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We present an update on the phase diagram of two-color QCD from a chiral effective model approach
based on a quark–meson–diquark model using the Functional Renormalization Group (FRG). We
discuss the impact of perturbative UV contributions, the inclusion of gauge field dynamics via a
phenomenological Polyakov loop potential, and the impact of matter backcoupling on the gauge sector.
The corresponding phase diagram including these effects is found to be in qualitative agreement with
recent lattice investigations.
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1. Introduction

The understanding of the QCD phase diagram, in particu-
lar in regions of intermediate chemical potentials, represents an
enormous theoretical challenge. The main obstacle to theoretical
progress is the sign-problem in QCD [1–4]. In this situation it has
become an important alternative to study finite density effects in
QCD-like theories with real fermion determinants [5], as classi-
fied according to random matrix theory by the Dyson index β of
their Dirac operators [6,7]. In the cases β = 1, with 2-color QCD
as a representative example, and β = 4, as for QCD with quarks
in the adjoint representation or QCD with the gauge group G2
[8,9], the Dirac operator possesses an additional antiunitary sym-
metry, which ensures the reality or even positivity (for β = 4 with
Kramers degeneracy) of the fermion determinant for a single quark
flavor. In absence of such a symmetry, for β = 2 as in QCD, one is
restricted to finite isospin density [10–12]. Despite the fact that
such QCD-like theories differ in various important aspects from
the 3-color world at finite baryon density, a better understanding
of their phase diagrams can provide insight into generic features
of finite density. At the same time they serve as benchmarks for
quantum field-theoretical continuum methods and model descrip-
tions. In particular, direct comparisons between functional contin-
uum methods and lattice simulations at finite density are possible
in these theories.

Two-color QCD has been studied within a number of differ-
ent approaches such as chiral perturbation theory [1,6,13], ran-
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dom matrix theory [7,14,15], the NJL model [16,17], and on the
Lattice [18–23], see [24] for a more extensive discussion of ear-
lier approaches. In this Letter we expand on our previous Func-
tional Renormalization Group study of two-color QCD within the
quark–meson–diquark (QMD) model [24], where the model con-
struction and the general formalism were laid out, but where
only the matter sector was taken into account in the numerical
results. Here we focus on the modeling of gauge field dynam-
ics in the form of a phenomenological Polyakov loop potential
[17]. As compared to available mean-field results we thereby also
include the fluctuations due to collective mesonic and baryonic
excitations. At low baryon density, outside the diquark condensa-
tion phase of two-color QCD, this extension is analogous to that
of the Polyakov-quark–meson model for the QCD phase diagram
[25] when mesonic fluctuations are included [26–31]. With diquark
condensation and diquark fluctuations, however, this will include
the region of high baryon density in the phase diagram of two-
color QCD and thus allow a more detailed comparison with recent
lattice results [22,23].

2. Theoretical background

In this section we review the essentials of two-color QCD and
its effective Polyakov-quark–meson–diquark (PQMD) model de-
scription. We furthermore introduce the necessary basics of the
Functional Renormalization Group approach and the correspond-
ing flow equations for the effective potential of the model in the
leading order derivative expansion.
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Fig. 1. Patterns of symmetry breaking in two-color QCD with N f flavors of funda-
mental quarks (β = 1).

2.1. PQMD model for two-color QCD

The key to understanding the special properties of two-color
QCD is its enlarged flavor symmetry, which is in turn based on
the pseudo-reality of the SU(2) fundamental representation. In a
theory with N f degenerate quark flavors the enlarged flavor sym-
metry group is given by SU(2N f ) which contains the usual flavor
and baryon number SU(N f )L × SU(N f )R × U (1)B symmetries as
subgroup. Obviously, the enlarged flavor symmetry also changes
the pattern of chiral symmetry breaking; an explicitly or sponta-
neously generated Dirac mass term breaks the enlarged SU(2N f )

to the symplectic group Sp(N f ), whereas the inclusion of a chem-
ical potential breaks it to SU(N f )L × SU(N f )R × U (1)B . In pres-
ence of both, the residual symmetry is given by the common
SU(N f )V × U (1)B subgroup of the two. In the diquark condensa-
tion phase this symmetry gets broken spontaneously to Sp(N f /2)

and correspondingly N f (N f − 1)/2 Goldstone bosons occur. For
asymptotically large chemical potentials chiral symmetry gets (par-
tially) restored to Sp(N f /2)L × Sp(N f /2)R . It is a special property
of the 2-flavor theory that this leads to a complete restoration of
the chiral SU(2)L ×SU(2)R symmetry at asymptotically large chem-
ical potentials. The symmetry breaking patterns in two-color QCD
with N f degenerate flavors of fundamental quarks are summarized
in Fig. 1.

In the following we will concentrate on the case of two flavors
where the breaking SU(4) → Sp(2) is locally the same as the sim-
ple vector-like breaking of SO(6) → SO(5). The corresponding five
(pseudo-)Goldstone bosons are identified with the three pions plus
a scalar bosonic diquark/antidiquark pair, which is thus degener-
ate with the pions at vanishing chemical potential. These diquarks
play a dual role as pseudo-Goldstone bosons and as the lightest
baryonic degrees of freedom in the theory. In this case, diquark
condensation simply corresponds to SU(2)V × U (1)B → Sp(1)V �
SU(2)V , i.e. to the spontaneous breaking of the U(1)B for baryon
number conservation. Most importantly, the pattern of symmetry
breaking is correctly reproduced in a quark–meson–diquark model,
as an effective model of quarks, mesons and diquarks.

In the case of two quark flavors it is described by the (Eu-
clidean) Lagrangian [24]

LPQMD = ψ̄
(
/D + h

(
σ + iγ 5 �π �τ ) − μγ 0)ψ

+ h

2

(
�∗(ψ T C iγ 5τ2T2ψ
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(
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∗))
+ 1

2
(∂μσ )2 + 1

2
(∂μ �π)2 + V ( �φ)

+ 1
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(
∂μ + 2μδ

μ
0

)
�∗ + UPol, (1)
2

with Yukawa coupling h, and τi denoting Pauli matrices in flavor
space; Ti = σi

2 are the SU(2) color generators and C = γ 2γ 0 is
the charge conjugation matrix in spinor space. We furthermore de-
fine the vector �φ = (σ , �π,Re�, Im�) of meson and diquark fields
which transforms as a vector under the enlarged O (6) � SU(4) fla-
vor symmetry. The color covariant derivative is given by Dμ =
∂μ + iAμ with a constant background gauge field Aμ = δμ0 A0

in the Polyakov gauge, i.e. for SU(2) simply with A0 = T 3a0. The
Polyakov loop whose thermal expectation value serves as an or-
der parameter for confinement in the pure gauge theory is thus
represented as

Φ ≡ 1

2
trc eiβ A0 = cos

(
βa0

2

)
. (2)

While one could employ Polyakov loop potentials from lattice sim-
ulations or functional continuum methods [31] in the future, here
we present results for a phenomenological Polyakov loop potential
[17] of the form

UPol(Φ; T , T0) = −bT
[
24Φ2e−a/T + log

(
1 − Φ2)], (3)

which is a 2-color variant of the commonly used 3-color logarith-
mic Polyakov loop potential [32,33]. The deconfinement transition
itself is fixed by the parameter a which is related to the critical
temperature T0 of the pure gauge theory as a = T0 log 24, whereas
a strong coupling expansion relates b to the string tension

√
σ via

b = (σ /a)3. The parameter b determines the mixing between chi-
ral and deconfinement transition and can be used to adjust the
pseudo-critical temperature for the chiral transition relative to the
deconfinement transition. It is typically chosen such that the two
crossovers coincide [32]. Here we simply fix b = (σ /a)3 and adjust
T0 with N f and μ as described below. The rational for this adjust-
ment is to account for the implicit feedback of the matter sector
on the gluodynamics and hence the Polyakov loop potential [25].
This includes sea quark effects on the gluonic correlations, for ex-
ample, in contradistinction to the valence quark contributions as
here described explicitly by the fermionic flow.

The critical temperatures of pure SU(Nc) gauge theories have
been well-investigated on the lattice, see [34] and the references
therein. In units of the string tension they are very well described
by the corresponding value in the large Nc limit plus a 1/N2

c cor-
rection term, all the way down to Nc = 2 [35]. For SU(2) this yields
Tc/

√
σ = 0.7092(36) [34] which corresponds to Tc = 312 MeV in

physical units assuming a string tension with
√

σ = 440 MeV. This
fixes T0(N f = 0,μ = 0) = Tc .

We may generally relate couplings αT and α0 at sufficiently
close-by temperature scales T and T0 assuming a logarithmic de-
pendence [36] of the form

ln

(
T

T0

)
= a

(
α0

αT
− 1

)
(4)

with some nonperturbative coefficient a which depends on N f
and Nc (for N f = 0 of the order 1/Nc). In order to include De-
bye screening effects we consider the effective charge αeff(p) in the
plasma [37] at the soft scale p ∼ gT as in [25],

αeff(gT ) = αT

1 + b(μ/T )
, (5)

where b(μ/T ) ≡ m2
D/(gT )2 is given by the Debye mass mD per

p ∼ gT . At one-loop level it would be [37]

b

(
μ

T

)
= Nc

3
+ N f

12

(
1 + 3

π2

μ2

T 2

)
. (6)

The Debye mass increases with μ and hence the effective charge
decreases. The simplest way to include Debye screening thus is to
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consider lines T (μ) at constant αeff, with T0 ≡ T (0), b0 ≡ b(0) and
(4) these are obtained as,

ln

(
T (μ)

T0

)
= b0 − b(μ/T )

1 + b(μ/T )
a, (7)

where a is the Nc- and N f -dependent but μ-independent nonper-
turbative coefficient from Eq. (4). If we expand

b

(
μ

T

)
= b0 + b1

μ2

T 2
+ · · · (8)

the leading logarithmic behavior of T (μ) near μ = 0 becomes

ln

(
T (μ)

T0

)
= − ab1

1 + b0

μ2

T 2
0

. (9)

We can test this simple argument with the critical temperatures
of the pure SU(Nc) gauge theories: Using N f = 0, α ∼ 1/Nc and
b ∼ Nc in the large Nc limit, one concludes that the effective
charge decreases as 1/N2

c . Because the number of gluons grows
with N2

c , the assumption that N2
c αeff = const. in this case, together

with a ∼ 1/Nc in (4), yields

ln

(
Tc(Nc)

T ∞
c

)
= c

N2
c
, (10)

with some constant c. Fitting the lattice data for Nc = 2, . . . ,8 as
collected in [34] to this two parameter form works quite well. For
comparison, we obtain with this form T ∞

c /
√

σ = 0.5962(16) with
a reasonable χ2/d.o.f. = 1.27, as compared to

Tc√
σ

= 0.5949(17) + 0.458(18)

N2
c

, (11)

from [34] with χ2/d.o.f. = 1.18. If we exclude the Nc = 2 value for
not being close enough to the large Nc limit, we obtain T ∞

c /
√

σ =
0.5952(24) and our fit with (10) is practically indistinguishable
from (11) of Ref. [34] for Nc � 3. It is thus consistent with gen-
eral large-Nc arguments at this order [38].

An analogous argument also applies when varying the number
of flavors N f . In order to model the density dependence of De-
bye screening we therefore simply replace the parameter T0 in the
Polyakov loop potential (3) by the line T0(N f ,μ) of constant effec-
tive charge with T0(0,0) = Tc = 312 MeV (for Nc = 2 here). From
(9) at the leading order in μ2/T 2

c this line will hence be of the
form, with new constants a and b,

T0(N f ,μ) = Tc exp

(
−aN f

(
1 + b

μ2

T 2
c

))
. (12)

The non-perturbative coefficient a herein should first be fixed such
that the deconfinement temperature at vanishing chemical poten-
tial matches (suitably extrapolated) lattice results. Since SU(2) sim-
ulations with comparably light dynamical quarks are phenomeno-
logically less relevant than those of real QCD thermodynamics,
they have received less attention and results are therefore rather
limited. As an orientation we use the value for the deconfinement
crossover temperature of around 217 MeV obtained from simu-
lations with two degenerate flavors of dynamical Wilson quarks
[22,23], albeit with masses considerably above their physical coun-
terparts in QCD. Because the transition temperature is expected
to further decrease with decreasing quark masses, we employed
a value of a = 0.19 corresponding to T0(2,0) = 212 MeV which
will then lead to a deconfinement crossover temperature of around
200 MeV.

A reasonable way to fix the second non-perturbative coefficient
b in Eq. (12) would be to match the curvature of the pseudo-
critical line extracted from the lattice a posteriori. Again due to
a lack of suitably accurate lattice data for two-color QCD we have
only investigated the impact of different parameter values for b in
a more exploratory fashion for now. In the following section we
will simply compare results with b = 0, b = 2.6 and b = 5.2 to ex-
emplify the impact of Debye screening in the unquenching effects
from the matter sector on the deconfinement transition at finite
density.

2.2. Functional Renormalization Group

The Functional Renormalization Group is a powerful non-
perturbative tool for calculations in quantum field theory and
statistical physics. Here we employ the approach pioneered by
Wetterich [39] with a so-called effective average action as the cen-
tral object, see [40–45] for general introductions. The FRG aims
at computing the full quantum effective action by relating a clas-
sical or microscopic bare action at the ultraviolet cutoff scale Λ

to the corresponding average action at some lower scale k, the
scale-dependent analogue of the effective action. This RG scale k
introduced by an infrared regulator is then successively lowered
which yields the evolution of the scale-dependent effective aver-
age action with the RG scale k or, correspondingly, with t = log k/Λ

as described by the exact flow equation

∂tΓk = 1

2
STr

{[
Γ

(2)

k + Rk
]−1

∂t Rk
}
, (13)

which assumes the form of a 1-loop equation, however, involving
full (scale- and field-dependent) propagators. Here Γ (2) denotes
the second functional derivative of the effective average action
with respect to the fields and the supertrace involves a trace both
over momentum space and internal indices and includes an addi-
tional minus sign in the fermionic subsector. As the flow equation
(13) can rarely be solved exactly truncations are required. Here
we employ the leading order derivative expansion in which only a
scale-dependent effective potential is taken into account. Thus the
Ansatz for the effective average action simply reads, in terms of
the Lagrangian (1),

Γk =
∫

d4xLPQMD
∣∣

V (φ)→Uk(ρ2,d2)−cσ , (14)

where ρ2 = σ 2 + �π2 and d2 = �∗� denote the two SU(2)× U (1)B
invariants and the cσ term represents an explicit breaking, which
is taken into account at the end of the flow. It is crucial to consider
an Ansatz for the scale-dependent effective potential Uk which
is a genuine function of the two independent invariants ρ2 and
d2 as the potential at finite chemical potential is only required
to be consistent with the reduced symmetry SU(2) × U (1)B in-
stead of the full enlarged flavor SU(4) at vanishing chemical po-
tential. This Ansatz is consistent with the full SU(4) symmetry
at μ = 0 as one can recast it as a function of a single variable
φ2 = ρ2 + d2 again. Employing 3-dimensional analogues of the
LPA-optimized regulator functions [46] which are commonly used
in finite-temperature applications [47], Rk,B = (k2 − �p2)Θ(k2 − �p2)

and Rk,F = i�/p(−1 + k/|�p|)Θ(k2 − �p2), for bosonic and fermionic
fields respectively, the flow equation for the effective potential
takes the form [24]

∂t Uk = k5

12π2

{
3

Eπ
k

(
1 + 2nb

(
Eπ

k ; T
))

+
3∑

i=1

3z4
i − α1z2

i + α0

(z2
i+1 − z2

i )(z2
i+2 − z2

i )

1

zi

(
1 + 2nb(zi; T )

)

−
∑ 8

E±
(

1 ± μ

εk

)(
1 − 2nq

(
E±

k ; T ,Φ
))}

, (15)

± k
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where Eπ
k = √

k2 + 2∂Uk/∂ρ2, E±
k = √

h2d2 + (εk ± μ)2 and εk =√
k2 + h2ρ2. The quantities zi in the sigma-diquark sector de-

note the roots of a cubic polynomial in p2
0 = −z2 with coeffi-

cients βi . These together with the coefficients αi of the corre-
sponding quadratic polynomial in the numerator are listed ex-
plicitly in [5,24]. They all depend on the renormalization scale,
the field invariants ρ2 and d2, on the chemical potential and the
derivatives of the scale-dependent effective potential. The Polyakov
loop enhanced fermion occupation numbers are given by

nq(E; T ,Φ) = 1 + ΦeE/T

1 + 2ΦeE/T + e2E/T
. (16)

and reduce to the usual Fermi–Dirac distribution for Φ = 1,
whereas nb(E; T ) = 1/(exp(E/T ) − 1) denotes the Bose–Einstein
distribution function.

In our approach the gauge field a0 is treated as a background
field. The integration of Eq. (15) yields an effective potential as
function of ρ2, d2 and a0 which is then minimized with respect
to all three variables to obtain chiral and diquark condensates and
the expectation value of the Polyakov variable Φ as a function of
temperature and chemical potential.

In numerical calculations it is of course important to remember
the range of validity of the approach. For a given UV cutoff Λ the
assumption of a temperature- and chemical-potential-independent
bare action in the UV, for example, severely restricts the accessi-
ble range of temperatures and/or chemical potentials. This is most
easily seen in the case of finite temperature where the flow starts
to deviate from the vacuum flow only at around k ≈ 2π T . This
restricts the allowed temperature range at a fixed UV cutoff to val-
ues below T ∼ Λ/(2π). The only way of enlarging this range is to
augment the model result with the expected perturbative behav-
ior, which then also ensures thermodynamic consistency. In fact
one may understand these additional perturbative UV contribu-
tions as being necessary to describe the thermodynamics of the
microscopic model at the UV cutoff scale. To achieve this one can
integrate the purely thermal flow, i.e. the difference between fi-
nite temperature and vacuum flow, from the UV cutoff scale Λ

to infinity. The result is then added to the UV potential before
integrating the flow equation (15). Obviously this gives rise to
temperature- and chemical-potential-dependent initial conditions
in the UV. Note that such a procedure can in general not merely
modify the thermodynamics but affect the phase structure itself.
Here we implement this improvement only in the fermionic fluc-
tuations for which the purely thermal flow reads,

∂t U (T ,μ)

k − ∂t U (T =0,μ)

k

= k5

3π2

∑
±

4

E±
k

(
1 ± μ

εk

)
nq

(
E±

k ; T ,Φ
)
, (17)

see also [47] for a discussion of purely thermal flows. As com-
pared to previous studies [27,28,48], which included analogous
but field-independent UV contributions to ensure a proper Stefan–
Boltzmann limit, we include the full field dependence here. A par-
ticular simplification in the fermionic sector thereby is that the
right hand side of the corresponding flow is independent of the
effective potential and can be straightforwardly integrated.

2.3. Numerical procedure

For a fixed value a0 of the background gauge field the flow
equation (15) for the effective potential was solved on a two-
dimensional grid in field space as in Ref. [24] thereby retaining
the full field dependence of the equation. As the gauge field is
treated simply as a background field in our approach, the full
Fig. 2. Comparison of FRG results for the QMD model phase diagram with and with-
out the thermal UV contributions (17) to the fermionic flow. Chiral crossover lines
(half-value of the chiral condensate) are depicted in red, the second order phase
boundary of the diquark condensation phase found at small temperatures and large
chemical potentials in blue. (For interpretation of the references to color in this fig-
ure legend, the reader is referred to the web version of this article.)

three-dimensional effective potential as a function of the invari-
ants ρ2,d2 and a0 in the IR is obtained by combining results
from runs with different values of a0. In this way one obtains a
discretized IR potential which can be interpolated for example us-
ing cubic splines and which is subsequently minimized. Not only
does this provides a very efficient way of minimizing the full two-
dimensional effective potential in the infrared, using relatively few
of the expensive evaluations of the flow equation, but it also al-
lows to conveniently extract its derivatives at the minimum which
can then be used to define crossover criteria as discussed below.

3. Results

3.1. Impact of thermal UV contributions

The effect of the perturbative UV contributions discussed in the
previous section is seen in Fig. 2 where we compare the full FRG
result for the QMD model phase diagram with these thermal UV
contributions from (17) to the corresponding result of Ref. [24]
without them. The phase diagram shows a phase of broken chiral
symmetry at small temperatures and chemical potentials whereas
for large chemical potentials one finds a diquark condensation
phase signaled by a nonvanishing diquark condensate, see [24] for
a more detailed discussion of the QMD model phase diagram. The
inclusion of UV contributions leads to a slight suppression of the
chiral condensate at larger temperatures which consequently shifts
the chiral crossover line to somewhat lower temperatures. A simi-
lar effect is observed for values of the chemical potential μ above
the onset of diquark condensation at half the pion mass mπ . The
boundary of the diquark condensation phase gets pushed towards
lower temperatures more and more as μ is further increased. It
is important to note, however, that in contrast to corresponding
mean-field calculations [24], for which the inclusion of the full
thermal contributions lead to the appearance of a tricritical point
along the diquark condensation phase boundary, with fluctuations
this boundary remains to be of second order throughout the entire
parameter range investigated here.

3.2. Vanishing chemical potential and crossover criteria

We start our discussion of the PQMD model results with the
case of vanishing chemical potential where the effective potential
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Fig. 3. Chiral condensate (PQMD and QMD model) and Polyakov loop as function of
temperature for vanishing and non-vanishing chemical potential.

is still required to show the full enlarged SU(4) � SO(6) symme-
try and hence the calculation with the O (6) symmetric effective
potential coincides with the full solution. In [24] it was verified
by an analysis of the critical exponents that the finite temperature
transition was consistent with the expected O (6) universality class
corresponding to a symmetry breaking pattern SU(4) → Sp(2) or
isomorphically SO(6) → SO(5). This will still hold in the present
case since the critical physics is governed by the bosonic matter
sector, at least as long as the Polyakov loop is taken as a back-
ground (mean-)field without dynamical matter feedback on gauge
field fluctuations.

Fig. 3 shows the temperature dependence of the chiral con-
densate and the Polyakov loop as quasi-order parameters for the
chiral and deconfinement transitions. For comparison we also in-
clude the chiral condensate obtained from a pure QMD model
calculation corresponding to a fixed value of a0 = 0. At this point
the main effect of the Polyakov loop on the chiral condensate is
to shift the chiral transition to larger temperatures. As both the
chiral and the deconfinement transition turn into crossovers for fi-
nite quark masses, the corresponding transition temperatures are
not uniquely defined. We therefore compare up to three different
definitions and use the resulting variations as indications for the
widths of the two crossovers. The simplest one is the point where
the order parameter reaches half of its value at T = μ = 0. While
this does not even define a proper pseudo-critical temperature, it
turns out to be a useful measure for chiral restoration in the di-
quark condensation region, as discussed in Section 3.4, where there
is no pseudo-critical line. A second commonly used definition is
the inflection point of the order parameter along the tempera-
ture axis, i.e. the extremum of its temperature derivative which
is readily computable, in principle. This can become increasingly
difficult, however, in regions where the slope of the order param-
eter is nearly constant, and it fails entirely of course when there
is no inflection point as for the chiral condensate in the diquark
condensation region for μ > mπ/2, cf. Fig. 3. Finally as a third cri-
terion we use the maxima of the corresponding susceptibilities,
i.e. the chiral and the Polyakov loop susceptibility, which are eas-
ily accessible by taking the appropriate second derivatives of the
effective potential with respect to the order parameters. The max-
ima of the susceptibilities define proper pseudo-critical lines [49]
and are thus the probably most natural choices from the point of
view of critical phenomena.

The corresponding temperature derivatives and susceptibili-
ties are shown in Fig. 4 and the associated crossover tempera-
tures are compiled in Table 1. These values should not be taken
Fig. 4. PQMD model at μ = 0: Comparison of crossover criteria.

Table 1
Chiral and deconfinement crossover temperatures at μ = 0 for pion decay constant
fπ = 76 MeV, a physical pion mass mπ = 138 MeV defined via the onset of the
onset at vanishing temperature and a sigma (screening-)mass of 551 MeV.

Criterion T chiral
c [MeV] T deconf.

c [MeV]
Half-value 219.1 214.4
Inflection pt. 213.0 198.2
Susceptibility 221.1 185.5

too literally as quantitative predictions because they show some
sensitivity to the parameters, especially to the adjusted sigma
mass. As mentioned above, the deconfinement crossover temper-
ature from the inflection point is somewhat below the central
value but still within errors of the corresponding lattice result of
217(23) MeV [22], which was obtained from simulations with con-
siderably larger quark masses, however.

3.3. O (6) symmetric effective potential

In this subsection we address the calculation with an O (6)

symmetric effective potential depending on the single invariant
φ2 = ρ2 + d2. For μ = 0 the solution coincides with the full so-
lution, but it will deviate from that at finite μ. Nevertheless, it
represents a good approximation to the full solution at least for
small chemical potentials where the O (6) symmetry still holds
approximately. As discussed in [24] this calculation closely resem-
bles the corresponding Polyakov-quark–meson model calculations
for 3-color QCD [26–30]. On one hand, the only difference in the
chiral sector is the a larger number of would-be Goldstone bosons,
five here instead of the three pions for the case of two light fla-
vors in QCD, see [6] for a discussion of the Goldstone spectrum.
Two of these five pseudo-Goldstone bosons couple to the chemi-
cal potential in a way analogous to the coupling of charged pions
to an isospin chemical potential QCD, see [12] for a detailed dis-
cussion of the relation between two-color QCD at finite baryon
density and QCD at finite isospin density. On the other hand the
gauge sectors in the two theories are of course fundamentally dif-
ferent. Despite these differences the corresponding phase diagrams
turn out to share the same qualitative behavior.

Two phase diagrams obtained from calculations with O (6)-
symmetric effective potential are shown for comparison in
Figs. 5 and 6. In Fig. 5 we have used a constant T0 = 212 MeV
in the Polyakov loop potential, while Fig. 6 shows the corre-
sponding result with the chemical-potential-dependent T0(μ) =
T0 exp{−cμ2/T 2} and c = 0.46 corresponding to b = 2.6 in Eq. (12)
0
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Fig. 5. PQMD model phase diagram for an O (6) symmetric effective potential and
constant T0. Chiral crossover lines are depicted in red, deconfinement crossover
lines in green for three different crossover criteria, cf. the discussion in Section 3.2,
and first order transitions in solid black. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

to model the leading finite density effects from Debye screening
via the assumption of constant effective charge along the transi-
tion line in the pure glue potential as discussed in Section 2.1.
In the first case the deconfinement temperature only shows a
very slight decrease with increasing chemical potential. The three
different definitions are used to visualize the width of the decon-
finement crossover. In the second case one observes a consider-
able decrease of the deconfinement crossover temperature with
chemical potential. At the same time, as one can infer directly
from Fig. 3 and indirectly from the focusing of the deconfine-
ment crossover lines corresponding to different crossover criteria,
the crossover becomes increasingly rapid with increasing chemi-
cal potential but remains a continuous transition throughout. The
corresponding chiral crossover lines remain more or less parallel
to the deconfinement transition up to a temperature of around
80 MeV from where on the chiral transition bends downwards and
eventually merges into the critical endpoint, whereas the decon-
finement crossover continues to decrease approximately linearly
with the chemical potential until it starts bending away from the
T = 0 axis. Apart from this splitting of the two transitions near the
critical endpoint, which was not observed in the analogous 3-color
calculations, these phase diagrams agree qualitatively with the cor-
responding PQM model results for QCD [29,30]. In particular, the
density-dependent transition temperature T0(μ) in the Polyakov
loop potential has the same overall effect in either case. Moreover,
the phase diagrams in Figs. 5 and 6 both show quarkyonic phases
of confined but chirally restored matter although their sizes differ
considerably. One should keep in mind, however, that both phase
diagrams yield equally inappropriate descriptions of two-color QCD
at finite baryon density as we have so far neglected the diquarks
as the baryonic degrees of freedom in this theory.

3.4. Full effective potential

The correct inclusion of the diquark degrees of freedom is ad-
dressed in the present subsection where we discuss the full so-
lution of the PQMD model flow equation for the effective poten-
tial. Again we compare the phase structure for a constant T0 in
Fig. 7(a) to that with the chemical-potential-dependent T0 = T0(μ)

in Fig. 7(b) and Fig. 7(c). The parameters are the same as in the
previous subsection. Similar to our observation there, without the
density dependence from the Debye mass in the pure glue po-
Fig. 6. PQMD model phase diagram for an O (6) symmetric effective potential and
T0 = T0(μ) (b = 2.60). Color coding as in Fig. 5.

tential, the deconfinement crossover is almost independent of the
chemical potential here as well. This is fully in line with previous
PNJL model mean-field results for constant T0 [17].

The lines from inflection points and susceptibility peaks for the
chiral transition (not shown here) both stay above the diquark
condensation phase boundary and lose their meaning as pseudo-
critical lines at large chemical potentials. That is why we only
show the half-value line as a representative contour line to indi-
cate chiral symmetry restoration, in particular inside the diquark
condensation phase where it is related to the analogue of the BEC–
BCS crossover in two-color QCD.

Very similar to the results from the previous section the in-
clusion of matter backcoupling on the gauge sector, such as the
density-dependent Debye screening, lead to a decrease of the de-
confinement crossover temperature with increasing chemical po-
tential in Fig. 7(b) and Fig. 7(c). As a result, the deconfinement
transition traverses deep into the diquark condensation phase
leading to a phase diagram which is in overall good qualitative
agreement with recent lattice results [23,22]. The comparison be-
tween Fig. 7(b) and Fig. 7(c) serves to illustrate the impact of the
non-perturbative coefficient b. As expected, increasing b leads to
a stronger decrease of the deconfinement crossover temperature
with increasing chemical potential. This comes together with a
certain suppression of the diquark condensation transition temper-
ature above their intersection point. The shape of the diquark con-
densation phase tends to become more rectangular, which would
be in quite good agreement with most recent lattice results [23].

On a more quantitative level, however, these lattice results in-
dicate that the practically μ-independent horizontal boundary of
the diquark condensation phase occurs at a temperature which is
only about half of that of the deconfinement transition at μ = 0
[23]. This might at least partially be explained by the rather heavy
quark masses there, which should be further investigated, but at
the moment it is nevertheless at odds with the available model
results.

Disregarding the differences in physical parameters between
the lattice simulations and the FRG calculation, the deconfinement
crossover in the lattice simulations still shows a somewhat sharper
decrease with chemical potential as compared to the FRG calcu-
lation. This might hint at effects of matter backcoupling on the
gauge sector at large chemical potentials which are beyond the
expansion in (8) for the leading order μ2-dependence in T0(μ)

from the density-dependence of the Debye mass. Furthermore, pre-
vious 4-flavor lattice simulations [20] have provided evidence of
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Fig. 7. PQMD model phase diagrams illustrating the effects of matter-backcoupling
using different parameter values for b, see Eq. (12). Chiral crossover lines (half-
value of the condensate) are depicted in red, deconfinement crossover lines in green
(comparing three different crossover criteria) and the second order phase boundary
of the diquark condensation phase in blue. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

a first order finite temperature phase transition at large chemical
potentials implying the existence of a tricritical point along the di-
quark condensation phase boundary which was attributed to light
mesonic/diquark fluctuations [20]. While this will certainly depend
on the number of flavors, the fact that it is not observed in our
2-flavor FRG calculations here, although the latter includes the rel-
evant fluctuations, points to insufficiencies at large chemical poten-
tials which might be resolved by considering chemical-potential-
dependent initial conditions. More generally, from a QCD perspec-
tive one should take into account the temperature and chemical
potential dependence of the two-gluon exchange diagrams which
drive the flow of 4-Fermi interactions at large scales. The differ-
ence of the vacuum contribution and the corresponding contribu-
tions at finite temperature and chemical potential translate after
bosonization into temperature- and chemical-potential-dependent
contributions to the UV potential.

At some point, however, a proper inclusion of gauge degrees
of freedom beyond the simple coupling to a phenomenological
Polyakov loop potential becomes indispensable. In a functional ap-
proach such a description of two-color QCD could be achieved
quite analogously to what has been done in the case of three col-
ors [50] already.

4. Summary and conclusions

In this Letter we presented first results on the phase diagram
of two-color QCD from a QMD model calculation on the one hand
extending earlier results [24] by the inclusion of gauge degrees
of freedom in the form a coupling to phenomenological Polyakov
loop potential, and on the other hand extending earlier mean-field
calculation [17] by the inclusion of collective mesonic and bary-
onic excitations and effects of matter-backcoupling on the gauge
sector. Furthermore the results presented here include additional
UV contributions ensuring thermodynamic consistency which are
particularly important in regions of the phase diagram where the
temperature is large compared to the UV cutoff scale. These lead to
a certain decrease of both, the chiral and the diquark-condensation
transition temperatures.

Similar to the 3-color case [25,26], the matter backcoupling
onto the gauge sector, here implemented via a chemical-potential-
dependent temperature T0(μ) entering the Polyakov loop poten-
tial, turns out to be crucial for the 2-color case as well. Whereas
the deconfinement transition temperature stays practically inde-
pendent of the chemical potential for constant T0, similar to what
has been observed in a PNJL model analysis [17], the matter back-
coupling leads to a significant decrease of the transition tempera-
ture with increasing chemical potential. The corresponding phase
diagram is found to be in good qualitative agreement with recent
lattice results.

It would provide interesting insights to study the PQMD model
in an extended truncation which goes beyond the zeroth order in
the derivative expansion and which is fully consistent with the
reduced symmetry of the theory at vanishing chemical potential,
although this is expected to lead only to quantitative changes of
the phase diagram. The resolution of the remaining discrepancies
discussed in the previous section will be important for our general
understanding of the reliability of FRG results at large chemical
potentials and might in this sense also be directly relevant for the
corresponding 3-color calculations. Further input might come from
the comparison of two-color QCD thermodynamics between lattice
results and functional methods. In this respect we look forward to
further lattice results for two-color QCD with N f = 2 quark fla-
vors which can be most easily treated in the effective model and
functional renormalization group approaches as discussed here.
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