

Available online at www.sciencedirect.com

Journal of Number Theory 122 (2007) 336–341

www.elsevier.com/locate/jnt

A lower bound for the Lindelöf function associated to generalized integers

Titus W. Hilberdink

Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK

Received 25 October 2005

Available online 16 June 2006

Communicated by David Goss

Abstract

In this paper we study generalized prime systems for which the integer counting function $N_{\mathcal{D}}(x)$ is asymptotically well-behaved, in the sense that $N_p(x) = \rho x + O(x^\beta)$, where ρ is a positive constant and $β < 1/2$. For such systems, the associated zeta function $ζp(s)$ has finite order for $σ = \Re s > β$, and the Lindelöf function $\mu_{\mathcal{P}}(\sigma)$ may be defined. We prove that for all such systems, $\mu_{\mathcal{P}}(\sigma) \geq \mu_0(\sigma)$ for $\sigma > \beta$, where

$$
\mu_0(\sigma) = \begin{cases} \frac{1}{2} - \sigma & \text{if } \sigma < \frac{1}{2}, \\ 0 & \text{if } \sigma \geqslant \frac{1}{2}. \end{cases}
$$

© 2006 Elsevier Inc. All rights reserved.

Introduction

A *generalized prime system* (or *g-prime system*) \mathcal{P} is a sequence of positive reals p_1, p_2, p_3, \ldots satisfying

$$
1 < p_1 \leqslant p_2 \leqslant \cdots \leqslant p_n \leqslant \cdots
$$

E-mail address: t.w.hilberdink@reading.ac.uk.

⁰⁰²²⁻³¹⁴X/\$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2006.05.007

and for which $p_n \to \infty$ as $n \to \infty$. From these can be formed the system N of *generalized integers* or *Beurling integers*; that is, the numbers of the form

$$
p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k},
$$

where $k \in \mathbb{N}$ and $a_1, \ldots, a_k \in \mathbb{N}_0$.¹

Such systems were first introduced by Beurling [3] and have been studied by many authors since then (see, in particular, [2]).

Much of the theory concerns connecting the asymptotic behaviour of the g-prime and g-integer counting functions, $\pi_P(x)$ and $N_P(x)$, defined respectively by²

$$
\pi_{\mathcal{P}}(x) = \sum_{p \in \mathcal{P}, \ p \leqslant x} 1 \quad \text{and} \quad N_{\mathcal{P}}(x) = \sum_{n \in \mathcal{N}, \ n \leqslant x} 1.
$$

The methods invariably involve the associated *Beurling zeta function*, defined formally by

$$
\zeta_{\mathcal{P}}(s) = \prod_{p \in \mathcal{P}} \frac{1}{1 - p^{-s}} = \sum_{n \in \mathcal{N}} \frac{1}{n^s}.
$$
 (1)

In this paper, we shall be concerned with g-prime systems P for which

$$
N_{\mathcal{P}}(x) = \rho x + O\big(x^{\beta}\big),\tag{2}
$$

for some $\beta < \frac{1}{2}$ and $\rho > 0$. (For example, for the rational primes when $\mathcal{N} = \mathbb{N}$, this is true with $\beta = 0$ and $\rho = 1$.)

For such systems, the product and series (1) converge for $\Re s > 1$ and $\zeta_{\mathcal{P}}(s)$ has an analytic continuation to the half-plane $\Re s > \beta$ except for a simple pole at $s = 1$ with residue ρ . Indeed, writing $N_p(x) = \rho x + E(x)$ with $E(x) = O(x^{\beta})$, we have for $\Re s > 1$,

$$
\zeta_{\mathcal{P}}(s) = \int_{1-}^{\infty} x^{-s} dN_{\mathcal{P}}(x) = s \int_{1}^{\infty} \frac{N_{\mathcal{P}}(x)}{x^{s+1}} dx = s \int_{1}^{\infty} \frac{\rho x + E(x)}{x^{s+1}} dx = \frac{\rho s}{s-1} + s \int_{1}^{\infty} \frac{E(x)}{x^{s+1}} dx.
$$

The integral on the right converges for $\Re s > \beta$ and is an analytic function for such *s*.

Furthermore, $\zeta_{\mathcal{P}}(s)$ has *finite order* for $\Re s > \beta$; i.e. $\zeta_{\mathcal{P}}(\sigma + it) = O(|t|^A)$ as $|t| \to \infty$ for some constant *A* for $\sigma > \beta$ (indeed, in our case this is true with $A = 1$). We can therefore define, as is usual, the *Lindelöf function* $\mu_{\mathcal{P}}(\sigma)$ to be the infimum of all real numbers λ such that $\zeta_{\mathcal{P}}(\sigma + it) = O(|t|^{\lambda})$. It is well known that, as a function of σ , $\mu_{\mathcal{P}}(\sigma)$ is non-negative, decreasing, and convex (and hence continuous) (see, for example, [5]). Since $\mu_{\mathcal{P}}(\sigma) = 0$ for *σ* > 1, and (from above) $μp(σ) ≤ 1$ for $σ > β$, it follows by convexity that

$$
\mu_{\mathcal{P}}(\sigma) \leqslant \frac{1-\sigma}{1-\beta} \quad \text{for } \beta < \sigma \leqslant 1.
$$

¹ Here and henceforth, $\mathbb{N} = \{1, 2, 3, ...\}$, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, and $\mathbb{P} = \{2, 3, 5, ...\}$ —the set of primes.

² We write $\sum_{p \in \mathcal{P}}$ to mean a sum over all the g-primes, counting multiplicities. Similarly for $\sum_{n \in \mathcal{N}}$.

For $P = \mathbb{P}$ (so that $\mathcal{N} = \mathbb{N}$), the Lindelöf hypothesis is the conjecture that $\mu_{\mathbb{P}}(\sigma) = \mu_0(\sigma)$ for all σ , where

$$
\mu_0(\sigma) = \begin{cases} \frac{1}{2} - \sigma & \text{if } \sigma < \frac{1}{2}, \\ 0 & \text{if } \sigma \geqslant \frac{1}{2}. \end{cases}
$$

In this paper we prove that for all g-prime systems satisfying (2), $\mu_{\mathcal{P}}(\sigma)$ must be *at least* as large as $\mu_0(\sigma)$, i.e.,

$$
\mu_{\mathcal{P}}(\sigma) \geqslant \mu_0(\sigma) \quad \text{for } \sigma > \beta.
$$

This is, of course, trivial for $\sigma \ge \frac{1}{2}$, so we shall only concern ourselves with $\beta < \sigma < \frac{1}{2}$.

For the proof we employ the same methods (but strengthened) as those used in $\overline{[4]}$, where (essentially) it was shown that $\mu_{\mathcal{P}}(\sigma) > 0$ for any $\sigma < \frac{1}{2}$, in order to prove that for such systems we have $\psi_{\mathcal{P}}(x) - x = \Omega(x^{\frac{1}{2} - \delta})$ for every $\delta > 0.3$

Main result

Theorem 1. *Let* P *be a g-prime system for which*

$$
N_{\mathcal{P}}(x) = \rho x + O\big(x^{\beta}\big),
$$

for some $\beta < \frac{1}{2}$ *and* $\rho > 0$ *. Let* $\mu_{\mathcal{P}}(\sigma)$ *and* $\mu_0(\sigma)$ *be as defined above. Then for* $\sigma > \beta$ *, we have*

$$
\mu_{\mathcal{P}}(\sigma) \geqslant \mu_0(\sigma).
$$

Proof. As mentioned above, we need only consider $\beta < \sigma < \frac{1}{2}$.

Suppose, for a contradiction, that we have $\mu_{\mathcal{P}}(\sigma) < \frac{1}{2} - \sigma$ for some $\sigma \in (\beta, \frac{1}{2})$. Then we can write

$$
\mu_{\mathcal{P}}(\sigma) = \frac{1}{2} - \sigma - \delta,
$$

for some $\delta > 0$.

Let $\zeta_N(s) = \sum_{n \le N} n^{-s}$, where the sum ranges over $n \in \mathcal{N}$ (for clarity, we shall drop the subscript P throughout this proof). By identical arguments as those used in [4], we find that there exists constants $c_1, c_2 > 0$ such that for $R \ge c_1 N$,

$$
\sum_{r=1}^{R} \int_{0}^{2r-1} |\zeta_N(\sigma + it)|^2 dt \ge c_2 R^2 N^{1-2\sigma}.
$$
 (3)

Also, writing $s = \sigma + it$, and following the arguments in [4], we have

³ Here $\psi_{\mathcal{P}}(x)$ is the generalized Chebychev function $\psi_{\mathcal{P}}(x) = \sum_{p^k \leq x, p \in \mathcal{P}, k \in \mathbb{N}} \log p$ (counting multiplicities).

$$
\zeta_N(s) = \frac{1}{2\pi i} \int\limits_{c-iT}^{c+iT} \frac{\zeta \mathcal{P}(s+w)N^w}{w} dw + O\left(\frac{N^c}{T(c+\sigma-1)}\right) + O\left(\frac{N^{1-\sigma}}{T} \sum\limits_{\substack{N \leq n < 2N \\ n \in \mathcal{N}}} \frac{1}{|n-N|}\right),
$$

for $|t| < T$, $c > 1 - \sigma$ and $N \notin \mathcal{N}$.

Now push the contour in the integral to the left as far as $\Re w = -\eta$, where $\eta > 0$, picking up the residues at $w = 0$ and $w = 1 - s$ (since $|t| < T$). Here, η is chosen sufficiently small such that $\sigma - \eta > \beta$ and $\mu_{\mathcal{P}}(\sigma - \eta) < \frac{1}{2} - \sigma$. This is possible since $\mu_{\mathcal{P}}(\cdot)$ is continuous. Thus $\zeta_{\mathcal{P}}(\sigma - \eta + it) = O(|t|^{\frac{1}{2} - \sigma - \delta'})$ for some $\delta' > 0$.

The contribution along the horizontal line $[-\eta + iT, c + iT]$ is, in modulus, less than

$$
\frac{1}{2\pi}\int_{-\eta}^{c} \frac{N^y|\zeta_{\mathcal{P}}(\sigma+y+i(t+T))|}{\sqrt{y^2+T^2}} dy = O(N^cT^{-\frac{1}{2}-\sigma-\delta'}).
$$

Similarly on $[-\eta - iT, c - iT]$. For the integral along $\Re w = -\eta$, we have

$$
\left|\frac{1}{2\pi i} \int_{-\eta-iT}^{-\eta+iT} \frac{\zeta_{\mathcal{P}}(s+w)N^w}{w} dw\right| \leq \frac{N^{-\eta}}{2\pi} \int_{-T}^{T} \frac{|\zeta_{\mathcal{P}}(\sigma-\eta+i(t+y))|}{\sqrt{\eta^2+y^2}} dy
$$

$$
= O\left(N^{-\eta} \int_{-T}^{T} \frac{T^{\frac{1}{2}-\sigma-\delta'}}{\sqrt{\eta^2+y^2}} dy\right)
$$

$$
= O\left(N^{-\eta} \int_{-T}^{\frac{1}{2}-\sigma-\delta'} \frac{T^{\frac{1}{2}-\sigma-\delta'}}{\log T}\right).
$$

The residues at $w = 0$ and $w = 1 - s$ are, respectively, $\zeta_{\mathcal{P}}(s)$ and $\rho N^{1-s}/(1-s) = O(\frac{N^{1-\sigma}}{|t|+1})$. Putting these observations together and letting $c = 1 - \sigma + \frac{1}{\log N}$ (so that $N^c = eN^{1-\sigma}$), we have

$$
\zeta_N(\sigma + it) = \zeta_{\mathcal{P}}(\sigma + it) + O\left(\frac{N^{1-\sigma}}{|t|+1}\right) + O\left(N^{1-\sigma}T^{-\frac{1}{2}-\sigma-\delta'}\right) + O\left(N^{-\eta}T^{\frac{1}{2}-\sigma-\delta'}\log T\right) + O\left(\frac{N^{1-\sigma}\log N}{T}\right) + O\left(\frac{N^{1-\sigma}}{T}\sum_{\substack{N \le n < 2N \\ n \in \mathcal{N}}} \frac{1}{|n-N|}\right),\tag{4}
$$

for $|t| < T$ and $N \notin \mathcal{N}$.

Fix $\alpha \in (0, \frac{1}{4\rho})$, and let $N \to \infty$ in such a way that $(N - \alpha, N + \alpha) \cap \mathcal{N} = \emptyset$. This is possible for if not, then $n' < n + 4\alpha$ (where *n* and *n'* are consecutive g-integers), which leads to $N(x) \gtrsim$ $\frac{1}{4\alpha}$ *x* —a contradiction as $\frac{1}{4\alpha}$ > *ρ*.

For such *N*, we can bound the final sum in (4) as follows. We have

$$
\sum_{\frac{N}{2} < n < 2N \\ n \in \mathcal{N}} \frac{1}{|n - N|} = \sum_{\substack{\alpha \le |n - N| < \sqrt{N} \\ n \in \mathcal{N}}} \frac{1}{|n - N|} + \sum_{\substack{\sqrt{N} \le |n - N| < \frac{N}{2} \\ n \in \mathcal{N}}} \frac{1}{|n - N|} + O(1)
$$

340 *T.W. Hilberdink / Journal of Number Theory 122 (2007) 336–341*

$$
= O(N(N + \sqrt{N}) - N(N - \sqrt{N}))+ O\left(\frac{N(\frac{3}{2}N)}{\sqrt{N}}\right) + O(1) = O(\sqrt{N}),
$$

using $N(x) = \rho x + O(x^{\beta+\epsilon})$ with $\beta < \frac{1}{2}$. (In fact, the better estimate $O(N^{\beta+\epsilon})$ is possible by splitting the sum over smaller ranges, but $O(\sqrt{N})$ suffices for our purposes.) Hence (4) becomes

$$
\zeta_N(\sigma + it) = \zeta_{\mathcal{P}}(\sigma + it) + O\left(\frac{N^{1-\sigma}}{|t|+1}\right) + O\left(\frac{N^{1-\sigma}}{T^{\frac{1}{2}+\sigma+\delta'}}\right) + O\left(N^{-\eta}T^{\frac{1}{2}-\sigma-\delta'}\log T\right) + O\left(\frac{N^{\frac{3}{2}-\sigma}}{T}\right).
$$
(5)

Choosing $T = N^{1+\eta}$ makes the last three O-terms all $O(N^{\frac{1}{2}-\sigma-\eta'}$ for some $\eta' > 0$. Using the hypothetical bound $\zeta_{\mathcal{P}}(\sigma + it) = O(|t|^{\frac{1}{2} - \sigma - \delta'}),$ (5) becomes

$$
\zeta_N(\sigma+it) = O\big(|t|^{\frac{1}{2}-\sigma-\delta'}\big) + O\bigg(\frac{N^{1-\sigma}}{|t|+1}\bigg) + O\big(N^{\frac{1}{2}-\sigma-\eta'}\big).
$$

Using the Cauchy–Schwarz inequality, we have

$$
\sum_{r=1}^{R} \int_{0}^{2r-1} |\zeta_{N}(\sigma+it)|^{2} dt = O\left(\sum_{r=1}^{R} \int_{0}^{2r-1} t^{1-2\sigma-2\delta'} dt\right) + O\left(\sum_{r=1}^{R} \int_{0}^{2r-1} \frac{N^{2-2\sigma}}{(t+1)^{2}} dt\right)
$$

+ $O\left(\sum_{r=1}^{R} \int_{0}^{2r-1} N^{1-2\sigma-2\eta'} dt\right)$
= $O(R^{3-2\sigma-2\delta'}) + O(RN^{2-2\sigma}) + O(R^{2}N^{1-2\sigma-2\eta'}).$

Taking *R* to be of slightly larger order than *N*, say $R = N \log N$, the RHS becomes $o(R^2 N^{1-2\sigma})$, which contradicts (3) . \Box

Remark. The result is best possible—at least if we assume the Lindelöf Hypothesis. If $\mathcal{P} = \mathbb{P}$, then (2) holds with $\beta = 0$ and, on the Lindelöf hypothesis, $\mu_{\mathcal{P}} = \mu_0$. However, it is conceivable that the result might be subject to further improvements if (2) holds with $\beta > 0$. The example below shows this is not the case—again on the assumption of the Lindelöf hypothesis.

Let $\beta \in (0, \frac{1}{2})$ and denote by \mathcal{P} the g-prime system made up of *p* and $p^{1/\beta}$ where *p* varies over all the primes, i.e.,

$$
\mathcal{P} = \mathbb{P} \cup \{ p^{\frac{1}{\beta}} : p \in \mathbb{P} \}.
$$

For this system, $N_{\mathcal{D}}(x)$ satisfies (2). Indeed,

$$
N_{\mathcal{P}}(x) = \sum_{n \leq x^{\beta}} \left[\frac{x}{n^{1/\beta}} \right] = \sum_{n \leq a^{\beta}} \left[\frac{x}{n^{1/\beta}} \right] + \sum_{n \leq b} \left[\left(\frac{x}{n} \right)^{\beta} \right] - \left[a^{\beta} \right] [b],
$$

for any $ab = x$ (see [1] for such manipulations). Putting $a = x^{\lambda}$, we obtain

$$
N_{\mathcal{P}}(x) = x \sum_{n \leq x^{\lambda\beta}} \frac{1}{n^{1/\beta}} + x^{\beta} \sum_{n \leq x^{1-\lambda}} \frac{1}{n^{\beta}} - x^{\lambda\beta+1-\lambda} + O(x^{\lambda\beta}) + O(x^{1-\lambda})
$$

$$
= x \left(\zeta \left(\frac{1}{\beta} \right) - \frac{\beta}{1-\beta} x^{-\lambda\beta(\frac{1}{\beta}-1)} + O(x^{-\lambda\beta(\frac{1}{\beta})}) \right)
$$

$$
+ x^{\beta} \left(\frac{x^{(1-\lambda)(1-\beta)}}{1-\beta} + \zeta(\beta) + O(x^{-(1-\lambda)\beta}) \right) - x^{\lambda\beta+1-\lambda} + O(x^{\lambda\beta}) + O(x^{1-\lambda})
$$

$$
= \zeta \left(\frac{1}{\beta} \right) x + \zeta(\beta) x^{\beta} + O(x^{\lambda\beta}) + O(x^{1-\lambda}).
$$

Choosing $\lambda = \frac{1}{1+\beta}$ so that $\lambda \beta = 1 - \lambda$ minimizes the error. This gives

$$
N_{\mathcal{P}}(x) = \zeta \left(\frac{1}{\beta}\right) x + \zeta(\beta) x^{\beta} + O\left(x^{\frac{\beta}{1+\beta}}\right).
$$

The associated Beurling zeta function is *ζ(s)ζ(s/β)*. On the Lindelöf Hypothesis, it follows that $\mu_{\zeta(\cdot/\beta)}(\sigma) = 0$ for $\sigma \ge \frac{\beta}{2}$. Thus $\mu_{\mathcal{P}}(\sigma) \le \frac{1}{2} - \sigma$ for $\beta < \sigma < \frac{1}{2}$. By Theorem 1, we must have \ge as well, so in fact there is equality, i.e.,

$$
\mu_{\mathcal{P}}(\sigma) = \frac{1}{2} - \sigma,
$$

for $\beta < \sigma < \frac{1}{2}$.

References

- [1] T.M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
- [2] P.T. Bateman, H.G. Diamond, Asymptotic distribution of Beurling's generalized prime numbers, in: Studies in Number Theory, vol. 6, Prentice Hall, 1969, pp. 152–212.
- [3] A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés I, Acta Math. 68 (1937) 255–291.
- [4] T.W. Hilberdink, Well-behaved Beurling primes and integers, J. Number Theory 112 (2005) 332–344.
- [5] E.C. Titchmarsh, The Theory of Functions, second ed., Oxford Univ. Press, 1986.