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Abstract

Iterative orthogonalization is aimed to ensure small deviation from orthogonality in the
Gram-Schmidt process. Former applications of this technique are restricted to classical Gram—
Schmidt (CGS) and column-oriented modified Gram—-Schmidt (MGS). The major aim of this
paper is to explain how iterative orthogonalization is incorporated into row-oriented MGS.
The interest that we have in a row-oriented iterative MGS comes from the observation that
this method is capable of performing column pivoting. The use of column pivoting delays
the deteriorating effects of rounding errors and helps to handle rank-deficient least-squares
problems.

A second modification proposed in this paper considers the use of Gram—SeDRiidt
factorization for solving linear least-squares problems. The standard solution method is based
on one orthogonalization of the r.h.s. vectoagainst the columns @). The outcome of this
process is the residual vectot, and the solution vectox. The modified scheme is a natural
extension of the standard solution method that allows it to apply iterative orthogonalization.
This feature ensures accurate computation of small residuals and helps in case3 thden
some deviation from orthogonality. © 2000 Elsevier Science Inc. All rights reserved.

Keywords: Gram—-Schmidt orthogonalization; Row-oriented MGS; Reorthogonalization; Iterative orthog-
onalization; Column pivoting; Accurate computation of small residuals

1. Introduction

In this paper, we explain how the row-oriented modified Gram—-Schmidt (MGS)
algorithm is adapted to include reorthogonalization. Adte a realn x n matrix. It
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is assumed throughout this paper that- n and that the columns of are linearly
independent. The Gram—Schmidt orthogonalization process is aimed at producing an
m x n orthogonal matrix,

0=l ....q1,  Q'Q=1,
and am x n upper triangular matrixR = (r;;), such that
A = QOR. (1.1)

The columns ofQ are obtained by successively orthogonalizing the columns of
A. The classical Gram—Schmidt (CGS) algorithm and the modified Gram—-Schmidt
(MGS) algorithm share the property that the computed matrizesd R satisfy a
bound of the form

A= ORl2 < yellAl2, (1.2)

wheree denotes the machine precision (or unit round-off) in our computations and
y is a constant that dependsann, and the details of the arithmetic. The difference
between the two methods lies in their ability to orthogonalize the columds bét

o1=2022--20,>0

denote the singular values af Bjorck [2] has shown that if1 /0, < 1/¢, then the
MGS algorithm yields a matri@ that satisfies

|1 - 070|, < ye(or/on). (1.3)

In other words,Q is guaranteed to be nearly orthogonal only whieis a well-con-
ditioned matrix. The CGS fails to satisfy a bound of the form (1.3) and the computed
columns ofQ may depart from orthogonality to an almost arbitrary extent. The dif-
ference between the CGS and the MGS was observed by Rice [15]. For a detailed
discussion of the bounds (1.2) and (1.3), see [2-5,11,17].

The MGS algorithm is implemented in two ways: A “row-oriented” version and
a “column-oriented” version. The origin of these names lies in the way con-
structed. In the row-oriented versiahis built row after row. In the column-oriented
versionR is built column after column, as in the CGS algorithm. (The details are
specified in the following sections.) Nevertheless, as the colum@savé generated
in the same way, the two variants are numerically equivalent. They perform the same
operations and produce identical numerical results. The difference between the two
versions lies in the fact that only the row-oriented version is capable of performing
column pivoting. The use of column pivoting brings a number of important advan-
tages. First, it delays the deteriorating effects of rounding errors to the last columns
of O and the last rows oR. Second, as explained in SectionR satisfies (2.8)
and (2.10). This feature improves the accuracy of the back substitution process for
solving a linear system of the form (7.6), e.g. [11, pp. 155, 156, 161]. The solution of
(7.6) is part of the standard method for solving linear least-squares problems. Further
benefits come from the information which is exposed byQ@fRdecomposition. For
example, the pivote@R decomposition has a good reputation as a gap-revealing
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algorithm, e.g. [17, pp. 373-375]. Similari@R with column pivoting may reveal
that A is numerically rank deficient. In this case, it provides a simple method for
calculating pseudo-inverse solutions of the relevant least-squares problem. See, for
example, [4, pp. 103-117], [8, pp. 130-132] or [10, pp. 162—-166].

The loss of orthogonality in the columns @f can be avoided by repeated use of
the orthogonalization process. This idea has been discussed by a number of authors
under the names “reorthogonalization” and “iterative orthogonalization”. See Refs.
[1,3,4,6,12,14-17]. The iterative CGS algorithm is due to Daniel et al. [6], while
Ruhe [16] was the first to propose a column-oriented iterative MGS algorithm. A
further discussion of these techniques is given by Hoffmann [12] who compares
the performance of the two methods. So far it was generally accepted that a row-
oriented version of the iterative MGS is not possible [12, p. 338]. Nevertheless, as
the next section shows, there is an elegant way to implement such an algorithm. This
breakthrough paves the way for iterated MGS with column pivoting.

The outline of our paper is as follows. In Section 2, we present the new algo-
rithm, while Section 3 compares it with the column-oriented iterative MGS. The
need for reorthogonalization is explained in Section 4. Yet, as Section 5 shows, in
some situations, two orthogonalizations are not enough to ensure small deviation
from orthogonality. A further insight into the nature of the iterative orthogonalization
process is gained in Section 6, in which we utilize its links with the Gauss—Seidel
iteration. The use of Gram—-Schmi@Rfactorization for solving linear least-squares
problems is discussed in Section 7. The standard solution method is based on or-
thogonalization of the r.h.s. vectbragainstys, . . ., g,, which results in the residual
vectorr*. This process loses accuracy whigrf||2 is small with respect tdb||2,
so iterative orthogonalization is essential to ensure accurate computation of small
residuals.

We shall complete this section by introducing some necessary notations. The
Gram-Schmidt orthogonalization process is an iterative method that consists of
iterations. Starting witfDg = A andRg = 0 € R"*" it generates two sequences of
matricesQr andR;, k =1, ..., n,suchthaQ = 0, andR = R,. Thekth iteration
starts withQ,_1 and ends withQy. In practiceQy is overwritten onQ;_1. The
same is true foR; and R;_1. At the beginning of théth iteration we have already
computedqy, . .., gx—1, While the other columns 0f;_; are denoted aa;.k_l),
j=k,...,n. Thatis,

k—1 k—1 k—1
Qk—].: I:qla-'-aqk—la a/(C )aa/(<+1)7-'-a (1 )]a

k
Or = [QL---,Qk—l, Ak, a]((_:l,_._’ailk):l’

and so forth. Theth iteration is composed of a number of steps affa?, j=
k,...,n, denotes the current value of thih column of Q1 during tﬁese steps.

In the next iterationai.k’l) automatically turns int(a;k). The entries ofR;_1 are
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used without noting the iteration index. This way denotes the current value of the
(i, j) element ofR,_1 during thekth iteration. The notation= is used to denote
arithmetic assignment. Thus, e.g:=r;x + @; means “set the new value gj; to
berir +a;”.

2. The new algorithm

In this section, we describe a row-oriented MGS algorithm with reorthogonal-
ization. We start with a simple version that illustrates how row-oriented and col-
umn-oriented orthogonalizations are combined together. Later, we shall show how
the algorithm is modified to include column pivoting and iterative orthogonaliza-
tion. Thekth iteration of the proposed methdd= 1, 2, ..., n, is composed of the
following three steps.

Stepl: (Reorthogonalization (ﬁ,({k’l) with respect tays, ..., Qk—1)
If K = 1 skip to Step 2. Otherwise, for=1, ...,k — 1, do as follows:
Seta; = qTal" P, riyp:=rip +o; andal P :=a* P —q;.

Step2: (Normalization ofa,({k’l))

k—1 k—1
Setri = llaf ||z andae = & Y /.
Step3: (Orthogonalization oa‘il({';’ll), e, a,(,k’l) with respect tayx)
If K = n terminate. Otherwise, fof = k + 1, ..., n do as follows:
T,o(k—=1) (k—=1) (k—1)

Setry; = q,a; ~anda; Ti=a; 7 — O

Observe that without Step 1, the new algorithm is exactly the row-oriented MGS
algorithm (see [3] or [4]). The justification of the way we buiklis based on the
following arguments. Using matrix notations thih iteration is summarized by the
equality

k k) k) ok
OB B EY, - P = 01
whereEﬁk), j=1,...,n,are elementary matrices: Fpe=1, ..., k — 1, post-mul-

tiplication byE;k) subtracts thg'th column, multiplied byx;, from thekth column.

Similarly, post-multiplication by£*’ divides thekth column byry; while for j =

k+1,...,n,post-multiplication b)E;k) subtracts théth column, multiplied by,
from the jth column. Define

k) _ (k) (k) (k) (k) k
EW=EY - EX BV BV EP.
Then
AE(l)"'E(n):Qn:Q

and
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R=(E™ ... (EM™,
where
(E®)yL = (E®) L (EF)T fork=1,...,n

The matrices(Ej.k))*l have a simple structure: Fgr=1, ..., k — 1, post-multi-
plication by (Eﬁ.k))‘1 adds thejth column, multiplied byw;, to thekth column.

Similarly, post-multiplication b)(E,Ek))*1 multiplies thekth column byri ; while for

j=k+1, ..., n, post-multiplication by(Eﬁ."))‘1 adds thekth column, multiplied
by r¢;j, to the jth column. These relations explain the rules for construdting

The incorporation of column pivoting in our algorithm is done in the same way as
in the row-oriented MGS algorithm. A common pivoting strategy is to starkthe
iteration by interchanging columns such that

max

o=
2 j=k,...n

2
-1
Hak ag.k )Hz. (2.1)

See e.g.[4,13,15]. This rule is similar to the standard pivoting strategy of the House-
holderQR factorization (e.g. [4,9,10,17]). The practical implementation of column
pivoting is achieved by adding the following step at the start oktheateration.

Step0: (Column pivoting) Compute a column indgk such that

2 2
= e [
J 2 Jj=k,...,n J 2
- ; ; ; =D (k—=1)
If j* =k skip to Step 1. Otherwise, mterchangyé with a; andr;j
withrig,i =1,...,k—1.
The updating of the termml;*lng, j =k, ...,n, from one iteration to the next

can be based on Pythagoras’ theorem:d &k a unit vectora an arbitrary vector
ande = q'a. Then

2 2 2
la—eaqlz = llalz —a.

Hence, e.g., Wheaék_l) is modified in Step 3 the value qaj."‘bng can be updated

by the rule

2 2
kD% _ 6D _ 2
|2, = a1, -

Remark. The use of Pythagoras’ updating rule has an inherent computational diffi-
culty. Lete denote the unit round-off in our computations. Then the size of the round-

ing error in the computed value ¢a§°> ||§ = Z;n:l(aij)z is abouts; = 5||a§0) ||§, and

the same is true for the coming (updated) valueﬂaélf’l)ng. Hence, the relative
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error in the updated value qua;k’l)nz is abouts]/||a(k 1)||2. Therefore, when this
ratio exceeds a certain threshold values min{¢'/4, 0.01} say, we cannot trust the
current (updated) value cuh(/.k’l) ||§. Fortunately, there is a simple way to overcome

this drawback: Once the current (updated) valu&a?f‘””% becomes smaller than

gj/t, both||a(k l)||2 ande; are recomputed according to the rules

m
*k-1 )2 _ (k—1)
Haf Hz_z< ij )
=

and

o 2
o=e i

wherea(k D denotes theth component ofa(k D This precaution ensures at least

two correct digits in the computed value |¢ﬂ(k 1)||2, which is satisfactory for the
purpose of column pivoting. In the followmg sections we shall see that the level
of rounding errors |ra(k bis expected to stay abouﬂa(o)nz Hence, the value of

||a(k 1)||2 is unlikely to be considerably smaller thaﬁ||a(0)||2. Therefore, ife <

10-8, then recomputation qfa(k l)||2 ande; is unlikely to occur more than three
t|mes

The use of iterative orthogonalization was initiated by the works of Daniel et al.
[6], Ruhe [16] and Hoffmann [12]. See also [1,3,4,14]. The iterative version of Step
1 is carried out as follows.

Stepl*: (Iterative orthogonalization (H,(Ckfl) with respect tayy, . .., Qk—1)
If £ = 1 skip to Step 2. Otherwise, we generate a sequence of vegidrs-
0,1, 2,...,inthe following way. Starting fromig = a; andu; = a,({k_l), the
vectorug1 is obtained by orthogonalizingy with respecttays, ..., Qr—1.

In practice the vectorg,, ¢ =0, 1, ..., are overwritten ora,({k’l), so, only

one vectoru = a(k D is used to denote the current value wpf To stop
the iterative orthogonalization process we use a preassigned comstaht
(Typical values of ofp arep = 2 or p = +/2.) With these notations at hand

the details of théth iteration,l = 1, 2, ..., in whichu,1 is obtained from
uy, are as follows: If
P2lluell3 > llue—1l13, (2.2)

then terminate. Otherwise, for= 1, ..., k — 1 do as follows:
Seta; = q;rU/g, rik :=rik +a; andug :=Uy — «;Q;.

One motivation behind the stopping condition (2.2) lies in the following obser-
vations. LetB denote then x (k — 1) matrix, whose columns amg, ..., gx—1. In
practice
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B"B=1+E,
where E = (e;;) is an error matrix which is generated by the rounding errors in
the computation ofy, . .., gx_1. Thus, once the unit vect@iy 1 = Ugy1/||Ues1]l2

satisfies a bound of the form

|BTGe11], < (02 = DYZ|E|2,
there is no reason to continue the iterative orthogonalization process. Observe that
foreachindex, 1 <i <k—1,

T _ aTq. T _ o ‘

g, U1 = o — (oc,q,» qi + -+ ak-10; Qk—l) = —(ojeji + -+ 1€ k-1).

Using matrix notations the last equalities are written as

BTu[+1 =Ta, (2.3)

wherea = (a1, ..., a—1)" € RF-YandT = (1)) is a(k — 1) x (k — 1) upper tri-
angular matrix which consists of the upper triangular par£ofThat is,z; =0
wheni > j ands;; = ¢;; wheni < j. Note also that the factoes, i = 1,...,k — 1,
satisfy the equality

2 2 2 2 2 2
luesal3 = ueld = (o + -+ ofy) = lluclf — ol

Assume now that (2.2) holds with respect to theandu, 1. In this case

2 2
laell3 = lluell3 — luerals < p2Uesall3 — luesall < (0% = Dllugyall3,

so the vectof = a/||ugy1]|2 satisfies

&, < (0* = ™2 (2.4)
Hence, from (2.3) we conclude that

| BTGesa], = [ T4, < 2 < (0 = DY2|T 2. (2.5)

In other words, the error propagation in the orthogonalization process is controlled
by the size oft, while (2.2) ensures thd||, is smaller thar(p? — 1)1/,

The implementation of the iterative orthogonalization idea to row-oriented MGS
can be done in a number of ways. One option is to add the following step at the end
of the basic iteration.

Step4: (Iterative orthogonalization (ﬁffjrll), e, (k b againsigy)

Here for each columnindex j =k +1,...,n, we generate a sequence of
vectorsvy, £ = 0,1, 2, ..., inthe following way. Starting witvg = a; and
= a(k D the vectow, 1 is obtained by orthogonalizing againsiy. In
practice the vectorg,, ¢ = 2, 3, ..., are overwritten o P The details
of the ¢th iteration, in whichv,, 1 is obtained fronv,, are as follows: If

P ||Ve||2 Ve 1||2, (2.6)
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terminate. Otherwise, set

o = QIVe, rj =1k + @, Vg = Ve — e and [veya|5 = Ivell5 — o,

In order to allow more flexibility, the value g in Step 4 may differ from its
value in Step 1. Note also that Steps 3 and 4 can be merged into one step.

We shall finish this section with brief remarks on the effects of column pivoting.
Recall that the basic iteration of row-oriented MGS with column pivoting is com-
posed of Steps 0, 2 and 3. In this algorithm the column interchanges at the beginning
of thekth iteration ensure (2.1), while at the end of Step 3

k—1 k—1 k—1
gl = Jafal ™| < ez a0 = P

Therefore, since;, = ||a,(<k_1)||2,

[Frr| = |kl forj=k+1,...,n (2.7)

Moreover, the equality
2 2

® [ _ [4k-D[*_ 2

|21, ==, -

shows that for each columnindgx j =k +1,...,n,

,

k=12 _ 2

Haj HZ—Z’A/
i=k

and
J
rhe= Y r. (2.8)
i=k
Hence, in particular,

lr1a] = Irool = -+ = |run] (2.9)
and
lrikl = 1rijl Ve <i < j<n. (2.10)

Let us turn now to see what happens to these relations when the basic iteration is
extended to include iterative orthogonalization. Assume first that the basic iteration
is composed of Steps 0, 2, 3 and 4. Observe that the changgsduaring Step 4
are essentially negligible (see Sections 4-6). Hence, (2.7) and (2.9) are expected to
remain valid in this case.

The situation is more complicated when the basic iteration is composed of Steps
0, I* (or 1), 2 and 3. Here the orthogonalization process of Stgpill) is capable
of causing a substantial reduction in the sizqu“l)n%. Hence, the addition of
this step may violate (2.1) and the succeeding relations (2.7)—(2.10). Nevertheless,
sincea,(ck_l) has already passed one orthogonalization before Stégkés place, a



A. Dax / Linear Algebra and its Applications 310 (2000) 25-42 33

significant reduction in the size qjh,({k’l) 13 is expected only whea,({k’l) becomes

so small that it is considerably contaminated by rounding errors (see Sections 5 and
6). Thus, even in this case, the pivoting operations remain valuable: As before the
deteriorating effects of rounding errors are deferred to the last iterations and the
resulting QR factorization provides the information which is needed for handling
rank-deficient problems.

3. Relations with other orthogonalization techniques

We shall start with a brief description of the iterative column-oriented MGS
algorithm. This method was firstly proposed by Ruhe [16], while Hoffmann [12]
investigates its performance. Th#h iteration of Ruhe’s algorithmk =1, ..., n,
is composed of the following three steps.

Stepl’: (Orthogonalization oa}f*l) with respect tays, ..., Qr—1)
If kK = 1 skip to Step 3 Otherwise, foi = 1, ...,k — 1, do as follows:
Setrix = qiTa,({k_l) anda,({k_l) :=a,(ck_1) — rikQi.
Step2’: Identical to Step Labove.
Step3d’: (Normalization ofa,(f’l))
Setr = [[aX V) andgx = a(k_l)/rkk.
kk s e

Observe that without Steg Ruhe’s algorithm reduces to the column-oriented
MGS. Note also that Ruhe’s algorithm is numerically equivalent to restricted ver-
sion of our algorithm in which the basic iteration is composed of Stép2 hnd
3. These two algorithms perform the same operations but in different order. This
does not affect the construction of the vecm(f§l) and the way rounding errors are
generated. So both methods produce the same numerical results. However, being a
row-oriented scheme, our algorithm is capable of performing column pivoting. The
following example illustrates the importance of this feature.

LetA = [a, ..., a,] be a well-conditioned matrix and laeg be redefined by the
ruleas:=a; + ap + tag, wherer is smaller than the round-off unit in our computa-
tions. Then, in the third iteration of Ruhe’s algorithag) becomes so small that it
is entirely contaminated by rounding errors. Thus, thoggls orthogonal tay; and
g2, its components are essentially random numbers that come from rounding errors.
This in turn implies that the components of the vecysgs, . . ., g, also contain
large “random” portion that comes from rounding errors and the same is true for
the coefficients;;, j =3,...,n,i =1,..., j. Hence, the information that comes
from this factorization is practically useless. Let us turn now to see how the new
algorithm handles the above matrix. Assume that the basic iteration of our algorithm
is composed of Steps 07,12 and 3. Recall that without Step 0, this algorithm is
numerically equivalent to Ruhe’s algorithm. Yet the column interchanges in Step 0
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gradually movesg from the third column to the last column. This way the undesired
effects of rounding errors are deferred until the last iteration and the only column of
0 which is considerably contaminated by rounding erroig,isSimilarly, the only
entry of R which might be effected by rounding errorsijg. All the other columns

of Q (entries ofR) are essentially “free” of rounding errors. Moreover, singgis
practically zero, the resultinQRfactorization provides useful information enand

it is applicable for calculating pseudo-inverse solutions (see [4, pp. 103-107], [8,
pp. 130-132] or [10, pp. 162— 166]).

4. The need for reorthogonalization

In this section, we briefly explain the need for reorthogonalization in the Gram—
Schmidt process. For this purpose we consider the orthogonalizatevath re-
spect to the vectorgy, . . ., gx—1. To simplify the coming discussion, we make the
assumption that these vectors are mutually orthogonal. Se thék — 1) matrix

B=1[qa,..., k-1l

is assumed to satisfy

B'B=1. (4.1)
Let the sequencey, £ =0,1,2,..., be generated as in Step &f our algorithm
(which is also Step’2of Ruhe’s algorithm). Recall thatg = a; and thatu,.; is
obtained by orthogonalizing, with respect tays, ..., gx—1. The orthogonalization
process is done in the MGS style:
Fori=1,...,k —1setq; = ql.Tu@ andug :=uy — «;Q;. Finally, setuy41 = uy.

DefineS = Spar{qy, ..., Qx—1} and letT = Null(BT) denote the orthogonal com-
plement ofS in R™. Then each vectar, has a unique decomposition of the form

Ue =S¢ +tg, 4.2)

wheresy € S andt; € T. Of course, in exact arithmet& = 0 andt;, = tg for £ =
1,2,... However, in practices, differs from 0 because of rounding errors in the
orthogonalization process. In floating point arithmetic

Isell2 = Beyellue—1ll2, (4.3)

wheree denotes the machine precision (unit round-off) in our computatigns,
some constant that depends lonm, and the details of the arithmetic, ard is
some number from the intervgl-1, 1]. See [2,4,11]. Consequently, the unit vector
O¢ = ug/|Jug|2 satisfies

|BTOc|, = |BTse|,/ lluellz = lisell2/lluell = Beyellue-alla/llucllz.  (4.4)
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In other words, the deviation from orthogonality is proportional to the ratio
llug—1ll2/lluell2- The larger is this ratio, the larger the deviation!

These observations clearly explain why reorthogonalization is essential to ensure
orthogonality in the Gram—Schmidt process. In practice the ratio

[Uoll2/llusllz = llaxll2/llu1ll2 (4.5)

can be arbitrarily large. Hence, stopping the iterative orthogonalization process after
one iteration, without paying attention to this ratio, is doomed to produce large devi-
ation from orthogonality. The more ill-conditioned s the larger is the possibility

of having a situation in which the ratio (4.5) is large.

At the same time we see that the termination condition (2.2) ensures that the size
of |BT0¢ || stays belowyep, which is as good as we can ask for. This raises the
question of what leads us to believe that (2.2) will eventually hold and how many
iterations are needed to achieve this goal. The answer is given in the next section.

5. How many orthogonalizations are necessary?

We continue the former discussion with an attempt to clarify the situation af-
ter two successive orthogonalizations. Let the positive number defined by the
equality

Istll2 = viltall2. (5.1)
Then
lull3 = lIst +tall3 = lIsll3 + Itell3 = L+ v?)[In)3. (5.2)

In practicev is not expected to be much larger than one. Otherwigés practically

zero, assy is generated by rounding errors. Furthermore, even in this case,when

is considerably contaminated by rounding errors, it is still reasonable to assume that

v has a moderate size, because of the random nature of the rounding errors. To see

the last point assume for a moment that the “true” valueio$hould beD, sou; is

entirely made of rounding errors. Then a priori we have no reason to expeftgfat

is considerably smaller thalfs; ||2, especially, whert is small with respect tan.

However, as this is only a “probabilistic” argument, we might face some exceptions.
On the other hand, the vectoy = s + t2 is likely to have a different structure:

The size ofs; is expected to be about

yellullz = ye@ +v3)Y2tyl2,

while ty is expected to stay closetg. In practice it is highly unlikely that exceeds
1/(ye), so|2]2 is expected to be (considerably) smaller thiasi|2. In this case,
when||sz||2 is considerably smaller thafiz| 2, there exists a small numbét,such
that|§| « 1 and

luzl3 = (1 + &) Itall3. (5.3)
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Combining (5.2) and (5.3) gives the equality
lugli3/lluzll = (L+v?)/(L+5), (5.4)

which means that ip? is smaller thar(1 + v2)/(1 + §) we will need a third orthog-
onalization!

Nevertheless, there are three pieces of good news that emerge from the above
discussion. First, we see that a fourth orthogonalization is almost never needed: In
practice it is highly unlikely that exceeds A(y¢), so||sz||2 is expected to be consid-
erably smaller thatjtz||2, which ensures that the third orthogonalization ends with
satisfactory results. Second, the use of column pivoting leads to the inequalities

-1 .
[t <tz j=kem, (5.5)

while a third orthogonalization takes place only whn |2 is aboutye|lax]2. In

other words, a third orthogonalization is needed only when we reach a point from
which the orthogonalization process is actually dominated by rounding errors! Third,
the use of column pivoting delays the need for three orthogonalizations (and the
propagation of rounding errors) to the last iterations. Moreover, from (2.2) we see
that unless a third orthogonalization is carried out the vacimatisfies

luzll2 = lluill2/p. (5.6)
In this case the inequalities (2.7)—(2.10) are replaced by

rad = allz > usllz/p > [af 2| so. j=k+1...om, (5.7)
and
Irkkl = Irijl/p Yk <i<j<n. (5.8)

A violation of (5.8) is possible only after a third orthogonalization is performed. Yet,
as we have seen, at this stage rounding errors actually dominate the Gram—-Schmidt
process.

It is instructive to inspect our conclusions in view of the experiments made by
Daniel et al. [6] and Hoffmann [12]. The latter work examines the iterative CGS and
the iterative MGS on a large collection of “randsvd” matrices. In these experiments
there was no substantial difference between the two methods. The deviation from
orthogonality in the final matrixQ, was proportional t. Thus, to gain maximal
precisionitis necessary to use a smak.g.,0 = 2. Yet, in all the experiments made
by Hoffmann [12], a third orthogonalization never occurred. The explanation of this
phenomenonis, perhaps, that the largest condition numbetisvtile the machine
precision ise = 0.5- 10~14. That is, the condition numbers of the tested matrices
are considerably smaller thari<l If the condition number ofA exceeds Jg, then
it is possible that at some stageis entirely contaminated by rounding errors. This
paves the way fov to be larger than one, so the iterative Gram—Schmidt algorithm
may need more than two orthogonalizations. Indeed the experiments of Daniel et al.
[6] illustrate this point. These experiments apply the iterative CGS algorithm (with
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p = +/2andp = 10) onm x n sections of Hilbert matrix. Here= 0.5 - 812 while

the condition number of the tested matrices is considerably larger fhaifius, as
expected, three orthogonalizations are often needed. Moreover, restricting the num-
ber of orthogonalizations to two results in a total loss of orthogonality! In other
words, when treating ill-conditioned matrices iterative orthogonalization is essential
to ensure orthogonality. Nevertheless, there is no report on a case in which more than
three orthogonalizations are needed.

6. The iterative MGS and the Gauss—Seidel iteration

A further insight is gained by discarding the assumption that the vectors

di, - - -, qx—1 are mutually orthogonal. Now (4.1) is replaced by the equality
B'B=I+E, (6.1)
whereE is an error-matrix that comes from rounding errors in the computation of
di,---,0kx—1. Orthogonalizinga, with respect to these vectors means finding the

projection ofa; on T, the orthogonal complement & = Sparqs ..., qx—1}. This
can be done by solving the least-squares problem

min |lax — BxI|3
or the corresponding system of normal equations
BT"Bx = B'4. (6.2)

Let the sequencg,, ¢ =0,1,2,..., be obtained by applying the Gauss—Seidel
iteration for solving (6.2), starting withg = 0 € R*~1. Ruhe [16] was the first to
note that in this case

UZ:ak_BXZv 62071127"'9 (6.3)

where, as before, the sequer{ce} is obtained by the iterative MGS process de-
scribed in Step "L (A similar relation exists between the Jacobi iteration and the
iterative CGS.) Let the matricg3 and L be defined by the equality

E=D—-L-1LT,

and the restrictions thab is a diagonal matrix and. is a strictly lower triangular
matrix. In order to investigate the behavior of the sequeficésand{u,}, we assume
that

D2 < 1 (6.4)
and
IL]2 < 1. (6.5)

These assumptions imply th&t" B is a positive-definite matrix. So the theory of
the Gauss—Seidel method ensures that the seqerjcnverges ta*, the unique
solution of (6.2). Furthermore, the rate of convergence is determined by the rule
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Xe —x*=H'(xo—x*), ¢=0,12...,

where
H=U+D-L)LT

is the corresponding “iteration matrix”. Note that
I+D—L)y'=I1+(L-D)+(L—-D)>+--,

SO||H ||2 is only slightly larger thari L||2. Now the relations

BTuy=BT(a — Bxp)

=B"B (X" —x¢) = BTBH" (x* —x0) = B BH'x* (6.6)
imply the bound
|BTue|, < | BTB||, IIH 51X 2. (6.7)

Moreover, since* = (BT B)"1BTa, and
|(5TB)"| <va-iE.
it follows that
|BTue|, < ellHIIS llax 2. (6.8)
where
o =[BT, [B"B|,/A-1El
is a constant that satisfiéb — «| « 1. Substituting (4.2) into (6.8) gives

Isell2 < BIHIS a2, (6.9)

whereg is another constant that satisfids— 8| <« 1. Thus, in exact arithmetic, the
sequencé| s ||z} converges to zero and the rate of convergence depends on the size
of [L]2.

The sequencg,} behaves in a different way. In exact arithmetic= tg for £ =
1,2,..., sothe changes betwegnandt,_1 come from rounding errors. Therefore,
if ||to] is considerably larger thare||a,| 2, thenthe vectors, ¢ = 1,2, ..., remain
almost unchanged during the iterative orthogonalization process. On the other hand,
if |Itoll2 is smaller thanye|lax||2 or about that size, thelfit1|| is essentially made
of rounding errors. This may result in a substantial difference betwsgandt;.
Yet, sincel|uz]|2 is much smaller thafjiug||2, in the next iterations there are minor
changes betwedn andty 1.

Summarizing the above discussion we see that a small valpdeazds to slow
build up of deviation from orthogonality. This allows us to assume [lidly is not
much larger thary ¢, so the probability to need a fourth orthogonalization remains
small. Moreover, a third orthogonalization is carried out only when

[uzllz < [[uall2/p. (6.10)
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while the assumption thatZ ||, is close toye implies that (6.10) is possible only
when||to||2 is smaller thary ¢ ||ax||2 or about that size. This in turn means that||2

is about||L||2]lak|l2. In other words, the size af; is close to that of the rounding
errors.

7. Solving linear least-squares problems

In this section, we consider the use of the compu@&tifactorization (1.1) for
solving the standard least-squares problem

min||Ax — b||3. (7.1)
Letx* € R" denote the unique solution of (7.1) and let
r=b— Ax* (7.2)

denote the corresponding residual vector. As befodenotes the orthogonal com-
plement ofS = Spariqs, ..., g,} in R”. Note thatr* is the projection ob on T.
Hencer* can be obtained by applying one sweep of the MGS algorithm to orthog-
onalizeb againsts, . .., q,. This results in an extend€@R factorization

[AbkﬂQuﬂﬁ-i} (7.3)

wherez € R" is determined by the MGS process ane: r*. From (7.3) we derive
the relations

AX—b=[A,Db] (_i) =Q(RXx—2) —u (7.4)
and

IAX — b3 = |Q(RX — 2) — ull3 = | Q(Rx — 2)|13 + |lul|3, (7.5)

where the last equality relies on the fact that T. Now we see that the least-squares
solution,x*, can be computed by solving the upper triangular linear system

Rx=1z (7.6)

via back substitution. This constitutes the standard method for solving linear least-
squares problems via the Gram—-Schn@@R factorization, e.g. [2], [3], [4, p. 65],
[11, pp. 396, 397] and [17, pp. 297, 298].

However, the standard approach is not always satisfactory. In some applications
it is desired that the computed residual will satisfy

[ATF], < pelr 2 (7.7)

This is the case, e.g., in certain affine scaling methods, witigfie*||2 is used as a
search direction in Nul4T) while it is known that||r*|» tends to be considerably
smaller than||b||2. See [7] for a detailed discussion of this issue. Yet, as we have
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seen, in this case one sweep of the MGS is not sufficient to ensure orthogonality.
To rectify this flaw we use iterative orthogonalizationtoégainstyy, ..., g,. The
modified algorithm uses the vect@s= (z1,...,z,)" € R” andu € R™, whereu

starts ad and ends as*.

A modified least-squares algorithm

Stepl”: (Orthogonalization ob againsis, .. ., q,)
Setu =b. Thenforj =1, 2,...,n do as follows:
Setz; = gjuandu:=u— z;q;.

Step2”: (Iterative orthogonalization af againsty, . . ., q,)
Starting withup = b andu; = u we generate a sequence of vectogs,t =
0,1,...,whereuy; is obtained by orthogonalizing againsgy, ..., g,. In
practice all the vectorsy, £ = 0,1, 2, ..., are overwritten oi. The details
of the ¢th iteration, in whichuy 1 is obtained fromu,, are as follows:
If (2.2) holds, terminate. Otherwise, fgr= 1, ..., n do as follows:
Sete; = qju, zj:=z; +«; andu:=Uu — «;q;.

Step3”: (Computation ok*)
Use back substitution to solve the upper triangular system (7.6).

Observe that without Stefd 2he above algorithm is identical to the standard solu-
tion method. The most important feature of the proposed algorithm is that reorthog-
onalization is not added automatically. Each iteration uses (2.2) to decide whether a
further orthogonalization is needed. This saves unnecessary iterations. Another fea-
ture that characterizes our method is that each reorthogonalization includes updating
of z. If Q is nearly orthogonal, then the resulting changeg are expected to be
negligible. However, this is not necessarily true wh@rhas some deviation from
orthogonality. That isQTQ = I + E, whereE is small but not negligible. In this
case the iterative MGS behaves like a Gauss—Seidel method, so it might need more
than two orthogonalizations to achieve small deviation from orthogonality.

Finally, we would like to clarify that the modified algorithm is not necessarily bet-
ter than Householder's method or other least-squares solvers. In fact, as explained in
[7], the rival methods can also be modified to ensure (7.7). Our point is that this is the
“right way” to apply the Gram-Schmid®R factorization for solving least-squares
problems. The reader is referred to [4,10,17] for a detailed comparison between the
Gram-Schmidt and the Householder approaches.

8. Concluding remarks

The use of iterative orthogonalization is aimed at ensuring small deviation from
orthogonality in the columns af. Former implementations of this idea concentrate
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on CGS and column-oriented MGS. Moreover, it was generally accepted that a row-
oriented iterative MGS is not possible [12, p. 338]. Yet, as this paper shows, there
is an elegant way to resolve this difficulty. The interest that we have in a row-ori-

ented iterative MGS comes from the observation that this method maintains small
deviation from orthogonality and, at the same time, it is capable of applying column

pivoting.

The advantage of column pivoting is illustrated in Section 3. We have seen that
Ruhe’s algorithm is numerically equivalent to a restricted version of our algorithm in
which the basic iteration is composed of Steps2land 3. The addition of column
pivoting results in a significant improvement in the performance of the algorithm.
First, it defers the deteriorating effects of rounding errors to the last iteration. Now
only the last column of) andr,,,, are considerably effected by rounding errors. Sec-
ond, the resulting)Rfactorization enables us to handle rank-deficient least-squares
problems.

It is true that the orthogonalizations in Step rhay violate (2.1) and, perhaps,
some of the succeeding relations. However, this should not be considered as a real
flaw. On the contrary, a significant reduction in the sizﬁajf_l) |2 is possible only
when two orthogonalizations are not enough. In this case the siaa,(bel)Hz is
aboutye|lak||2, so the vectoa,({k_l) is considerably contaminated by rounding errors.

In other words, strong violation of (2.7)—(2.10) is not expected until we reach an
iteration that requires three (or more) orthogonalizations. Yet from this stage onwards
the orthogonalization process is actually controlled by rounding errors. Knowing that
stage is valuable information when handling rank-deficient problems. Note that the
last conclusion does not require a priori knowledge of y. The important point is,
again, that pivoting operations delay the need for three orthogonalizations (and the
domination of rounding errors) to the last stages of the Gram—Schmidt process.

Note that there is considerable flexibility in applying an iterative MGS scheme.
This is one of the reasons that the presentation in Section 2 starts with a simple
iteration that consists of only three steps. Then it is shown that the basic iteration
can be modified in several ways. A further flexibility comes from the choice of the
termination factor, and the way one ensures that the iterative orthogonalization
process will terminate in a finite number of iterations.

The use of the MGS algorithm for solving linear least-squares problems is con-
sidered by a number of authors. However, none of the former descriptions of this
method explicitly uses iterative orthogonalization. Perhaps, because they concentrate
on the computation ox*. Yet in some applications it is necessary to ensure that
the normalized residuat*/|r*||», belongs to NullAT) even when|r*||» is small
compared ta|b|2. The algorithm proposed in Section 7 is a natural extension of
the standard solution method that allows it to use iterative orthogonalization. The
test (2.2) prevents unnecessary iterations and, at the same time, ensures accurate
computation of small residuals. A further advantage of the modified scheme is its
ability to provide accurate results whé&hhas some deviation from orthogonality.
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