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Abstract

In this paper we study generalized prime systems for which the integer counting function NP (x) is
asymptotically well-behaved, in the sense that NP (x) = ρx + O(xβ), where ρ is a positive constant and
β < 1/2. For such systems, the associated zeta function ζP (s) has finite order for σ = �s > β, and the
Lindelöf function μP (σ ) may be defined. We prove that for all such systems, μP (σ ) � μ0(σ ) for σ > β,
where

μ0(σ ) =
{

1
2 − σ if σ < 1

2 ,

0 if σ � 1
2 .

© 2006 Elsevier Inc. All rights reserved.

Introduction

A generalized prime system (or g-prime system) P is a sequence of positive reals p1,p2,p3, . . .

satisfying

1 < p1 � p2 � · · · � pn � · · ·
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and for which pn → ∞ as n → ∞. From these can be formed the system N of generalized
integers or Beurling integers; that is, the numbers of the form

p
a1
1 p

a2
2 . . . p

ak

k ,

where k ∈ N and a1, . . . , ak ∈ N0.1

Such systems were first introduced by Beurling [3] and have been studied by many authors
since then (see, in particular, [2]).

Much of the theory concerns connecting the asymptotic behaviour of the g-prime and
g-integer counting functions, πP (x) and NP (x), defined respectively by2

πP (x) =
∑

p∈P,p�x

1 and NP (x) =
∑

n∈N , n�x

1.

The methods invariably involve the associated Beurling zeta function, defined formally by

ζP (s) =
∏
p∈P

1

1 − p−s
=

∑
n∈N

1

ns
. (1)

In this paper, we shall be concerned with g-prime systems P for which

NP (x) = ρx + O
(
xβ

)
, (2)

for some β < 1
2 and ρ > 0. (For example, for the rational primes when N = N, this is true with

β = 0 and ρ = 1.)
For such systems, the product and series (1) converge for �s > 1 and ζP (s) has an analytic

continuation to the half-plane �s > β except for a simple pole at s = 1 with residue ρ. Indeed,
writing NP (x) = ρx + E(x) with E(x) = O(xβ), we have for �s > 1,

ζP (s) =
∞∫

1−
x−s dNP (x) = s

∞∫
1

NP (x)

xs+1
dx = s

∞∫
1

ρx + E(x)

xs+1
dx = ρs

s − 1
+ s

∞∫
1

E(x)

xs+1
dx.

The integral on the right converges for �s > β and is an analytic function for such s.
Furthermore, ζP (s) has finite order for �s > β; i.e. ζP (σ + it) = O(|t |A) as |t | → ∞ for

some constant A for σ > β (indeed, in our case this is true with A = 1). We can therefore
define, as is usual, the Lindelöf function μP (σ ) to be the infimum of all real numbers λ such
that ζP (σ + it) = O(|t |λ). It is well known that, as a function of σ , μP (σ ) is non-negative,
decreasing, and convex (and hence continuous) (see, for example, [5]). Since μP (σ ) = 0 for
σ > 1, and (from above) μP (σ ) � 1 for σ > β , it follows by convexity that

μP (σ ) � 1 − σ

1 − β
for β < σ � 1.

1 Here and henceforth, N = {1,2,3, . . .}, N0 = N ∪ {0}, and P = {2,3,5, . . .}—the set of primes.
2 We write

∑
p∈P to mean a sum over all the g-primes, counting multiplicities. Similarly for

∑
n∈N .
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For P = P (so that N = N), the Lindelöf hypothesis is the conjecture that μP(σ ) = μ0(σ ) for
all σ , where

μ0(σ ) =
{

1
2 − σ if σ < 1

2 ,

0 if σ � 1
2 .

In this paper we prove that for all g-prime systems satisfying (2), μP (σ ) must be at least as large
as μ0(σ ), i.e.,

μP (σ ) � μ0(σ ) for σ > β.

This is, of course, trivial for σ � 1
2 , so we shall only concern ourselves with β < σ < 1

2 .
For the proof we employ the same methods (but strengthened) as those used in [4], where

(essentially) it was shown that μP (σ ) > 0 for any σ < 1
2 , in order to prove that for such systems

we have ψP (x) − x = Ω(x
1
2 −δ) for every δ > 0.3

Main result

Theorem 1. Let P be a g-prime system for which

NP (x) = ρx + O
(
xβ

)
,

for some β < 1
2 and ρ > 0. Let μP (σ ) and μ0(σ ) be as defined above. Then for σ > β , we have

μP (σ ) � μ0(σ ).

Proof. As mentioned above, we need only consider β < σ < 1
2 .

Suppose, for a contradiction, that we have μP (σ ) < 1
2 − σ for some σ ∈ (β, 1

2 ). Then we can
write

μP (σ ) = 1

2
− σ − δ,

for some δ > 0.
Let ζN(s) = ∑

n�N n−s , where the sum ranges over n ∈ N (for clarity, we shall drop the
subscript P throughout this proof ). By identical arguments as those used in [4], we find that
there exists constants c1, c2 > 0 such that for R � c1N ,

R∑
r=1

2r−1∫
0

∣∣ζN(σ + it)
∣∣2

dt � c2R
2N1−2σ . (3)

Also, writing s = σ + it , and following the arguments in [4], we have

3 Here ψP (x) is the generalized Chebychev function ψP (x) = ∑
pk�x,p∈P,k∈N

logp (counting multiplicities).
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ζN(s) = 1

2πi

c+iT∫
c−iT

ζP (s + w)Nw

w
dw + O

(
Nc

T (c + σ − 1)

)
+ O

(
N1−σ

T

∑
N
2 <n<2N

n∈N

1

|n − N |
)

,

for |t | < T , c > 1 − σ and N /∈ N .
Now push the contour in the integral to the left as far as �w = −η, where η > 0, picking

up the residues at w = 0 and w = 1 − s (since |t | < T ). Here, η is chosen sufficiently small
such that σ − η > β and μP (σ − η) < 1

2 − σ . This is possible since μP (·) is continuous. Thus

ζP (σ − η + it) = O(|t | 1
2 −σ−δ′

) for some δ′ > 0.
The contribution along the horizontal line [−η + iT , c + iT ] is, in modulus, less than

1

2π

c∫
−η

Ny |ζP (σ + y + i(t + T ))|√
y2 + T 2

dy = O
(
NcT − 1

2 −σ−δ′)
.

Similarly on [−η − iT , c − iT ]. For the integral along �w = −η, we have

∣∣∣∣∣ 1

2πi

−η+iT∫
−η−iT

ζP (s + w)Nw

w
dw

∣∣∣∣∣ � N−η

2π

T∫
−T

|ζP (σ − η + i(t + y))|√
η2 + y2

dy

= O

(
N−η

T∫
−T

T
1
2 −σ−δ′√
η2 + y2

dy

)

= O
(
N−ηT

1
2 −σ−δ′

logT
)
.

The residues at w = 0 and w = 1 − s are, respectively, ζP (s) and ρN1−s/(1 − s) = O(N1−σ

|t |+1 ).

Putting these observations together and letting c = 1 −σ + 1
logN

(so that Nc = eN1−σ ), we have

ζN(σ + it) = ζP (σ + it) + O

(
N1−σ

|t | + 1

)
+ O

(
N1−σ T − 1

2 −σ−δ′) + O
(
N−ηT

1
2 −σ−δ′

logT
)

+ O

(
N1−σ logN

T

)
+ O

(
N1−σ

T

∑
N
2 <n<2N

n∈N

1

|n − N |
)

, (4)

for |t | < T and N /∈N .
Fix α ∈ (0, 1

4ρ
), and let N → ∞ in such a way that (N − α,N + α)∩N = ∅. This is possible

for if not, then n′ < n + 4α (where n and n′ are consecutive g-integers), which leads to N(x) �
1

4α
x—a contradiction as 1

4α
> ρ.

For such N , we can bound the final sum in (4) as follows. We have

∑
N
2 <n<2N

1

|n − N | =
∑

α�|n−N |<√
N

1

|n − N | +
∑

√
N�|n−N |< N

2

1

|n − N | + O(1)
n∈N n∈N n∈N
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= O
(
N

(
N + √

N
) − N

(
N − √

N
)) + O

(
N

( 3
2N

)
√

N

)
+ O(1) = O

(√
N

)
,

using N(x) = ρx + O(xβ+ε) with β < 1
2 . (In fact, the better estimate O(Nβ+ε) is possible by

splitting the sum over smaller ranges, but O(
√

N ) suffices for our purposes.) Hence (4) becomes

ζN(σ + it) = ζP (σ + it) + O

(
N1−σ

|t | + 1

)
+ O

(
N1−σ

T
1
2 +σ+δ′

)

+ O
(
N−ηT

1
2 −σ−δ′

logT
) + O

(
N

3
2 −σ

T

)
. (5)

Choosing T = N1+η makes the last three O-terms all O(N
1
2 −σ−η′

) for some η′ > 0. Using the

hypothetical bound ζP (σ + it) = O(|t | 1
2 −σ−δ′

), (5) becomes

ζN(σ + it) = O
(|t | 1

2 −σ−δ′) + O

(
N1−σ

|t | + 1

)
+ O

(
N

1
2 −σ−η′)

.

Using the Cauchy–Schwarz inequality, we have

R∑
r=1

2r−1∫
0

∣∣ζN(σ + it)
∣∣2

dt = O

(
R∑

r=1

2r−1∫
0

t1−2σ−2δ′
dt

)
+ O

(
R∑

r=1

2r−1∫
0

N2−2σ

(t + 1)2
dt

)

+ O

(
R∑

r=1

2r−1∫
0

N1−2σ−2η′
dt

)

= O
(
R3−2σ−2δ′) + O

(
RN2−2σ

) + O
(
R2N1−2σ−2η′)

.

Taking R to be of slightly larger order than N , say R = N logN , the RHS becomes o(R2N1−2σ ),
which contradicts (3). �
Remark. The result is best possible—at least if we assume the Lindelöf Hypothesis. If P = P,
then (2) holds with β = 0 and, on the Lindelöf hypothesis, μP = μ0. However, it is conceivable
that the result might be subject to further improvements if (2) holds with β > 0. The example
below shows this is not the case—again on the assumption of the Lindelöf hypothesis.

Let β ∈ (0, 1
2 ) and denote by P the g-prime system made up of p and p1/β where p varies

over all the primes, i.e.,

P = P ∪ {
p

1
β : p ∈ P

}
.

For this system, NP (x) satisfies (2). Indeed,

NP (x) =
∑

β

[
x

n1/β

]
=

∑
β

[
x

n1/β

]
+

∑
n�b

[(
x

n

)β]
− [

aβ
][b],
n�x n�a
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for any ab = x (see [1] for such manipulations). Putting a = xλ, we obtain

NP (x) = x
∑

n�xλβ

1

n1/β
+ xβ

∑
n�x1−λ

1

nβ
− xλβ+1−λ + O

(
xλβ

) + O
(
x1−λ

)

= x

(
ζ

(
1

β

)
− β

1 − β
x

−λβ( 1
β
−1) + O

(
x

−λβ( 1
β
)))

+ xβ

(
x(1−λ)(1−β)

1 − β
+ ζ(β) + O

(
x−(1−λ)β

)) − xλβ+1−λ + O
(
xλβ

) + O
(
x1−λ

)

= ζ

(
1

β

)
x + ζ(β)xβ + O

(
xλβ

) + O
(
x1−λ

)
.

Choosing λ = 1
1+β

so that λβ = 1 − λ minimizes the error. This gives

NP (x) = ζ

(
1

β

)
x + ζ(β)xβ + O

(
x

β
1+β

)
.

The associated Beurling zeta function is ζ(s)ζ(s/β). On the Lindelöf Hypothesis, it follows that
μζ(·/β)(σ ) = 0 for σ � β

2 . Thus μP (σ ) � 1
2 − σ for β < σ < 1

2 . By Theorem 1, we must have �
as well, so in fact there is equality, i.e.,

μP (σ ) = 1

2
− σ,

for β < σ < 1
2 .
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