad (2.45)
$$

$$
A_n^{(5)} = \max_{n - k_n^{(1)} \leq k \leq n - k_n^{(2)}} \left| \frac{1}{(n - k)^{1/2}} \sum_{i = k + 1}^{n} h(X_i) \right| + O_p(1/\log n), \quad (2.46)
$$

and

$$
\lim_{n \to \infty} P \left\{ \frac{1}{\sigma} A_n^{(5)} \leq b(y, \log n) \right\} = \exp(-2\exp(-y)). \quad (2.47)
$$

The events in (2.43) and (2.47) are asymptotically independent. Therefore the statement follows from (2.35), (2.38), (2.43), and (2.44)–(2.47).

3. Asymptotics under H_1

First we introduce some notations. Let

$$
\theta = Eh(X_{[n\lambda]} - 1, X_{[n\lambda]}), \quad \mu = Eh(X_{[n\lambda]} + 1, X_{[n\lambda]} + 2)
$$

$$
\tau = Eh(X_{[n\lambda]}, X_{[n\lambda]} + 1),
$$

and we write $\log^+ x = \log(x \vee 1)$.

Theorem 3.1. We assume that H_1 holds and

$$
E|h(X_{[n\lambda]} - 1, X_{[n\lambda]})| < \infty, \quad E|h(X_{[n\lambda]} + 1, X_{[n\lambda]} + 2)| < \infty,
$$

$$
E|h(X_{[n\lambda]}, X_{[n\lambda]} + 1)| \log^+ (|h(X_{[n\lambda]}, X_{[n\lambda]} + 1)|) < \infty \quad (3.1)
$$

are satisfied. Then

$$
\lim_{n \to \infty} Z_{[(n+1)t)/n^2} = \begin{cases}
\theta t(\lambda - t) + \tau(1 - \lambda), & 0 < t \leq \lambda, \\
\mu(t - \lambda)(1 - t) + \tau(1 - t), & \lambda < t < 1,
\end{cases} \quad (3.2)
$$

in probability.

Proof. Let $1 \leq [(n + 1)t] \leq [n\lambda]$. Then

$$
Z_{[(n+1)t]/n^2} = \sum_{1 \leq i < j \leq [n\lambda]} h(X_i, X_j) + \sum_{1 \leq i \leq [n\lambda]} \sum_{[n\lambda] + 1 \leq j \leq n} h(X_i, X_j)
$$

$$
- \left\{ \sum_{1 \leq i < \ell \leq [(n + 1)t]} h(X_i, X_\ell)
+ \sum_{[(n + 1)t] + 1 \leq i \leq [n\lambda]} h(X_i, X_\ell)
+ \sum_{[(n + 1)t] + 1 \leq i \leq [n\lambda]} \sum_{[n\lambda] + 1 \leq j \leq n} h(X_i, X_j) \right\}
$$

$$
= R_n^{(1)} + R_n^{(2)} - \left\{ R_n^{(3)} + \cdots + R_n^{(5)} \right\}.
$$
By Hoeffding [7] (cf. Theorem A in Section 5.4 of Serfling [13]) we get

\[R_n^{(1)}/n^2 \overset{a.s.}{\longrightarrow} \lambda^2 \theta/2, \quad R_n^{(3)}/n^2 \overset{a.s.}{\longrightarrow} t^2 \theta/2, \]

\[R_n^{(4)}/n^2 = \sum_{1 \leq i < j \leq [n\lambda] - [(n+1)\ell]} h(X_i, X_j) \overset{a.s.}{\longrightarrow} (t-\lambda)^2 \theta/2. \]

Now applying Sen [12] and condition (3.1) we obtain

\[R_n^{(2)}/n^2 \overset{p}{\longrightarrow} \lambda(1-\lambda)\tau, \quad R_n^{(5)}/n^2 \overset{p}{\longrightarrow} (\lambda - t)(1-\lambda)\tau. \]

These observations clearly imply the first part of (3.2). The proof of its second part is similar.

Remark 3.1. If we assume the existence of the second moments in Theorem 3.1, then we have an a.s. convergence in (3.2) by the moment inequalities of Grams and Serfling [5].

Theorem 3.1 can be used to study the consistency of tests based on the process \(\{U_{(n+1)\ell}, 0 \leq \ell < 1\} \). For example, we conclude that rejecting \(H_0 \) vs \(H_1 \) when \(\sup_{0 \leq \ell < 1} (n^{-3/2}/\sigma) \left| U_{(n+1)\ell} \right| \) is large, then the latter test is consistent except in the case of \(\tau = \theta = \mu = 0 \). The same can be said about the weighted versions of this test.

4. Antisymmetric Kernel

In this section we assume that \(h \) is an antisymmetric kernel, i.e.,

\[h(x, y) = -h(y, x). \] \hspace{1cm} (4.1)

In this case \(Eh(X_1, X_2) = 0 \) and similarly to the symmetric case we let \(\bar{h}(t) = Eh(t, X_1) \). We assume

\[Eh^2(X_1, X_2) < \infty \quad \text{and} \quad 0 < \sigma^2 = E\bar{h}^2(X_1). \] \hspace{1cm} (4.2)

Accordingly to Section 2 we now have \(U_k = Z_k \), where \(Z_k \) is defined by (1.1). It is easy to see that (2.3) remains true in the case of an antisymmetric kernel, with \(\Theta \) taken to be zero, of course.

First we give an analog of Theorem 2.1.

Theorem 4.1. We assume that \(H_0 \) holds, and (4.1) and (4.2) are satisfied.
Then we can define a sequence of Brownian bridges \(\{ B_n(t), 0 \leq t \leq 1 \} \) such that, as \(n \to \infty \),

\[
\sup_{0 \leq t \leq 1} \left| \frac{n^{-3/2}}{\sigma} U_{\left[(n+1)t \right]} - B_n(t) \right| = o_p(1) \tag{4.3}
\]

and for each \(n \geq 0 \), \(EB_n(t) = 0 \), \(EB_n(t) B_n(s) = \min(t, s) - ts \).

Proof. The proof is similar to that of Theorem 2.1. Instead of Theorem 1 of Hall [6] we use Theorem 2.1 of Janson and Wichura (1983), which gives

\[
\max_{1 \leq k \leq n} \left| U_k^{(1)} - \sum_{i=1}^{k} (k - 2i + 1) \overline{h}(X_i) \right| = O_p(n), \tag{4.4}
\]

\[
\max_{1 \leq k \leq n} \left| U_k^{(2)} - \sum_{i=k+1}^{n} (n + k - 2i + 1) \overline{h}(X_i) \right| = O_p(n), \tag{4.5}
\]

and

\[
\left| U_n^{(3)} - \sum_{i=1}^{n} (n - 2i + 1) \overline{h}(X_i) \right| = O_p(n). \tag{4.6}
\]

By (4.4), (4.5), and (4.6) we have

\[
\max_{1 \leq k \leq n} \left| U_k - \left\{ n \sum_{i=1}^{k} \overline{h}(X_i) - k \sum_{i=1}^{n} \overline{h}(X_i) \right\} \right| = O_p(n) \tag{4.7}
\]

and hence Donsker's theorem implies Theorem 4.1.

Surprisingly, the limiting processes are different in Theorems 2.1 and 4.1. In the special case of \(h(x, y) = \text{sign}(x - y) \) (cumulative rank tests) Pettitt [9] (cf. also Pettitt [10]) indicate a proof of Theorem 4.1.

The following Theorem is an analog of Theorem 2.2.

Theorem 4.2. We assume that \(H_0 \) holds, (4.1) and (4.2) are satisfied, and

\[
E|h(X_1, X_2)|^v < \infty \quad \text{for some} \quad v > 2. \tag{4.8}
\]

Then we can define a sequence of Brownian bridges \(\{ B_n(t), 0 \leq t \leq 1 \} \) such that (4.3) holds and

\[
\sup_{1/(n+1) \leq t \leq n/(n+1)} \left| \frac{n^{-3/2}}{\sigma} U_{\left[(n+1)t \right]} - B_n(t) \right| / (t(1-t))^{1/2} = O_p(1). \tag{4.9}
\]
Proof. Using (4.4)–(4.6) with the Skorohod embedding scheme (or with the Komlós–Major–Tusnády approximation), the proof goes along the lines of the proof of Theorem 2.2.

The next results are direct consequences of Theorem 4.2. One can give detailed proofs using the methods of the proofs of Corollary 2.1 and Theorem 2.3. Let \(\{B(t), 0 \leq t \leq 1\} \) be a Brownian bridge.

Corollary 4.1. We assume that \(H_0 \) holds and (4.1), (4.2), and (4.8) are satisfied.

(a) If \(q \in Q^* \), then

\[
\sup_{0 < t < 1} \left| \frac{n^{-3/2}}{\sigma} U_{\lfloor (n+1)t \rfloor} - B_n(t) \right|/q(t) = o_p(1)
\]

if and only if \(I(q, c) < \infty \) for all \(c > 0 \).

(b) If \(q \in Q^* \), then

\[
\frac{n^{-3/2}}{\sigma} \sup_{0 < t < 1} |U_{\lfloor (n+1)t \rfloor}|/q(t) \xrightarrow{p} \sup_{0 < t < 1} |B(t)|/q(t)
\]

if and only if \(I(q, c) < \infty \) for some \(c > 0 \).

Theorem 4.3. We assume that \(H_0 \) holds and (4.1), (4.2), and (4.8) are satisfied. Then

\[
\lim_{n \to \infty} P \left\{ \sigma^{-1} \max_{1 \leq k \leq n} \frac{U_k}{(k(n-k+1)n)^{1/2}} \leq a(y, \log n) \right\} = \exp(-\exp(-y))
\]

and

\[
\lim_{n \to \infty} P \left\{ \sigma^{-1} \max_{1 \leq k \leq n} \frac{|U_k|}{(k(n-k+1)n)^{1/2}} \leq a(y, \log n) \right\} = \exp(-2\exp(-y)).
\]

Now we assume that \(X_1, \ldots, X_n \) have a continuous distribution function, and study the case of \(h(x, y) = \text{sign}(x - y) \). Under \(H_0 \), \(E \text{sign}(X_1 - X_2) = 0 \) and \(\sigma^2 = 1/12 \). Then

\[
U_k - Z_k = \sum_{1 \leq i < k} \sum_{k+1 \leq j \leq n} \text{sign}(X_i - X_j)
\]

is distribution free, and the results of the present section are applicable. By Theorem 4.1, \((12)^{1/2} n^{-3/2} U_{\lfloor (n+1)t \rfloor} \) converges weakly to a Brownian bridge in \(D[0, 1] \). This result was obtained by Pettitt [9] using heuristic arguments.
Sen and Srivastava [11] also mention (without developing any properties) non-parametric tests as analogs to some parametric likelihood ratio procedures. In particular, they suggest rejecting H_0 for large values of

$$D_n = (12)^{1/2} \max_{1 \leq k < n} |U_k|/(k(n-k+1)n)^{1/2}.$$

It follows from Theorem 4.3 that $D_n \to^p \infty$ even under H_0. This is the reason for them finding D_n being superior to other statistics. We can, of course, use D_n for testing H_0 with normalizing factors as given in Theorem 4.3. Naturally then further power studies are also needed in order to conclude any superiority properties.

ACKNOWLEDGMENTS

We are very grateful to F. Lombard for his helpful comments and for pointing out an oversight in the first version of this paper. We also wish to thank Vera R. Huse for calling our attention to a slip in this version and for her careful reading of our manuscript.

REFERENCES

