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Abstract

Iterative orthogonalization is aimed to ensure small deviation from orthogonality in the
Gram–Schmidt process. Former applications of this technique are restricted to classical Gram–
Schmidt (CGS) and column-oriented modified Gram–Schmidt (MGS). The major aim of this
paper is to explain how iterative orthogonalization is incorporated into row-oriented MGS.
The interest that we have in a row-oriented iterative MGS comes from the observation that
this method is capable of performing column pivoting. The use of column pivoting delays
the deteriorating effects of rounding errors and helps to handle rank-deficient least-squares
problems.

A second modification proposed in this paper considers the use of Gram–SchmidtQR
factorization for solving linear least-squares problems. The standard solution method is based
on one orthogonalization of the r.h.s. vectorb against the columns ofQ. The outcome of this
process is the residual vector,r∗, and the solution vector,x∗. The modified scheme is a natural
extension of the standard solution method that allows it to apply iterative orthogonalization.
This feature ensures accurate computation of small residuals and helps in cases whenQ has
some deviation from orthogonality. © 2000 Elsevier Science Inc. All rights reserved.

Keywords: Gram–Schmidt orthogonalization; Row-oriented MGS; Reorthogonalization; Iterative orthog-
onalization; Column pivoting; Accurate computation of small residuals

1. Introduction

In this paper, we explain how the row-oriented modified Gram–Schmidt (MGS)
algorithm is adapted to include reorthogonalization. LetA be a realm × n matrix. It
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is assumed throughout this paper thatm > n and that the columns ofA are linearly
independent. The Gram–Schmidt orthogonalization process is aimed at producing an
m × n orthogonal matrix,

Q = [q1, . . . , qn], QTQ = I,

and ann × n upper triangular matrix,R = (rij ), such that

A = QR. (1.1)

The columns ofQ are obtained by successively orthogonalizing the columns of
A. The classical Gram–Schmidt (CGS) algorithm and the modified Gram–Schmidt
(MGS) algorithm share the property that the computed matricesQ andR satisfy a
bound of the form

‖A − QR‖2 6 γ ε‖A‖2, (1.2)

whereε denotes the machine precision (or unit round-off) in our computations and
γ is a constant that depends onm,n, and the details of the arithmetic. The difference
between the two methods lies in their ability to orthogonalize the columns ofA. Let

σ1 > σ2 > · · · > σn > 0

denote the singular values ofA. Bjorck [2] has shown that ifσ1/σn � 1/ε, then the
MGS algorithm yields a matrixQ that satisfies∥∥I − QTQ

∥∥
2 6 γ ε(σ1/σn). (1.3)

In other words,Q is guaranteed to be nearly orthogonal only whenA is a well-con-
ditioned matrix. The CGS fails to satisfy a bound of the form (1.3) and the computed
columns ofQ may depart from orthogonality to an almost arbitrary extent. The dif-
ference between the CGS and the MGS was observed by Rice [15]. For a detailed
discussion of the bounds (1.2) and (1.3), see [2–5,11,17].

The MGS algorithm is implemented in two ways: A “row-oriented” version and
a “column-oriented” version. The origin of these names lies in the wayR is con-
structed. In the row-oriented versionR is built row after row. In the column-oriented
versionR is built column after column, as in the CGS algorithm. (The details are
specified in the following sections.) Nevertheless, as the columns ofQ are generated
in the same way, the two variants are numerically equivalent. They perform the same
operations and produce identical numerical results. The difference between the two
versions lies in the fact that only the row-oriented version is capable of performing
column pivoting. The use of column pivoting brings a number of important advan-
tages. First, it delays the deteriorating effects of rounding errors to the last columns
of Q and the last rows ofR. Second, as explained in Section 2,R satisfies (2.8)
and (2.10). This feature improves the accuracy of the back substitution process for
solving a linear system of the form (7.6), e.g. [11, pp. 155, 156, 161]. The solution of
(7.6) is part of the standard method for solving linear least-squares problems. Further
benefits come from the information which is exposed by theQRdecomposition. For
example, the pivotedQR decomposition has a good reputation as a gap-revealing



A. Dax / Linear Algebra and its Applications 310 (2000) 25–42 27

algorithm, e.g. [17, pp. 373–375]. Similarly,QR with column pivoting may reveal
that A is numerically rank deficient. In this case, it provides a simple method for
calculating pseudo-inverse solutions of the relevant least-squares problem. See, for
example, [4, pp. 103–117], [8, pp. 130–132] or [10, pp. 162–166].

The loss of orthogonality in the columns ofQ can be avoided by repeated use of
the orthogonalization process. This idea has been discussed by a number of authors
under the names “reorthogonalization” and “iterative orthogonalization”. See Refs.
[1,3,4,6,12,14–17]. The iterative CGS algorithm is due to Daniel et al. [6], while
Ruhe [16] was the first to propose a column-oriented iterative MGS algorithm. A
further discussion of these techniques is given by Hoffmann [12] who compares
the performance of the two methods. So far it was generally accepted that a row-
oriented version of the iterative MGS is not possible [12, p. 338]. Nevertheless, as
the next section shows, there is an elegant way to implement such an algorithm. This
breakthrough paves the way for iterated MGS with column pivoting.

The outline of our paper is as follows. In Section 2, we present the new algo-
rithm, while Section 3 compares it with the column-oriented iterative MGS. The
need for reorthogonalization is explained in Section 4. Yet, as Section 5 shows, in
some situations, two orthogonalizations are not enough to ensure small deviation
from orthogonality. A further insight into the nature of the iterative orthogonalization
process is gained in Section 6, in which we utilize its links with the Gauss–Seidel
iteration. The use of Gram–SchmidtQRfactorization for solving linear least-squares
problems is discussed in Section 7. The standard solution method is based on or-
thogonalization of the r.h.s. vectorb againstq1, . . . , qn, which results in the residual
vector r∗. This process loses accuracy when‖r∗‖2 is small with respect to‖b‖2,
so iterative orthogonalization is essential to ensure accurate computation of small
residuals.

We shall complete this section by introducing some necessary notations. The
Gram–Schmidt orthogonalization process is an iterative method that consists ofn

iterations. Starting withQ0 = A andR0 = 0 ∈ Rn×n it generates two sequences of
matrices,Qk andRk, k = 1, . . . , n, such thatQ = Qn andR = Rn. Thekth iteration
starts withQk−1 and ends withQk . In practiceQk is overwritten onQk−1. The
same is true forRk andRk−1. At the beginning of thekth iteration we have already
computedq1, . . . , qk−1, while the other columns ofQk−1 are denoted asa(k−1)

j ,
j = k, . . . , n. That is,

Qk−1 =
[
q1, . . . , qk−1, a(k−1)

k , a(k−1)
k+1 , . . . , a(k−1)

n

]
,

Qk =
[
q1, . . . , qk−1, qk, a(k)

k+1, . . . , a(k)
n

]
,

and so forth. Thekth iteration is composed of a number of steps anda(k−1)
j , j =

k, . . . , n, denotes the current value of thejth column ofQk−1 during these steps.
In the next iteration,a(k−1)

j automatically turns intoa(k)
j . The entries ofRk−1 are
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used without noting the iteration index. This wayrij denotes the current value of the
(i, j) element ofRk−1 during thekth iteration. The notation:= is used to denote
arithmetic assignment. Thus, e.g.,rik :=rik + αi means “set the new value ofrik to
berik + αi ”.

2. The new algorithm

In this section, we describe a row-oriented MGS algorithm with reorthogonal-
ization. We start with a simple version that illustrates how row-oriented and col-
umn-oriented orthogonalizations are combined together. Later, we shall show how
the algorithm is modified to include column pivoting and iterative orthogonaliza-
tion. Thekth iteration of the proposed method,k = 1, 2, . . . , n, is composed of the
following three steps.

Step1: (Reorthogonalization ofa(k−1)
k with respect toq1, . . . , qk−1)

If k = 1 skip to Step 2. Otherwise, fori = 1, . . . , k − 1, do as follows:
Setαi = qT

i a(k−1)
k , rik :=rik + αi anda(k−1)

k :=a(k−1)
k − αiqi .

Step2: (Normalization ofa(k−1)
k )

Setrkk = ‖a(k−1)
k ‖2 andqk = a(k−1)

k /rkk.

Step3: (Orthogonalization ofa(k−1)
k+1 , . . . , a(k−1)

n with respect toqk)
If k = n terminate. Otherwise, forj = k + 1, . . . , n do as follows:
Setrkj = qT

k a(k−1)
j anda(k−1)

j :=a(k−1)
j − rkj qk.

Observe that without Step 1, the new algorithm is exactly the row-oriented MGS
algorithm (see [3] or [4]). The justification of the way we buildR is based on the
following arguments. Using matrix notations thekth iteration is summarized by the
equality

Qk−1E
(k)
1 · · · E(k)

k−1E
(k)
k E

(k)
k+1 · · · E(k)

n = Qk,

whereE(k)
j , j = 1, . . . , n, are elementary matrices: Forj = 1, . . . , k − 1, post-mul-

tiplication byE
(k)
j subtracts thej th column, multiplied byαj , from thekth column.

Similarly, post-multiplication byE(k)
k divides thekth column byrkk; while for j =

k + 1, . . . , n, post-multiplication byE(k)
j subtracts thekth column, multiplied byrkj ,

from thejth column. Define

E(k) = E
(k)
1 · · ·E(k)

k−1 · E
(k)
k · E

(k)
k+1 · · · E(k)

n .

Then

AE(1) · · · E(n) = Qn = Q

and
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R = (E(n))−1 · · · (E(1))−1,

where

(E(k))−1 = (E(k)
n )−1 · · · (E(k)

1 )−1 for k = 1, . . . , n.

The matrices(E(k)
j )−1 have a simple structure: Forj = 1, . . . , k − 1, post-multi-

plication by (E
(k)
j )−1 adds thejth column, multiplied byαj , to thekth column.

Similarly, post-multiplication by(E(k)
k )−1 multiplies thekth column byrkk; while for

j = k + 1, . . . , n, post-multiplication by(E(k)
j )−1 adds thekth column, multiplied

by rkj , to thej th column. These relations explain the rules for constructingR.
The incorporation of column pivoting in our algorithm is done in the same way as

in the row-oriented MGS algorithm. A common pivoting strategy is to start thekth
iteration by interchanging columns such that∥∥∥a(k−1)

k

∥∥∥2

2
= max

j=k,...,n

∥∥∥a(k−1)
j

∥∥∥2

2
. (2.1)

See e.g. [4,13,15]. This rule is similar to the standard pivoting strategy of the House-
holderQR factorization (e.g. [4,9,10,17]). The practical implementation of column
pivoting is achieved by adding the following step at the start of thekth iteration.

Step0: (Column pivoting) Compute a column indexj∗ such that
∥∥∥a(k−1)

j∗
∥∥∥2

2
= max

j=k,...,n

∥∥∥a(k−1)
j

∥∥∥2

2
.

If j∗ = k skip to Step 1. Otherwise, interchangea(k−1)
j∗ with a(k−1)

k andrij∗
with rik , i = 1, . . . , k − 1.

The updating of the terms‖ak−1
j ‖2

2, j = k, . . . , n, from one iteration to the next
can be based on Pythagoras’ theorem: Letq be a unit vector,a an arbitrary vector
andα = qTa. Then

‖a − αq‖2
2 = ‖a‖2

2 − α2.

Hence, e.g., whena(k−1)
j is modified in Step 3 the value of‖a(k−1)

j ‖2
2 can be updated

by the rule
∥∥∥a(k−1)

j

∥∥∥2

2
:=

∥∥∥a(k−1)
j

∥∥∥2

2
− (rkj )

2.

Remark. The use of Pythagoras’ updating rule has an inherent computational diffi-
culty. Letε denote the unit round-off in our computations. Then the size of the round-
ing error in the computed value of‖a(0)

j ‖2
2 = ∑m

i=1(aij )
2 is aboutεj = ε‖a(0)

j ‖2
2, and

the same is true for the coming (updated) values of‖a(k−1)
j ‖2

2. Hence, the relative
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error in the updated value of‖a(k−1)
j ‖2

2 is aboutεj /‖a(k−1)
j ‖2

2. Therefore, when this

ratio exceeds a certain threshold value,τ = min{ε1/4, 0.01} say, we cannot trust the
current (updated) value of‖a(k−1)

j ‖2
2. Fortunately, there is a simple way to overcome

this drawback: Once the current (updated) value of‖a(k−1)
j ‖2

2 becomes smaller than

εj/τ , both‖a(k−1)
j ‖2

2 andεj are recomputed according to the rules

∥∥∥a(k−1)
j

∥∥∥2

2
=

m∑
i=1

(
a

(k−1)
ij

)2

and

εj = ε

∥∥∥a(k−1)
j

∥∥∥2

2
,

wherea(k−1)
ij denotes theith component ofa(k−1)

j . This precaution ensures at least

two correct digits in the computed value of‖a(k−1)
j ‖2

2, which is satisfactory for the
purpose of column pivoting. In the following sections we shall see that the level
of rounding errors ina(k−1)

j is expected to stay aboutε‖a(0)
j ‖2. Hence, the value of

‖a(k−1)
j ‖2

2 is unlikely to be considerably smaller thanε2‖a(0)
j ‖2

2. Therefore, ifε 6
10−8, then recomputation of‖a(k−1)

j ‖2
2 andεj is unlikely to occur more than three

times.

The use of iterative orthogonalization was initiated by the works of Daniel et al.
[6], Ruhe [16] and Hoffmann [12]. See also [1,3,4,14]. The iterative version of Step
1 is carried out as follows.

Step1∗: (Iterative orthogonalization ofa(k−1)
k with respect toq1, . . . , qk−1)

If k = 1 skip to Step 2. Otherwise, we generate a sequence of vectorsu`, ` =
0, 1, 2, . . . , in the following way. Starting fromu0 = ak andu1 = a(k−1)

k , the
vectoru`+1 is obtained by orthogonalizingu` with respect toq1, . . . , qk−1.
In practice the vectorsu`, ` = 0, 1, . . . , are overwritten ona(k−1)

k , so, only

one vectoru ≡ a(k−1)
k is used to denote the current value ofu`. To stop

the iterative orthogonalization process we use a preassigned constantρ > 1.
(Typical values of ofρ areρ = 2 or ρ = √

2.) With these notations at hand
the details of thè th iteration,̀ = 1, 2, . . . , in whichu`+1 is obtained from
u`, are as follows: If

ρ2‖u`‖2
2 > ‖u`−1‖2

2, (2.2)

then terminate. Otherwise, fori = 1, . . . , k − 1 do as follows:
Setαi = qT

i u`, rik :=rik + αi andu` :=u` − αiqi .

One motivation behind the stopping condition (2.2) lies in the following obser-
vations. LetB denote them × (k − 1) matrix, whose columns areq1, . . . , qk−1. In
practice
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BTB = I + E,

whereE = (eij ) is an error matrix which is generated by the rounding errors in
the computation ofq1, . . . , qk−1. Thus, once the unit vectorû`+1 = u`+1/‖u`+1‖2
satisfies a bound of the form∥∥BTû`+1

∥∥
2 6 (ρ2 − 1)1/2‖E‖2,

there is no reason to continue the iterative orthogonalization process. Observe that
for each indexi, 1 6 i 6 k − 1,

qT
i u`+1 = αi − (

αiqT
i qi + · · · + αk−1qT

i qk−1
) = −(αieii + · · · + αk−1ei,k−1).

Using matrix notations the last equalities are written as

BTu`+1 = T a, (2.3)

wherea = (α1, . . . , αk−1)
T ∈ Rk−1 andT = (tij ) is a (k − 1) × (k − 1) upper tri-

angular matrix which consists of the upper triangular part ofE. That is, tij = 0
wheni > j andtij = eij wheni 6 j . Note also that the factorsαi , i = 1, . . . , k − 1,
satisfy the equality

‖u`+1‖2
2 = ‖u`‖2

2 −
(
α2

1 + · · · + α2
k−1

)
= ‖u`‖2

2 − ‖a‖2
2.

Assume now that (2.2) holds with respect to theu` andu`+1. In this case

‖a‖2
2 = ‖u`‖2

2 − ‖u`+1‖2
2 6 ρ2‖u`+1‖2

2 − ‖u`+1‖2
2 6 (ρ2 − 1)‖u`+1‖2

2,

so the vector̂a = a/‖u`+1‖2 satisfies∥∥â
∥∥

2 6 (ρ2 − 1)1/2. (2.4)

Hence, from (2.3) we conclude that∥∥BTû`+1
∥∥

2 = ∥∥T â
∥∥

2 6 ‖T ‖2
∥∥â

∥∥
2 6 (ρ2 − 1)1/2‖T ‖2. (2.5)

In other words, the error propagation in the orthogonalization process is controlled
by the size of̂a, while (2.2) ensures that‖â‖2 is smaller than(ρ2 − 1)1/2.

The implementation of the iterative orthogonalization idea to row-oriented MGS
can be done in a number of ways. One option is to add the following step at the end
of the basic iteration.

Step4: (Iterative orthogonalization ofa(k−1)
k+1 , . . . , a(k−1)

n againstqk)
Here for each column indexj, j = k + 1, . . . , n, we generate a sequence of
vectorsv`, ` = 0, 1, 2, . . . , in the following way. Starting withv0 = aj and

v1 = a(k−1)
j , the vectorv`+1 is obtained by orthogonalizingv` againstqk. In

practice the vectorsv`, ` = 2, 3, . . . , are overwritten ona(k−1)
j . The details

of the`th iteration, in whichv`+1 is obtained fromv`, are as follows: If

ρ2‖v`‖2
2 > ‖v`−1‖2

2, (2.6)
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terminate. Otherwise, set

α = qT
k v`, rkj :=rkj + α, v`+1 = v` − αqk and‖v`+1‖2

2 = ‖v`‖2
2 − α2.

In order to allow more flexibility, the value ofρ in Step 4 may differ from its
value in Step 1∗. Note also that Steps 3 and 4 can be merged into one step.

We shall finish this section with brief remarks on the effects of column pivoting.
Recall that the basic iteration of row-oriented MGS with column pivoting is com-
posed of Steps 0, 2 and 3. In this algorithm the column interchanges at the beginning
of thekth iteration ensure (2.1), while at the end of Step 3

|rkj | =
∣∣∣qT

k a(k−1)
j

∣∣∣ 6 ‖qk‖2

∥∥∥a(k−1)
j

∥∥∥
2

=
∥∥∥a(k−1)

j

∥∥∥
2
.

Therefore, sincerkk = ‖a(k−1)
k ‖2,

|rkk| > |rkj | for j = k + 1, . . . , n. (2.7)

Moreover, the equality∥∥∥a(k)
j

∥∥∥2

2
=

∥∥∥a(k−1)
j

∥∥∥2

2
− r2

kj

shows that for each column indexj, j = k + 1, . . . , n,

∥∥∥a(k−1)
j

∥∥∥2

2
=

j∑
i=k

r2
ij

and

r2
kk >

j∑
i=k

r2
ij . (2.8)

Hence, in particular,

|r11| > |r22| > · · · > |rnn| (2.9)

and

|rkk| > |rij | ∀k 6 i 6 j 6 n. (2.10)

Let us turn now to see what happens to these relations when the basic iteration is
extended to include iterative orthogonalization. Assume first that the basic iteration
is composed of Steps 0, 2, 3 and 4. Observe that the changes inrij during Step 4
are essentially negligible (see Sections 4–6). Hence, (2.7) and (2.9) are expected to
remain valid in this case.

The situation is more complicated when the basic iteration is composed of Steps
0, 1∗ (or 1), 2 and 3. Here the orthogonalization process of Step 1∗ (or 1) is capable
of causing a substantial reduction in the size of‖a(k−1)

k ‖2
2. Hence, the addition of

this step may violate (2.1) and the succeeding relations (2.7)–(2.10). Nevertheless,
sincea(k−1)

k has already passed one orthogonalization before Step 1∗ takes place, a
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significant reduction in the size of‖a(k−1)
k ‖2

2 is expected only whena(k−1)
k becomes

so small that it is considerably contaminated by rounding errors (see Sections 5 and
6). Thus, even in this case, the pivoting operations remain valuable: As before the
deteriorating effects of rounding errors are deferred to the last iterations and the
resultingQR factorization provides the information which is needed for handling
rank-deficient problems.

3. Relations with other orthogonalization techniques

We shall start with a brief description of the iterative column-oriented MGS
algorithm. This method was firstly proposed by Ruhe [16], while Hoffmann [12]
investigates its performance. Thekth iteration of Ruhe’s algorithm,k = 1, . . . , n,
is composed of the following three steps.

Step1′: (Orthogonalization ofa(k−1)
k with respect toq1, . . . , qk−1)

If k = 1 skip to Step 3′. Otherwise, fori = 1, . . . , k − 1, do as follows:
Setrik = qT

i a(k−1)
k anda(k−1)

k :=a(k−1)
k − rikqi .

Step2′: Identical to Step 1∗ above.
Step3′: (Normalization ofa(k−1)

k )

Setrkk = ‖a(k−1)
k ‖2 andqk = a(k−1)

k /rkk.

Observe that without Step 2′ Ruhe’s algorithm reduces to the column-oriented
MGS. Note also that Ruhe’s algorithm is numerically equivalent to restricted ver-
sion of our algorithm in which the basic iteration is composed of Steps 1∗, 2 and
3. These two algorithms perform the same operations but in different order. This
does not affect the construction of the vectorsa(k−1)

j and the way rounding errors are
generated. So both methods produce the same numerical results. However, being a
row-oriented scheme, our algorithm is capable of performing column pivoting. The
following example illustrates the importance of this feature.

Let A = [a1, . . . , an] be a well-conditioned matrix and leta3 be redefined by the
rulea3 :=a1 + a2 + τa3, whereτ is smaller than the round-off unit in our computa-
tions. Then, in the third iteration of Ruhe’s algorithm,a(2)

3 becomes so small that it
is entirely contaminated by rounding errors. Thus, thoughq3 is orthogonal toq1 and
q2, its components are essentially random numbers that come from rounding errors.
This in turn implies that the components of the vectorsq4, q5, . . . , qn also contain
large “random” portion that comes from rounding errors and the same is true for
the coefficientsrij , j = 3, . . . , n, i = 1, . . . , j . Hence, the information that comes
from this factorization is practically useless. Let us turn now to see how the new
algorithm handles the above matrix. Assume that the basic iteration of our algorithm
is composed of Steps 0, 1∗, 2 and 3. Recall that without Step 0, this algorithm is
numerically equivalent to Ruhe’s algorithm. Yet the column interchanges in Step 0
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gradually movesa3 from the third column to the last column. This way the undesired
effects of rounding errors are deferred until the last iteration and the only column of
Q which is considerably contaminated by rounding errors isqn. Similarly, the only
entry ofR which might be effected by rounding errors isrnn. All the other columns
of Q (entries ofR) are essentially “free” of rounding errors. Moreover, sincernn is
practically zero, the resultingQRfactorization provides useful information onA and
it is applicable for calculating pseudo-inverse solutions (see [4, pp. 103–107], [8,
pp. 130–132] or [10, pp. 162– 166]).

4. The need for reorthogonalization

In this section, we briefly explain the need for reorthogonalization in the Gram–
Schmidt process. For this purpose we consider the orthogonalization ofak with re-
spect to the vectorsq1, . . . , qk−1. To simplify the coming discussion, we make the
assumption that these vectors are mutually orthogonal. So them × (k − 1) matrix

B = [q1, . . . , qk−1]
is assumed to satisfy

BTB = I. (4.1)

Let the sequenceu`, ` = 0, 1, 2, . . . , be generated as in Step 1∗ of our algorithm
(which is also Step 2′ of Ruhe’s algorithm). Recall thatu0 = ak and thatu`+1 is
obtained by orthogonalizingu` with respect toq1, . . . , qk−1. The orthogonalization
process is done in the MGS style:

For i = 1, . . . , k − 1 setαi = qT
i u` andu` :=u` − αiqi . Finally, setu`+1 = u`.

DefineS = Span{q1, . . . , qk−1} and letT = Null(BT) denote the orthogonal com-
plement ofS in Rm. Then each vectoru` has a unique decomposition of the form

u` = s̀ + t`, (4.2)

wheres̀ ∈ S andt` ∈ T. Of course, in exact arithmetics̀ = 0 andt` = t0 for ` =
1, 2, . . . However, in practices̀ differs from 0 because of rounding errors in the
orthogonalization process. In floating point arithmetic

‖s̀ ‖2 = β`γ ε‖u`−1‖2, (4.3)

whereε denotes the machine precision (unit round-off) in our computations,γ is
some constant that depends onk, m, and the details of the arithmetic, andβ` is
some number from the interval[−1, 1]. See [2,4,11]. Consequently, the unit vector
û` = u`/‖u`‖2 satisfies

∥∥BTû`

∥∥
2 = ∥∥BTs̀

∥∥
2

/ ‖u`‖2 = ‖s̀ ‖2/‖u`‖ = β`γ ε‖u`−1‖2/‖u`‖2. (4.4)
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In other words, the deviation from orthogonality is proportional to the ratio
‖u`−1‖2/‖u`‖2. The larger is this ratio, the larger the deviation!

These observations clearly explain why reorthogonalization is essential to ensure
orthogonality in the Gram–Schmidt process. In practice the ratio

‖u0‖2/‖u1‖2 = ‖ak‖2/‖u1‖2 (4.5)

can be arbitrarily large. Hence, stopping the iterative orthogonalization process after
one iteration, without paying attention to this ratio, is doomed to produce large devi-
ation from orthogonality. The more ill-conditioned isA, the larger is the possibility
of having a situation in which the ratio (4.5) is large.

At the same time we see that the termination condition (2.2) ensures that the size
of ‖BTû`‖2 stays belowγ ερ, which is as good as we can ask for. This raises the
question of what leads us to believe that (2.2) will eventually hold and how many
iterations are needed to achieve this goal. The answer is given in the next section.

5. How many orthogonalizations are necessary?

We continue the former discussion with an attempt to clarify the situation af-
ter two successive orthogonalizations. Let the positive numberν be defined by the
equality

‖s1‖2 = ν‖t1‖2. (5.1)

Then

‖u1‖2
2 = ‖s1 + t1‖2

2 = ‖s1‖2
2 + ‖t1‖2

2 = (1 + ν2)‖t1‖2
2. (5.2)

In practiceν is not expected to be much larger than one. Otherwise,u1 is practically
zero, ass1 is generated by rounding errors. Furthermore, even in this case, whenu1
is considerably contaminated by rounding errors, it is still reasonable to assume that
ν has a moderate size, because of the random nature of the rounding errors. To see
the last point assume for a moment that the “true” value ofu1 should be0, sou1 is
entirely made of rounding errors. Then a priori we have no reason to expect that‖t1‖
is considerably smaller than‖s1‖2, especially, whenk is small with respect tom.
However, as this is only a “probabilistic” argument, we might face some exceptions.

On the other hand, the vectoru2 = s2 + t2 is likely to have a different structure:
The size ofs2 is expected to be about

γ ε‖u1‖2 = γ ε(1 + ν2)1/2‖t1‖2,

while t2 is expected to stay close tot1. In practice it is highly unlikely thatν exceeds
1/(γ ε), so‖s2‖2 is expected to be (considerably) smaller than‖t2‖2. In this case,
when‖s2‖2 is considerably smaller than‖t2‖2, there exists a small number,δ, such
that|δ| � 1 and

‖u2‖2
2 = (1 + δ)‖t1‖2

2. (5.3)
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Combining (5.2) and (5.3) gives the equality

‖u1‖2
2/‖u2‖2

2 = (1 + ν2)/(1 + δ), (5.4)

which means that ifρ2 is smaller than(1 + ν2)/(1 + δ) we will need a third orthog-
onalization!

Nevertheless, there are three pieces of good news that emerge from the above
discussion. First, we see that a fourth orthogonalization is almost never needed: In
practice it is highly unlikely thatν exceeds 1/(γ ε), so‖s2‖2 is expected to be consid-
erably smaller than‖t2‖2, which ensures that the third orthogonalization ends with
satisfactory results. Second, the use of column pivoting leads to the inequalities∥∥∥a(k−1)

j

∥∥∥
2

6 ‖u1‖2, j = k, . . . , n, (5.5)

while a third orthogonalization takes place only when‖u1‖2 is aboutγ ε‖ak‖2. In
other words, a third orthogonalization is needed only when we reach a point from
which the orthogonalization process is actually dominated by rounding errors! Third,
the use of column pivoting delays the need for three orthogonalizations (and the
propagation of rounding errors) to the last iterations. Moreover, from (2.2) we see
that unless a third orthogonalization is carried out the vectoru2 satisfies

‖u2‖2 > ‖u1‖2/ρ. (5.6)

In this case the inequalities (2.7)–(2.10) are replaced by

|rkk| = ‖u2‖2 > ‖u1‖2/ρ >
∥∥∥a(k−1)

j

∥∥∥
2
/ρ, j = k + 1, . . . , n, (5.7)

and

|rkk| > |rij |/ρ ∀k 6 i 6 j 6 n. (5.8)

A violation of (5.8) is possible only after a third orthogonalization is performed. Yet,
as we have seen, at this stage rounding errors actually dominate the Gram–Schmidt
process.

It is instructive to inspect our conclusions in view of the experiments made by
Daniel et al. [6] and Hoffmann [12]. The latter work examines the iterative CGS and
the iterative MGS on a large collection of “randsvd” matrices. In these experiments
there was no substantial difference between the two methods. The deviation from
orthogonality in the final matrix,Q, was proportional toρ. Thus, to gain maximal
precision it is necessary to use a smallρ, e.g.,ρ = 2. Yet, in all the experiments made
by Hoffmann [12], a third orthogonalization never occurred. The explanation of this
phenomenon is, perhaps, that the largest condition number is 1011 while the machine
precision isε = 0.5 · 10−14. That is, the condition numbers of the tested matrices
are considerably smaller than 1/ε. If the condition number ofA exceeds 1/ε, then
it is possible that at some stageu1 is entirely contaminated by rounding errors. This
paves the way forν to be larger than one, so the iterative Gram–Schmidt algorithm
may need more than two orthogonalizations. Indeed the experiments of Daniel et al.
[6] illustrate this point. These experiments apply the iterative CGS algorithm (with
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ρ = √
2 andρ = 10) onm × n sections of Hilbert matrix. Hereε = 0.5 · 8−12 while

the condition number of the tested matrices is considerably larger than 1/ε. Thus, as
expected, three orthogonalizations are often needed. Moreover, restricting the num-
ber of orthogonalizations to two results in a total loss of orthogonality! In other
words, when treating ill-conditioned matrices iterative orthogonalization is essential
to ensure orthogonality. Nevertheless, there is no report on a case in which more than
three orthogonalizations are needed.

6. The iterative MGS and the Gauss–Seidel iteration

A further insight is gained by discarding the assumption that the vectors
q1, . . . , qk−1 are mutually orthogonal. Now (4.1) is replaced by the equality

BTB = I + E, (6.1)

whereE is an error-matrix that comes from rounding errors in the computation of
q1, . . . , qk−1. Orthogonalizingak with respect to these vectors means finding the
projection ofak on T, the orthogonal complement ofS = Span{q1 . . . , qk−1}. This
can be done by solving the least-squares problem

min‖ak − Bx‖2
2

or the corresponding system of normal equations

BTBx = BTak. (6.2)

Let the sequencex`, ` = 0, 1, 2, . . . , be obtained by applying the Gauss–Seidel
iteration for solving (6.2), starting withx0 = 0 ∈ Rk−1. Ruhe [16] was the first to
note that in this case

u` = ak − Bx`, ` = 0, 1, 2, . . . , (6.3)

where, as before, the sequence{u`} is obtained by the iterative MGS process de-
scribed in Step 1∗. (A similar relation exists between the Jacobi iteration and the
iterative CGS.) Let the matricesD andL be defined by the equality

E = D − L − LT,

and the restrictions thatD is a diagonal matrix andL is a strictly lower triangular
matrix. In order to investigate the behavior of the sequences{x`} and{u`}, we assume
that

‖D‖2 � 1 (6.4)

and

‖L‖2 � 1. (6.5)

These assumptions imply thatBTB is a positive-definite matrix. So the theory of
the Gauss–Seidel method ensures that the sequence{x`} converges tox∗, the unique
solution of (6.2). Furthermore, the rate of convergence is determined by the rule
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x` − x∗ = H`
(
x0 − x∗) , ` = 0, 1, 2, . . . ,

where

H = (I + D − L)−1LT

is the corresponding “iteration matrix”. Note that

(I + D − L)−1 = I + (L − D) + (L − D)2 + · · · ,
so‖H‖2 is only slightly larger than‖L‖2. Now the relations

BTu` =BT(ak − Bx`)

=BTB
(
x∗ − x`

) = BTBH`
(
x∗ − x0

) = BTBH`x∗ (6.6)

imply the bound∥∥BTu`

∥∥
2 6

∥∥BTB
∥∥

2 ‖H‖`
2 ‖x∗‖2. (6.7)

Moreover, sincex∗ = (BTB)−1BTak and∥∥∥(
BTB

)−1
∥∥∥

2
6 1/(1 − ‖E‖2),

it follows that∥∥BTu`

∥∥
2 6 α‖H‖`

2 ‖ak‖2, (6.8)

where

α = ∥∥BT
∥∥

2

∥∥BTB
∥∥

2 /(1 − ‖E‖2)

is a constant that satisfies|1 − α| � 1. Substituting (4.2) into (6.8) gives

‖s̀ ‖2 6 β‖H‖`
2 ‖ak‖2, (6.9)

whereβ is another constant that satisfies|1 − β| � 1. Thus, in exact arithmetic, the
sequence{‖s̀ ‖2} converges to zero and the rate of convergence depends on the size
of ‖L‖2.

The sequence{t`} behaves in a different way. In exact arithmetict` = t0 for ` =
1, 2, . . . , so the changes betweent` andt`−1 come from rounding errors. Therefore,
if ‖t0‖ is considerably larger thanγ ε‖ak‖2, then the vectorst`, ` = 1, 2, . . . , remain
almost unchanged during the iterative orthogonalization process. On the other hand,
if ‖t0‖2 is smaller thanγ ε‖ak‖2 or about that size, then‖t1‖ is essentially made
of rounding errors. This may result in a substantial difference betweent0 and t1.
Yet, since‖u1‖2 is much smaller than‖u0‖2, in the next iterations there are minor
changes betweent` andt`+1.

Summarizing the above discussion we see that a small value ofρ leads to slow
build up of deviation from orthogonality. This allows us to assume that‖L‖2 is not
much larger thanγ ε, so the probability to need a fourth orthogonalization remains
small. Moreover, a third orthogonalization is carried out only when

‖u2‖2 < ‖u1‖2/ρ, (6.10)
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while the assumption that‖L‖2 is close toγ ε implies that (6.10) is possible only
when‖t0‖2 is smaller thanγ ε‖ak‖2 or about that size. This in turn means that‖u1‖2
is about‖L‖2‖ak‖2. In other words, the size ofu1 is close to that of the rounding
errors.

7. Solving linear least-squares problems

In this section, we consider the use of the computedQR factorization (1.1) for
solving the standard least-squares problem

min‖Ax − b‖2
2. (7.1)

Let x∗ ∈ Rn denote the unique solution of (7.1) and let

r∗ = b − Ax∗ (7.2)

denote the corresponding residual vector. As beforeT denotes the orthogonal com-
plement ofS = Span{q1, . . . , qn} in Rm. Note thatr∗ is the projection ofb on T.
Hence,r∗ can be obtained by applying one sweep of the MGS algorithm to orthog-
onalizeb againstq1, . . . , qn. This results in an extendedQRfactorization

[A, b] = [Q, u]
[

R z
0T 1

]
, (7.3)

wherez ∈ Rn is determined by the MGS process andu = r∗. From (7.3) we derive
the relations

Ax − b = [A, b]
(

x
−1

)
= Q(Rx − z) − u (7.4)

and

‖Ax − b‖2
2 = ‖Q(Rx − z) − u‖2

2 = ‖Q(Rx − z)‖2
2 + ‖u‖2

2, (7.5)

where the last equality relies on the fact thatu ∈ T. Now we see that the least-squares
solution,x∗, can be computed by solving the upper triangular linear system

Rx = z (7.6)

via back substitution. This constitutes the standard method for solving linear least-
squares problems via the Gram–SchmidtQR factorization, e.g. [2], [3], [4, p. 65],
[11, pp. 396, 397] and [17, pp. 297, 298].

However, the standard approach is not always satisfactory. In some applications
it is desired that the computed residual will satisfy∥∥ATr∗∥∥

2 6 γ ε‖r∗‖2. (7.7)

This is the case, e.g., in certain affine scaling methods, wherer∗/‖r∗‖2 is used as a
search direction in Null(AT) while it is known that‖r∗‖2 tends to be considerably
smaller than‖b‖2. See [7] for a detailed discussion of this issue. Yet, as we have
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seen, in this case one sweep of the MGS is not sufficient to ensure orthogonality.
To rectify this flaw we use iterative orthogonalization ofb againstq1, . . . , qn. The
modified algorithm uses the vectorsz = (z1, . . . , zn)

T ∈ Rn andu ∈ Rm, whereu
starts asb and ends asr∗.

A modified least-squares algorithm

Step1′′: (Orthogonalization ofb againstq1, . . . , qn)
Setu = b. Then forj = 1, 2, . . . , n do as follows:
Setzj = qT

j u andu :=u − zj qj .
Step2′′: (Iterative orthogonalization ofu againstq1, . . . , qn)

Starting withu0 = b andu1 = u we generate a sequence of vectors,u`, ` =
0, 1, . . . , whereu`+1 is obtained by orthogonalizingu` againstq1, . . . , qn. In
practice all the vectorsu`, ` = 0, 1, 2, . . . , are overwritten onu. The details
of the`th iteration, in whichu`+1 is obtained fromu`, are as follows:
If (2.2) holds, terminate. Otherwise, forj = 1, . . . , n do as follows:
Setαj = qT

j u, zj :=zj + αj andu :=u − αjqj .
Step3′′: (Computation ofx∗)

Use back substitution to solve the upper triangular system (7.6).

Observe that without Step 2′′ the above algorithm is identical to the standard solu-
tion method. The most important feature of the proposed algorithm is that reorthog-
onalization is not added automatically. Each iteration uses (2.2) to decide whether a
further orthogonalization is needed. This saves unnecessary iterations. Another fea-
ture that characterizes our method is that each reorthogonalization includes updating
of z. If Q is nearly orthogonal, then the resulting changes inz are expected to be
negligible. However, this is not necessarily true whenQ has some deviation from
orthogonality. That is,QTQ = I + E, whereE is small but not negligible. In this
case the iterative MGS behaves like a Gauss–Seidel method, so it might need more
than two orthogonalizations to achieve small deviation from orthogonality.

Finally, we would like to clarify that the modified algorithm is not necessarily bet-
ter than Householder’s method or other least-squares solvers. In fact, as explained in
[7], the rival methods can also be modified to ensure (7.7). Our point is that this is the
“right way” to apply the Gram–SchmidtQR factorization for solving least-squares
problems. The reader is referred to [4,10,17] for a detailed comparison between the
Gram–Schmidt and the Householder approaches.

8. Concluding remarks

The use of iterative orthogonalization is aimed at ensuring small deviation from
orthogonality in the columns ofQ. Former implementations of this idea concentrate
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on CGS and column-oriented MGS. Moreover, it was generally accepted that a row-
oriented iterative MGS is not possible [12, p. 338]. Yet, as this paper shows, there
is an elegant way to resolve this difficulty. The interest that we have in a row-ori-
ented iterative MGS comes from the observation that this method maintains small
deviation from orthogonality and, at the same time, it is capable of applying column
pivoting.

The advantage of column pivoting is illustrated in Section 3. We have seen that
Ruhe’s algorithm is numerically equivalent to a restricted version of our algorithm in
which the basic iteration is composed of Steps 1∗, 2 and 3. The addition of column
pivoting results in a significant improvement in the performance of the algorithm.
First, it defers the deteriorating effects of rounding errors to the last iteration. Now
only the last column ofQ andrnn are considerably effected by rounding errors. Sec-
ond, the resultingQR factorization enables us to handle rank-deficient least-squares
problems.

It is true that the orthogonalizations in Step 1∗ may violate (2.1) and, perhaps,
some of the succeeding relations. However, this should not be considered as a real
flaw. On the contrary, a significant reduction in the size of‖a(k−1)

k ‖2 is possible only

when two orthogonalizations are not enough. In this case the size of‖a(k−1)
k ‖2 is

aboutγ ε‖ak‖2, so the vectora(k−1)
k is considerably contaminated by rounding errors.

In other words, strong violation of (2.7)–(2.10) is not expected until we reach an
iteration that requires three (or more) orthogonalizations.Yet from this stage onwards
the orthogonalization process is actually controlled by rounding errors. Knowing that
stage is valuable information when handling rank-deficient problems. Note that the
last conclusion does not require a priori knowledge ofε or γ . The important point is,
again, that pivoting operations delay the need for three orthogonalizations (and the
domination of rounding errors) to the last stages of the Gram–Schmidt process.

Note that there is considerable flexibility in applying an iterative MGS scheme.
This is one of the reasons that the presentation in Section 2 starts with a simple
iteration that consists of only three steps. Then it is shown that the basic iteration
can be modified in several ways. A further flexibility comes from the choice of the
termination factor,ρ, and the way one ensures that the iterative orthogonalization
process will terminate in a finite number of iterations.

The use of the MGS algorithm for solving linear least-squares problems is con-
sidered by a number of authors. However, none of the former descriptions of this
method explicitly uses iterative orthogonalization. Perhaps, because they concentrate
on the computation ofx∗. Yet in some applications it is necessary to ensure that
the normalized residual,r∗/‖r∗‖2, belongs to Null(AT) even when‖r∗‖2 is small
compared to‖b‖2. The algorithm proposed in Section 7 is a natural extension of
the standard solution method that allows it to use iterative orthogonalization. The
test (2.2) prevents unnecessary iterations and, at the same time, ensures accurate
computation of small residuals. A further advantage of the modified scheme is its
ability to provide accurate results whenQ has some deviation from orthogonality.
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