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Abstract

We prove a law of large numbers for a class of Zd -valued random walks in dynamic random environ-
ments, including non-elliptic examples. We assume for the random environment a mixing property called
conditional cone-mixing and that the random walk tends to stay inside wide enough space–time cones. The
proof is based on a generalization of a regeneration scheme developed by Comets and Zeitouni (2004) [5]
for static random environments and adapted by Avena et al. (2011) [2] to dynamic random environments.
A number of one-dimensional examples are given. In some cases, the sign of the speed can be determined.
c⃝ 2012 Elsevier B.V. All rights reserved.

MSC: Primary 60K37; Secondary 60F15; 82C22

Keywords: Random walk; Dynamic random environment; Non-elliptic; Conditional cone-mixing; Regeneration; Law of
large numbers

1. Introduction

1.1. Background

Random walk in random environment (RWRE) has been an active area of research for more
than three decades. Informally, RWREs are random walks in discrete or continuous space–time
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Fig. 1. Jump rates of the (α, β)-walk on top of a hole (=0), respectively, a particle (=1).

whose transition kernels or transition rates are not fixed but are random themselves, constituting
a random environment. Typically, the law of the random environment is taken to be translation
invariant. Once a realization of the random environment is fixed, we say that the law of the
random walk is quenched. Under the quenched law, the random walk is Markovian but not
translation invariant. It is also interesting to consider the quenched law averaged over the law of
the random environment, which is called the annealed law. Under the annealed law, the random
walk is not Markovian but translation invariant. For an overview on RWRE, we refer the reader
to Zeitouni [12,13], Sznitman [10,11], and references therein.

In the past decade, several models have been considered in which the random environment
itself evolves in time. These are referred to as random walk in dynamic random environment
(RWDRE). By viewing time as an additional spatial dimension, RWDRE can be seen as a
special case of RWRE, and as such it inherits the difficulties present in RWRE in dimensions
two or higher. However, RWDRE can be harder than RWRE because it is an interpolation
between RWRE and homogeneous random walk, which arise as limits when the dynamics is
slow, respectively, fast. For a list of mathematical papers dealing with RWDRE, we refer the
reader to [3]. Most of the literature on RWDRE is restricted to situations in which the space–time
correlations of the random environment are either absent or rapidly decaying.

One paper in which a milder space–time mixing property is considered is [2], where a law of
large numbers (LLN) is derived for a class of one-dimensional RWDREs in which the role of the
random environment is taken by an interacting particle system (IPS) with configuration space

Ω := {0, 1}
Z. (1.1)

In their paper, the random walk starts at 0 and has transition rates as in Fig. 1: on a hole (i.e., on
a 0) the random walk has rate α to jump one unit to the left and rate β to jump one unit to the
right, while on a particle (i.e., on a 1) the rates are reversed (w.l.o.g. it may be assumed that
0 < β < α < ∞, so that the random walk has a drift to the left on holes and a drift to the
right on particles). Hereafter, we will refer to this model as the (α, β)-model. The LLN is proved
under the assumption that the IPS satisfies a space–time mixing property called cone-mixing (see
Fig. 2), which means that the states inside a space–time cone are almost independent of the states
in a space plane far below this cone. The proof uses a regeneration scheme originally developed
by Comets and Zeitouni [5] for RWRE and adapted to deal with RWDRE. This proof can be
easily extended to Zd , d ≥ 2, with the appropriate corresponding notion of cone-mixing.

1.2. Elliptic vs. non-elliptic

The original motivation for the present paper was to study the (α, β)-model in the limit as
α → ∞ and β ↓ 0. In this limit, which we will refer to as the (∞, 0)-model, the walk is almost a
deterministic functional of the IPS; in particular, it is non-elliptic. The challenge was to find a way
to deal with the lack of ellipticity. As we will see in Section 3, our set-up will be rather general
and will include the (α, β)-model, the (∞, 0)-model, as well as various other models. Examples
of papers that deal with non-elliptic (actually, deterministic) RW(D)REs are Madras [7] and
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Fig. 2. Cone-mixing property: asymptotic independence of states inside a space–time cone from states inside a space
plane.

Matic [9], where a recurrence vs. transience criterion, respectively, a large deviation principle
are derived.

In the RW(D)RE literature, ellipticity assumptions play an important role. In the static case,
RWRE in Zd , d ≥ 1, is called elliptic when, almost surely w.r.t. the random environment, all the
rates are finite and there is a basis {ei }1≤i≤d of Zd such that the rate to go from x to x + ei is
positive for 1 ≤ i ≤ d . It is called uniformly elliptic when these rates are bounded away from
infinity, respectively, bounded away from zero. In [5], in order to take advantage of the mixing
property assumed on the random environment, it is important to have uniform ellipticity not
necessarily in all directions, but in at least one direction in which the random walk is transient.
One way to state this “uniform directional ellipticity” in a way that encompasses also the dynamic
setting is to require the existence of a deterministic time T > 0 and a vector e ∈ Zd such that the
quenched probability for the random walk to displace itself along e during time T is uniformly
positive for almost every realization of the random environment. This is satisfied by the (α, β)-
model for e = 0 and any T > 0. This model is also transient (indeed, non-nestling) in the
time direction, which enables the use of the cone-mixing property of [2]. In the case of the
(∞, 0)-model, however, there are in general no such T and e. For example, when the random
environment is a spin-flip system with bounded flip rates, any fixed space–time position has
positive probability of being unreachable by the random walk. For all such models, the approach
in [2] fails.

In the present paper, in order to deal with the possible lack of ellipticity we require a different
space–time mixing property for the dynamic random environment, which we call conditional
cone-mixing. Moreover, as in [5,2], we must require the random walk to have a tendency to stay
inside space–time cones. Under these assumptions, we are able to set up a regeneration scheme
and prove a LLN. Our result includes the LLN for the (α, β)-model in [2], the (∞, 0)-model
for at least two subclasses of IPSs that we will exhibit, as well as models that are intermediate,
in the sense that they are neither uniformly elliptic in any direction, nor deterministic as the
(∞, 0)-model.

1.3. Outline

The rest of the paper is organized as follows. In Section 2 we discuss, still informally, the
(∞, 0)-model and the regeneration strategy. This section serves as a motivation for the formal
definition in Section 3 of the class of models we are after, which is based on three structural
assumptions. Section 4 contains the statement of our LLN under four hypotheses, and a descrip-
tion of two classes of one-dimensional IPSs that satisfy these hypotheses for the (∞, 0)-model,
namely, spin-flip systems with bounded flip rates that either are in Liggett’s M < ϵ regime,
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or have finite range and a small enough ratio of maximal/minimal flip rates. Section 5 contains
preparation material, given in a general context, that is used in the proof of the LLN given in
Section 6. In Section 7 we verify our hypotheses for the two classes of IPSs described in Sec-
tion 4. We also obtain a criterion to determine the sign of the speed in the LLN, via a comparison
with independent spin-flip systems. Finally, in Section 8, we discuss how to adapt the proofs in
Section 7 to other models, namely, generalizations of the (α, β)-model and the (∞, 0)-model,
and mixtures thereof. We also give an example where our hypotheses fail. The examples in our
paper are all one-dimensional, even though our LLN is valid in Zd , d ≥ 1.

2. Motivation

2.1. The (∞, 0)-model

Let

ξ := (ξt )t≥0 with ξt :=

ξt (x)


x∈Z (2.1)

be a càdlàg Markov process on Ω . We will interpret ξ by saying that at time t site x contains
either a hole (ξt (x) = 0) or a particle (ξt (x) = 1). Typical examples are interacting particle
systems on Ω , such as independent spin-flips and simple exclusion.

Suppose that we run the (α, β)-model on ξ with 0 < β ≪ 1 ≪ α < ∞. Then the behavior
of the random walk is as follows. Suppose that ξ0(0) = 1 and that the walk starts at 0. The
walk rapidly moves to the first hole on its right, typically before any of the particles it encounters
manages to flip to a hole. When it arrives at the hole, the walk starts to rapidly jump back and
forth between the hole and the particle to the left of the hole: we say that it sits in a trap. If
ξ0(0) = 0 instead, then the walk rapidly moves to the first particle on its left, where it starts
to rapidly jump back and forth in a trap. In both cases, before moving away from the trap, the
walk typically waits until one or both of the sites in the trap flip. If only one site flips, then the
walk typically moves in the direction of the flip until it hits a next trap, etc. If both sites flip
simultaneously, then the probability for the walk to sit at either of these sites is close to 1

2 , and
hence it leaves the trap in a direction that is close to being determined by an independent fair
coin.

The limiting dynamics when α → ∞ and β ↓ 0 can be obtained from the above description
by removing the words “rapidly, “typically” and “close to”. Except for the extra Bernoulli ( 1

2 )
random variables needed to decide in which direction to go to when both sites in a trap flip
simultaneously, the walk up to time t is a deterministic functional of (ξs)0≤s≤t . In particular,
if ξ changes only by single-site flips, then apart from the first jump the walk is completely
deterministic. Since the walk spends all of its time in traps where it jumps back and forth
between a hole and a particle, we may imagine that it lives on the edges of Z. We implement
this observation by associating with each edge its left-most site, i.e., we say that the walk is at x
when we actually mean that it is jumping back and forth between x and x + 1. See Fig. 3.

Let

W := (Wt )t≥0 (2.2)

denote the random walk path. By the description above, W is càdlàg and

Wt is a function of

(ξs)0≤s≤t , Y


, (2.3)
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Fig. 3. The vertical lines represent the presence of particles. The dotted line is the path of the (∞, 0)-walk.

where Y is a sequence of i.i.d. Bernoulli( 1
2 ) random variables independent of ξ . Note that W also

has the following three properties:

(1) For any fixed time s, the increment Ws+t − Ws is found by applying the same function in
(2.3) to the environment shifted in space and time by (Ws, s) and an independent copy of Y ;
in particular, the pair (Wt , ξt ) is Markovian.

(2) Given that W stays inside a space–time cone until time t , (Ws)0≤s≤t is a functional only of
Y and of the states in ξ up to time t inside a slightly larger cone, obtained by adding all
neighboring sites to the right.

(3) Each jump of the path follows the same mechanism as the first jump, i.e., Wt − Wt− is
computed using the same rules as those for W0 but applied to the environment shifted in
space and time by (Wt−, t).

The reason for emphasizing these properties will become clearer in Section 2.2.

2.2. Regeneration

The cone-mixing property that is assumed in [2] to prove the LLN for the (α, β)-model can
be loosely described as the requirement that all the states of the IPS inside a space–time cone
opening upwards depend weakly on the states inside a space plane far below the tip (recall Fig. 2).
Let us give a rough idea of how this property can lead to regeneration. Consider the event that the
walk stands still for a long time. Since the jump times of the walk are independent of the IPS, so
is this event. During this pause, the environment around the walk is allowed to mix, which by the
cone-mixing property means that by the end of the pause all the states inside a cone with a tip at
the space–time position of the walk are almost independent of the past of the walk. If thereafter
the walk stays confined to the cone, then its future increments will be almost independent of its
past, and so we get an approximate regeneration. Since in the (α, β)-model there is a uniformly
positive probability for the walk to stay inside a space–time cone with a large enough inclination,
we see that this regeneration strategy can indeed be made to work. See Fig. 4.

For the actual proof of the LLN in [2], cone-mixing must be more carefully defined. For
technical reasons, there must be some uniformity in the decay of correlations between events in
the space–time cone and in the space plane. This uniformity holds, for instance, for any spin-flip
system in the M < ϵ regime (Liggett [6], Section I.3), but not for the exclusion process or the
supercritical contact process. Therefore the approach outlined above works for the first IPS, but
not for the other two.

There are three properties of the (α, β)-model that make the above heuristics plausible. First,
to be able to apply the cone-mixing property relative to the space–time position of the walk, it
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Fig. 4. Regeneration at time τ .

is important that the pair (IPS, walk) is Markovian and that the law of the environment as seen
from the walk at any time is comparable to the initial law. Second, there is a uniformly positive
probability for the walk to stand still for a long time and afterwards stay inside a space–time
cone. Third, once the walk stays inside a space–time cone, its increments depend on the IPS only
through the states inside that cone. Let us compare these observations with what happens in the
(∞, 0)-model. Property (1) from Section 2.1 gives us the Markov property, while property (2)
gives us the measurability inside cones. As we will see, when the environment is translation-
invariant, property (3) implies absolute continuity of the law of the environment as seen from the
walk at any positive time with respect to its counterpart at time zero. Therefore, as long as we can
make sure that the walk has a tendency to stay inside space–time cones (which is reasonable when
we are looking for a LLN), the main difference is that the event of standing still for a long time is
not independent of the environment, but rather is a deterministic functional of the environment.
Consequently, it is not at all clear whether cone-mixing is enough to allow for regeneration. On
the other hand, the event of standing still is local, since it only depends on the states of the two
neighboring sites of the trap where the walk is pausing. For many IPSs, the observation of a local
event will not affect the weak dependence between states that are far away in space–time. Hence,
if such IPSs are cone-mixing, then states inside a space–time cone remain almost independent of
the initial configuration even when we condition on seeing a trap for a long time.

Thus, under suitable assumptions, the event “standing still for a long time” is a candidate to
induce regeneration. In the (α, β)-model this event does not depend on the environment whereas
in the (∞, 0)-model it is a deterministic functional of the environment. If we put the (α, β)-
model in the form (2.3) by taking for Y two independent Poisson processes with rates α and β,
then we can restate the previous sentence by saying that in the (α, β)-model the regeneration-
inducing event depends only on Y , while in the (∞, 0)-model it depends only on ξ . We may
therefore imagine that, also for other models of the type (2.3) and that share properties (1)–(3),
it will be possible to find more general regeneration-inducing events that depend on both ξ and
Y in a non-trivial manner. This motivates our setup in Section 3.

3. Model setting

So far we have mostly been discussing RWDRE driven by an IPS. However, there are
convenient constructions of IPSs on richer state spaces (such as graphical representations) that
can facilitate the construction of the regeneration-inducing events mentioned in Section 2.2.
We will therefore allow for more general Markov processes to represent the dynamic random
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environment ξ . Notation is set up in Section 3.1. Section 3.2 contains the three structural
assumptions that define the class of models we will consider.

3.1. Notation and setup

Let N = {1, 2, . . .} be the set of natural numbers, and N0 := N ∪ {0}. Let E be a Polish space
and ξ := (ξt )t≥0 a Markov process with state space EZd

where d ∈ N. Let Y := (Yn)n∈N be an
i.i.d. sequence of random elements independent of ξ . For I ⊂ [0,∞), abbreviate ξI := (ξu)u∈I ,
and analogously for Y . The joint law of ξ and Y when ξ0 = η ∈ EZd

will be denoted by Pη. For
n ∈ N, put Yn := σ(Y[1,n]). Let F0 := σ(ξ0) and, for t > 0, Ft := σ(ξ[0,t]) ∨ Y⌈t⌉.

For t ≥ 0 and x ∈ Zd , let θt and θx be the time-shift and space-shift operators given by

θt (ξ, Y ) :=

(ξt+s)s≥0, (Y⌊t⌋+n)n∈N


, θx (ξ, Y ) :=


(θxξt )t≥0, (Yn)n∈N


, (3.1)

where θxξt (y) = ξt (x + y). In the sequel, whether θ is a time-shift or a space-shift operator will
always be clear from the index.

We assume that ξ is translation-invariant, i.e., θxξ has under Pη the same distribution as ξ
under Pθxη. We also assume the existence of a (not necessarily unique) translation-invariant
equilibrium distribution µ for ξ , and write Pµ(·) :=


µ(dη)Pη(·) to denote the joint law of

ξ and Y when ξ0 is drawn from µ.
The random walk will be denoted by W = (Wt )t≥0, and we will write ξ̄ := (ξ̄t )t≥0 to denote

the environment process as seen from W , i.e., ξ̄t := θWt ξt . Let µ̄t denote the law of ξ̄t under Pµ.
We abbreviate µ̄ := µ̄0. Note that µ̄ = µ when Pµ(W0 = 0) = 1.

For m > 0 and R ∈ N0, define the R-enlarged m-cone by

CR(m) :=

(x, t) ∈ Zd

× [0,∞) : ∥x∥ ≤ mt + R

, (3.2)

where ∥ · ∥ is the L1 norm. Let CR,t (m) be the σ -algebras generated by the states of ξ up to time
t inside CR(m).

3.2. Structural assumptions

We will assume that W is random translation of a random walk starting at 0. More precisely,
we assume that Z = (Z t )t≥0 is a càdlàg F -adapted Zd -valued process with Z0 = 0Pµ̄-a.s. such
that

Wt = W0 + θW0 Z t ∀t ≥ 0. (3.3)

We also assume that W0 ∈ Zd and depends on ξ and Y only through ξ0, i.e.,

Pµ(W0 = x | F∞) = Pµ(W0 = x | ξ0) a.s. ∀x ∈ Zd . (3.4)

Under these assumptions, (Wt − W0)t≥0 has under Pµ the same distribution as Z under Pµ̄. In
what follows we make three structural assumptions on Z :

(A1) (Additivity)
For all n ∈ N,

(Z t+n − Zn)t≥0 = θZnθn Z Pµ̄-a.s. (3.5)

(A2) (Locality)
For m > 0, let Dm := {∥Z t∥ ≤ mt ∀t ≥ 0}. Then there exists R ∈ N0 such that, ∀ m > 0,
both Dm and (1Dm Z t )t≥0 are measurable w.r.t. CR,∞(m) ∨ Y∞.
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(A3) (Homogeneity of jumps)
For all n ∈ N and x ∈ Zd ,

Pµ̄

Zn − Zn− = x | ξ[0,n], Z[0,n)


= PθZn−

ξn


W0 = x


Pµ̄-a.s. (3.6)

These properties are analogs of properties (1)–(3) of the (∞, 0)-model mentioned in Section 2.1,
with the difference that we only require them to hold at integer times; this will be enough as
our proof relies on integer-valued regeneration times. We also assume the ‘extra randomness’
Y to be split independently among time intervals of length 1; for example, in the case of the
(∞, 0)-model, each Yn would not be a Bernoulli( 1

2 ) random variable but a whole sequence of
such variables instead. This is discussed in detail in Section 7.1.
Another remark: assumption (A3) might seem strange since many random walk models have
no deterministic jumps, which is indeed the case for the examples described in Section 4. Note
however that, in this case, (A3) severely restricts W0, implying W0 = 0 a.s. when ξ is started from
θZn−

ξn . Furthermore, our main theorem (Theorem 4.1 below) is not restricted to this situation and
includes also cases with deterministic jumps. For example, one could modify the (∞, 0)-walk to
jump exactly at integer times. Additional examples with deterministic jumps are described in item
4 of Section 8. The relevance of assumption (A3) is in showing that the law of the environment
as seen by the RW after any jump is absolutely continuous w.r.t. the law after the first jump; this
is done in Lemma 6.1 below.

4. Main results

Theorems 4.1 and 4.2 below are the main results of our paper. Theorem 4.1 in Section 4.1 is
our LLN. Theorem 4.2 in Section 4.2 verifies the hypotheses in this LLN for the (∞, 0)-model
in two classes of one-dimensional IPSs. For these classes some more information is available,
namely, convergence in L p, p ≥ 1, and a criterion to determine the sign of the speed.

4.1. Law of large numbers

In order to develop a regeneration scheme for a random walk subject to assumptions
(A1)–(A3) based on the heuristics discussed in Section 2.2, we need suitable regeneration-
inducing events. In the four hypotheses stated below, these events appear as a sequence (ΓL)L∈N
such that, for a certain fixed m ∈ (0,∞) and R as in (A2), ΓL ∈ CR,L(m) ∨ YL for all L ∈ N.

(H1) (Determinacy)
On ΓL , Z t = 0 for all t ∈ [0, L] Pµ̄-a.s.

(H2) (Non-degeneracy)
For L large enough, there exists a γL > 0 such that Pη(ΓL) ≥ γL for µ̄-a.e. η.

(H3) (Cone constraints)
Let S := inf{t > 0 : ∥Z t∥ > mt}. Then there exist a ∈ (1,∞), κL ∈ (0, 1] and
ψL ∈ [0,∞) such that, for L large enough and µ̄-a.e. η,

(1) Pη(θL S = ∞ | ΓL) ≥ κL ,

(2) Eη

1{θL S<∞} (θL S)a | ΓL


≤ ψa

L .
(4.1)

(H4) (Conditional cone-mixing)
There exists a sequence of non-negative numbers (ΦL)L∈N satisfying limL→∞ κ−1

L ΦL = 0
such that, for L large enough and for µ̄-a.e. η,Eη (θL f | ΓL)− Eµ̄(θL f | ΓL)

 ≤ ΦL ∥ f ∥∞ ∀ f ∈ CR,∞(m), f ≥ 0. (4.2)
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We are now ready to state our LLN.

Theorem 4.1. Under assumptions (A1)–(A3)and hypotheses (H1)–(H4), there exists a w ∈ Rd

such that

lim
t→∞

t−1 Wt = w Pµ − a.s. (4.3)

Remark 1. Hypothesis (H4) above without the conditioning on ΓL in (4.2) and with constant κL
is the same as the cone-mixing condition used by Avena et al. [2]. There, W0 = 0 Pµ-a.s., so that
µ̄ = µ.

Remark 2. Theorem 4.1 provides no information about the value of w, not even its sign when
d = 1. Understanding the dependence ofw on model parameters is in general a highly non-trivial
problem.

4.2. Examples

We next describe two classes of one-dimensional IPSs for which the (∞, 0)-model satisfies
hypotheses (H1)–(H4). Further details will be given in Section 7. In both classes, ξ is a spin-
flip system in Ω = {0, 1}

Z with bounded and translation-invariant single-site flip rates. We may
assume that the flip rates at the origin are of the form

c(η) =


c0 + λ0 p0(η) if η(0) = 1,
c1 + λ1 p1(η) if η(0) = 0,

η ∈ Ω , (4.4)

for some ci , λi ≥ 0 and pi : Ω → [0, 1], i = 0, 1.

Example 1. c(·) is in the M < ϵ regime (see Liggett [6], Section I.3).

Example 2. p(·) has finite range and (λ0 +λ1)/(c0 + c1) < λc, where λc is the critical infection
rate of the one-dimensional contact process with the same range.

Theorem 4.2. Consider the (∞, 0)-model. Suppose that ξ is a spin-flip system with flip rates
given by (4.4). Then for Examples 1 and 2 there exist a version of ξ and events ΓL ∈ CR,L(m)∨
YL , L ∈ N, satisfying hypotheses (H1)–(H4). Furthermore, the convergence in Theorem 4.1
holds also in L p for all p ≥ 1, and

w ≥
c0 + λ0

c1 + c0 + λ0
(c1 − c0 − λ0) if c1 ≥ c0 + λ0,

w ≤ −
c1 + λ1

c0 + c1 + λ1
(c0 − c1 − λ1) if c0 ≥ c1 + λ1.

(4.5)

For independent spin-flip systems (i.e., when λ0 = λ1 = 0), (4.5) shows that w is positive,
zero or negative when the density c1/(c0 + c1) is, respectively, larger than, equal to or smaller
than 1

2 . The criterion for other ξ is obtained by comparison with independent spin-flip systems.
We expect hypotheses (H1)–(H4) to hold for a very large class of IPSs and walks. For each

choice of IPS and walk, the verification of hypotheses (H1)–(H4) constitutes a separate problem.
Typically, (H1)–(H2) are immediate, (H3) requires some work, while (H4) is hard.
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Additional models will be discussed in Section 8. We will consider generalizations of the
(α, β)-model and the (∞, 0)-model, namely, internal noise models and pattern models, as well
as mixtures of them. The verification of (H1)–(H4) will be analogous to the two examples
discussed above and will not be carried out in detail.

This concludes the motivation and the statement of our main results. The remainder of the
paper will be devoted to the proofs of Theorems 4.1 and 4.2, with the exception of Section 8,
which contains additional examples and remarks.

5. Preparation

The aim of this section is to prove two propositions (Propositions 5.2 and 5.4 below) that
will be needed in Section 6 to prove the LLN. In Section 5.1 we deal with approximate laws of
large numbers for general discrete- or continuous-time random walks in Rd . In Section 5.2 we
specialize to additive functionals of a Markov chain whose transition kernel satisfies a certain
absolute-continuity property.

5.1. Approximate law of large numbers

This section contains two fundamental facts that are the basis of our proof of the LLN. They
deal with the notion of an approximate law of large numbers.

Definition 5.1. Let W = (Wt )t≥0 be a random process in Rd with t ∈ N0 or t ∈ [0,∞). For
ε ≥ 0 and v ∈ Rd , we say that W has an ε-approximate asymptotic velocity v, written as
W ∈ AV (ε, v), if

lim sup
t→∞

Wt

t
− v

 ≤ ε a.s. (5.1)

We take ∥ · ∥ to be the L1-norm. A simple observation is that W a.s. has an asymptotic velocity
if and only if for every ε > 0 there exists a vε ∈ Rd such that W ∈ AV (ε, vε). In this case
limε↓0 vε exists and is equal to the asymptotic velocity.

5.1.1. First key proposition: skeleton approximate velocity
The following proposition gives conditions under which an approximate velocity for the

process observed along a random sequence of times implies an approximate velocity for the
full process.

Proposition 5.2. Let W be as in Definition 5.1. Set τ0 := 0, let (τk)k∈N be an increasing
sequence of random times in (0,∞) (or N) with limk→∞ τk = ∞ a.s. and put Xk := (Wτk , τk) ∈

Rd+1, k ∈ N0. Suppose that the following hold:

(i) There exists an m > 0 such that

lim sup
k→∞

sup
s∈(τk ,τk+1]

Ws − Wτk

s − τk

 ≤ m a.s. (5.2)

(ii) There exist v ∈ Rd , u > 0 and ε ≥ 0 such that X ∈ AV (ε, (v, u)).

Then W ∈ AV ((3m + 1)ε/u, v/u).
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Proof. First, let us check that (i) implies

lim sup
t→∞

∥Wt∥

t
≤ m a.s. (5.3)

Suppose that

lim sup
k→∞

sup
s>τk

Ws − Wτk

s − τk

 ≤ m a.s. (5.4)

Since, for every k and t > τk ,Wt

t

 ≤
∥Wτk ∥

t
+

Wt − Wτk

t − τk

 1 −
τk

t

 ≤
∥Wτk ∥

t
+ sup

s>τk

Ws − Wτk

s − τk

 1 −
τk

t

 , (5.5)

(5.3) follows from (5.4) by letting t → ∞ followed by k → ∞.
To check (5.4), define, for k ∈ N0 and l ∈ N,

m(k, l) := sup
s∈(τk ,τk+l ]

Ws − Wτk

s − τk

 and

m(k,∞) := sup
s>τk

Ws − Wτk

s − τk

 = lim
l→∞

m(k, l). (5.6)

Using the fact that (x1 + x2)/(y1 + y2) ≤ (x1/y1) ∨ (x2/y2) for all x1, x2 ∈ R and y1, y2 > 0,
we can prove by induction that

m(k, l) ≤ max{m(k, 1), . . . ,m(k + l − 1, 1)}, l ∈ N. (5.7)

Fix ε > 0. By (i), a.s. there exists a kε such that m(k, 1) ≤ m + ε for k > kε. By (5.7), the same
is true for m(k, l) for all l ∈ N, and therefore also for m(k,∞). Since ε is arbitrary, (5.4) follows.

Let us now proceed with the proof of the proposition. Assumption (ii) implies that, a.s.,

lim sup
k→∞

Wτk

k
− v

 ≤ ε and lim sup
k→∞

τk

k
− u

 ≤ ε. (5.8)

For t ≥ 0, let kt be the (random) non-negative integer such that

τkt ≤ t < τkt +1. (5.9)

Since τ1 < ∞ a.s., kt > 0 for large enough t . From (5.8) and (5.9) we deduce that

lim sup
t→∞

 t

kt
− u

 ≤ ε and so lim sup
t→∞

 t

kt
−
τkt

kt

 ≤ 2ε. (5.10)

For t large enough we may writeuWt

t
− v

 ≤
∥Wt∥

t

u −
t

kt

+ Wt − Wτkt

kt

+

Wτkt

kt
− v


≤

∥Wt∥

t

u −
t

kt

+ sup
s∈(τkt ,τkt +1]

Ws − Wτkt

s − τkt

  t − τkt

kt

+ Wτkt

kt
− v

 ,
(5.11)

from which we obtain the conclusion by taking the limsup as t → ∞ in (5.11), using (i), (5.3),
(5.8) and (5.10), and then dividing by u. �
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5.1.2. Conditions for the skeleton to have an approximate velocity
The following lemma states sufficient conditions for a discrete-time process to have an

approximate velocity. It will be used in the proof of Proposition 5.4 below.

Lemma 5.3. Let X = (Xk)k∈N0 be a sequence of random vectors in Rd with joint law P such
that P(X0 = 0) = 1. Suppose that there exist a probability measure Q on Rd and numbers
φ ∈ [0, 1), a > 1, K > 0 with


Rd ∥x∥

a Q(dx) ≤ K a , such that, P-a.s. for all k ∈ N0,

(i) |P(Xk+1 − Xk ∈ A | X0, . . . , Xk)− Q(A)| ≤ φ for all A measurable;
(ii) E[∥Xk+1 − Xk∥

a
|X0, . . . , Xk] ≤ K a . Then

lim sup
n→∞

 Xn

n
− v

 ≤ 2Kφ(a−1)/a P-a.s., (5.12)

where v =


Rd x Q(dx). In other words, X ∈ AV (2Kφ(a−1)/a, v).

Proof. The proof is an adaptation of the proof of Lemma 3.13 in [5]; we include it here for
completeness. With regular conditional probabilities, we can, using (i), couple P and Q⊗N0

according to a standard splitting representation (see e.g. Berbee [4]). More precisely, on an
enlarged probability space we can construct random variables

(∆k, Vk, Rk)k∈N (5.13)

such that

(1) (∆k)k∈N is an i.i.d. sequence of Bernoulli(φ) random variables.
(2) (Vk)k∈N is an i.i.d. sequence of random vectors with law Q.
(3) (∆l)l≥k is independent of (∆l , Vl , Rl)0≤l<k , Rk .
(4) Setting X̂0 := 0 and, for k ∈ N0, X̂k+1 − X̂k := (1 − ∆k)Vk + ∆k Rk , then X̂ is equal in

distribution to X .
(5) Setting Gk := σ(∆l , Vl , Rl : 0 ≤ l ≤ k), then E[ f (Vk) | Gk−1] is measurable w.r.t. σ(X̂l :

0 ≤ l ≤ k − 1) for any Borel nonnegative function f .

Using (4), we may write

Xn

n
d
=

X̂n

n
=

1
n

n
k=1

Vk −
1
n

n
k=1

∆k Vk +
1
n

n
k=1

∆k Rk . (5.14)

As n → ∞, the first term on the r.h.s. converges a.s. to v by the LLN for i.i.d. random variables.
By Hölder’s inequality, the norm of the second term is at most

1
n

n
k=1

∆k

(a−1)/a 
1
n

n
k=1

∥Vk∥
a

1/a

, (5.15)

which, by (1) and (2), converges a.s. as n → ∞ to

φ(a−1)/a


Rd
∥x∥

a Q(dx)

1/a

≤ Kφ(a−1)/a . (5.16)

To control the third term, put R∗

k := E[Rk | Gk−1]. Since ∥∆k Rk∥ ≤ ∥X̂k+1 − X̂k∥, using (1),
(3), (4), (5) and (ii), we get

φE[∥Rk∥
a

| Gk−1] = E[∆k∥Rk∥
a

| Gk−1] ≤ E[∥X̂k+1 − X̂k∥
a

| Gk−1] ≤ K a . (5.17)
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Combining (5.17) with Jensen’s inequality, we obtain

∥R∗

k ∥ ≤ E

∥Rk∥

a
| Gk−1

1/a
≤

K

φ1/a , (5.18)

so that1
n

n
k=1

∆k R∗

k

 ≤
K

φ1/a


1
n

n
k=1

∆k


−−−→
n→∞

Kφ(a−1)/a . (5.19)

Now fix y ∈ Rd and put

M y
n :=

n
k=1

∆k

k
⟨Rk − R∗

k , y⟩ (5.20)

where ⟨·, ·⟩ denotes the usual inner product. Then (M y
n )n∈N0 is a (Gn)n∈N0 -martingale whose

quadratic variation is

⟨M y
⟩n =

n
k=1

∆k

k2 ⟨Rk − R∗

k , y⟩
2. (5.21)

By the Burkholder–Gundy inequality and (5.17)–(5.18), we have

E


sup
n∈N

|M y
n |

a∧2


≤ C E

⟨M y

⟩
(a∧2)/2
∞


≤ C E


∞

k=1

∆k

ka∧2

⟨Rk − R∗

k , y⟩
a∧2


≤ C ∥y∥

a∧2 K a∧2, (5.22)

where C is a positive constant that may change after each inequality. This implies that M y
n is

uniformly integrable and therefore converges a.s. as n → ∞. Kronecker’s lemma then gives

lim
n→∞

1
n

n
k=1

∆k⟨Rk − R∗

k , y⟩ = 0 a.s. (5.23)

Since y is arbitrary, this in turn implies that

lim
n→∞

1
n

n
k=1

∆k(Rk − R∗

k ) = 0 a.s. (5.24)

Therefore, by (5.19) and (5.24), the limsup of the norm of the last term in the r.h.s. of (5.14) is
also bounded by Kφ(a−1)/a , which finishes the proof. �

5.2. Additive functionals of a discrete-time Markov chain

5.2.1. Notation
Let X = (Xn)n∈N0 be a time-homogeneous Markov chain in the canonical space equipped

with the time-shift operators (θn)n∈N0 . For n ≥ 1, put Fn := σ(X[1,n]) (note that X0 ∉ F∞) and
let Pχ denote the law of (Xn)n∈N0 when X0 = χ . Fix an initial measure ν and suppose that, for
any nonnegative f ∈ F∞,

Pν(EXn [ f ] ∈ ·) ≪ Pν(EX0 [ f ] ∈ ·), (5.25)

where Pν :=

ν(dχ)Pχ .
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Let Z = (Zn)n∈N0 be a Zd -valued F -adapted process that is an additive functional of
(Xn)n∈N, i.e., Z0 = 0 and, for any k ∈ N0,

(Zk+n − Zk)n∈N0 = θk Z Pν-a.s. (5.26)

We are interested in finding random times (τk)k∈N0 such that (Zτk , τk)k∈N0 satisfies the hy-
potheses of Lemma 5.3. In the Markovian setting it makes sense to look for τk of the form

τ0 = 0, τk+1 = τk + θτk τ, k ∈ N0, (5.27)

where τ is a random time.
Condition (i) of Lemma 5.3 is a “decoupling condition”. It states that the law of an increment

of the process depends weakly on the previous increments. Such a condition can be enforced
by the occurrence of a “decoupling event” under which the increments of (Zτk , τk)k∈N0 lose
dependence. In this setting, τ is a time at which the decoupling event is observed.

5.2.2. Second key proposition: approximate regeneration times
Proposition 5.4 below is a consequence of Lemma 5.3 and is the main result of this section.

It will be used together with Proposition 5.2 to prove the LLN in Section 6. It gives a way to
construct τ when the decoupling event can be detected by “probing the future” with a stopping
time.

For a random variable T taking values in N0 ∪ {∞}, we define the image of T by IT := {n ∈

N : Pν(T = n) > 0}, and its closure under addition by ĪT := {n ∈ N : ∃ l ∈ N, i1, . . . , il ∈

IT : n = i1 + · · · + il}. Note that IT = ∅ if and only if T ∈ {0,∞} a.s.

Proposition 5.4. Let T be a stopping time for the filtration F taking values in N ∪ {∞}. Put
D := {T = ∞} and suppose that the following properties hold:

(i) For every n ∈ ĪT there exists a Dn ∈ Fn such that

D ∩ θn D = Dn ∩ θn D Pν-a.s.

(ii) There exist numbers ρ ∈ (0, 1], a > 1, C > 0, m > 0 and φ ∈ [0, 1) such that, Pν-a.s.,
(a) PX0 (D) ≥ ρ,
(b) EX0


1{T <∞}T a


≤ Ca ,

(c) On D, ∥Z t∥ ≤ mt for all t ∈ N0,

(d)
EX0


f (Z , (θn T )n∈ĪT

) | D


− Eν


f (Z , (θn T )n∈ĪT
) | D

 ≤ φ∥ f ∥∞ ∀ f ≥ 0 mea-

surable.
Then there exists a random time τ ∈ F∞ taking values in N such that, setting τk as in (5.27)
and Xk := (Zτk , τk), then X ∈ AV (ε, (v, u)) where (v, u) = Eν [(Zτ , τ ) | D], u > 0 and
ε = 12(m + 1)uφ(a−1)/a .

5.2.3. Two further propositions
In order to prove Proposition 5.4, we will need two further propositions (Propositions 5.5 and

5.6 below).

Proposition 5.5. Let τ be a random time measurable w.r.t. F∞ taking values in N. Put τk as
in (5.27) and Xk := (Zτk , τk). Suppose that there exists an event D ∈ F∞ such that the following
hold Pν-a.s.:
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(i) For n ∈ Iτ , there exist events Hn and Dn ∈ Fn such that

(a) {τ = n} = Hn ∩ θn D,

(b) D ∩ θn D = Dn ∩ θn D.
(5.28)

(ii) There exist φ ∈ [0, 1), K > 0 and a > 1 such that, on {PX0(D) > 0},

(a) EX0 [∥X1∥
a
|D] ≤ K a,

(b)
PX0 (X1 ∈ A|D)− Pν (X1 ∈ A|D)

 ≤ φ ∀ A measurable.
(5.29)

Then X ∈ AV

ε, (v, u)


, where ε = 2Kφ(a−1)/a and (v, u) := Eν[X1|D].

Proof. Since τ < ∞, by (i)(a) and (5.25) we must have Pν(D) > 0. Let Fτk be the σ -algebra
of the events B ∈ F∞ such that, for all n ∈ N, there exists Bn ∈ Fn with B ∩ {τk = n} =

Bn ∩ {τk = n}. We will show that, Pν-a.s., for all k ∈ N,

Eν

∥θτk X1∥

a
|Fτk


≤ K a (5.30)

and Pν θτk X1 ∈ A|Fτk


− Pν(X1 ∈ A|D)

 ≤ φ ∀ A measurable. (5.31)

Then, setting Q(·) := Pν(X1 ∈ ·|D) and noting that θτk X1 = Xk+1 − Xk and X j ∈ Fτk for all
0 ≤ j ≤ k, we will be able to conclude since (5.30)–(5.31) and (ii)(a) imply that the conditions
of Lemma 5.3 are all satisfied.

To prove (5.30)–(5.31), first note that, using (i), one can verify by induction that (i)(a) holds
also for τk , i.e., for every n ∈ Iτk there exists Hk,n ∈ Fn such that

{τk = n} = Hk,n ∩ θn D Pν-a.s. (5.32)

Take B ∈ Fτk and a measurable nonnegative function f , and write

Eν

1Bθτk f (X1)


=


n∈Iτk

Eν

1B∩{τk=n}θn f (X1)


=


n∈Iτk

Eν

1Bn∩Hk,nθn


1D f (X1)


=


n∈Iτk

Eν

1Bn∩Hk,n PXn (D)EXn [ f (X1)|D]


. (5.33)

Noting that Pν(B) =


n∈Iτk
Eν

1Bn∩Hk,n PXn (D)


, obtain (5.30) by taking f (x) = ∥x∥

a and
using (ii)(a) together with (5.25). For (5.31), choose f = 1A, subtract Pν(B)Eν [ f (X1)|D] from
(5.33) and use (ii)(b). �

Proposition 5.6. Let T be a stopping time as in Proposition 5.4 and suppose that conditions
(ii)(a) and (ii)(b) of that proposition are satisfied. Define a sequence of stopping times (Tk)k∈N0

as follows. Put T0 = 0 and, for k ∈ N0,

Tk+1 :=


∞ if Tk = ∞

Tk + θTk T otherwise.
(5.34)

Put

N := inf{k ∈ N0 : Tk < ∞ and Tk+1 = ∞}. (5.35)

Then N < ∞ a.s. and there exists a constant ~ = ~(a, ρ) ∈ (0,∞) such that, Pν-a.s.,

EX0


T a

N


≤ (~C)a . (5.36)

Furthermore, ITN ⊂ ĪT .
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Proof. First, let us check that

PX0(N ≥ n) ≤ (1 − ρ)n . (5.37)

Indeed, N ≥ n if and only if Tn < ∞, so that, for k ∈ N0,

PX0(Tk+1 < ∞) = EX0


1{Tk<∞} PXTk

(T < ∞)


≤ (1 − ρ)PX0(Tk < ∞), (5.38)

where we use (ii)(a) and the fact that (5.25) holds also with a stopping time in place of n. Clearly,
(5.37) follows from (5.38) by induction. In particular, N < ∞ a.s.

From (5.34) we see that, for 0 ≤ k ≤ n,

Tn = Tk + θTk Tn−k on {Tk < ∞}. (5.39)

Using (ii)(a) and (b), with the help of (5.25) again, we can a.s. estimate, for 0 ≤ k < n,

EX0


1{Tn<∞} |Tk+1 − Tk |

a
= EX0


1{Tk+1<∞} |Tk+1 − Tk |

a PXTk+1
(Tn−k−1 < ∞)


≤ (1 − ρ)n−k−1 EX0


1{Tk<∞,θTk T <∞}θTk T a


= (1 − ρ)n−k−1 EX0


1{Tk<∞}EXTk


1{T <∞}T a

≤ (1 − ρ)n−k−1Ca PX0(Tk < ∞)

≤ (1 − ρ)n−1Ca . (5.40)

Now write

TN =

N−1
k=0

Tk+1 − Tk . (5.41)

By Jensen’s inequality,

T a
N ≤ N a−1

N−1
k=0

|Tk+1 − Tk |
a (5.42)

so that, by (5.40),

EX0


T a

N


≤

∞
n=1

na−1
n−1
k=0

EX0


1{N=n}|Tk+1 − Tk |

a
≤ Ca

∞
n=1

na(1 − ρ)n−1 a.s. (5.43)

and (5.36) follows by taking ~ =


∞

n=1 na(1 − ρ)n−1
1/a

.

As for the claim that ITN ⊂ ĪT , write, for n ∈ N,

{TN = n} =

∞
k=1

{Tk = n, N = k} (5.44)

to see that ITN ⊂


∞

k=1 ITk . Using (5.34), we can verify by induction that, for each k ∈ N,
ITk ⊂ {n ∈ N : ∃ i1, . . . , ik ∈ IT : n = i1 + · · · + ik} ⊂ ĪT , and the claim follows. �
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5.2.4. Proof of Proposition 5.4

We can now combine Propositions 5.5 and 5.6 to prove Proposition 5.4.

Proof. In the following we will refer to the hypotheses of Proposition 5.5 with the prefix P. For
example, P(i)(a) denotes hypothesis (i)(a) in that proposition. The hypotheses in Proposition 5.4
will be referred to without a prefix. Since the hypotheses of Proposition 5.6 are a subset of those
of Proposition 5.4, the conclusions of the former are valid.

We will show that, if τ := t0 + θt0 TN for a suitable t0 ∈ N, then τ satisfies the hypotheses of
Proposition 5.5 for a suitable K . There are two cases. If IT = ∅, then TN ≡ 0. Choosing t0 = 1,
we basically fall in the context of Lemma 5.3. P(i)(a) and P(i)(b) are trivial, (ii)(c) implies that
P(ii)(a) holds with K = (m + 1), while P(ii)(b) follows immediately from (ii)(d). Therefore, we
may suppose that IT ≠ ∅ and put ι := min IT ∈ N. Let Ĉ := 1 ∨ (~C) and t0 := ι⌈Ĉρ−1/a

⌉.
We will show that τ satisfies the hypotheses of Proposition 5.5 with K = 6ι(m + 1)Ĉρ−1/a .

P(i)(a): First we show that this property is true for TN . Indeed,

{TN = n} =


k∈N0

{N = k, Tk = n} =


k∈N0

{Tk = n, θn T = ∞} (5.45)

= θn D ∩


k∈N0

{Tk = n}


, (5.46)

and Ĥn :=


k∈N0
{Tk = n} ∈ Fn since the Tk’s are all stopping times. Now we observe that

{τ = n} = θt0{TN = n − t0}, so we can take Hn := ∅ if n < t0 and Hn := θt0 Ĥn−t0 otherwise.

P(i)(b): By (i), it suffices to show that Iτ ⊂ ĪT . Since t0 ∈ ĪT (as an integer multiple of ι), this
follows from the definition of τ and the last conclusion of Proposition 5.6.

P(ii)(a): By (ii)(c), ∥X1∥
a

= (∥Zτ∥ + τ)a ≤ ((m + 1)τ )a on D. Therefore, we just need to show
that

EX0


τ a

|D


≤ (6ιĈ)a/ρ. (5.47)

Now, τ a
≤ 2a−1


ta
0 + θt0 T a

N


and, by Proposition 5.6 and (5.25),

EX0


θt0 T a

N


= EX0


EXt0


T a

N


≤ Ĉa . (5.48)

Using (ii)(a), we obtain

EX0


θt0 T a

N |D


≤ Ĉa/ρ. (5.49)

Since t0 ≤ 2ιĈρ−1/a and ι ≥ 1, (5.47) follows.

P(ii)(b): Let S = (Sn)n∈ĪT
with Sn := θn T . By (ii)(d), it is enough to show that X1 = (Zτ , τ ) ∈

σ(Z , S) a.s. Since Zτ =


∞

n=0 1{τ=n}Zn ∈ σ(Z , τ ), it suffices to show that τ ∈ σ(S) a.s. Using
the definition of the Tk’s, we verify by induction that each Tk is a.s. measurable in σ(S). Since
N ∈ σ((Tk)k∈N0), both N and TN are also a.s. in σ(S). Therefore, a.s. τ ∈ σ(θt0 S) ⊂ σ(S).
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With all hypotheses verified, Proposition 5.5 implies that X ∈ AV (ε̂, (v, u)), where (v, u) =

Eν[X1|D] and ε̂ = 2Kφ(a−1)/a . To conclude, observe that u = Eν[τ |D] ≥ t0 ≥ ιĈρ−1/a > 0,
so that K = 6(m + 1)ιĈρ−1/a

≤ 6(m + 1)u. Therefore, ε̂ ≤ ε and the proposition follows. In
the case IT = ∅, we conclude similarly since u = 1 and K = (m + 1). �

6. Proof of Theorem 4.1

In this section we show how to put the model defined in Section 3 in the context of Section 5,
and we prove the LLN using Propositions 5.2 and 5.4.

6.1. Two further lemmas

Before we start, we first derive two lemmas (Lemmas 6.1 and 6.2 below) that will be needed
in Section 6.2. The first lemma relates the laws of the environment as seen from Wn and from
W0. The second lemma is an extension of the conditional cone-mixing property for functions that
depend also on Y .

Lemma 6.1. µ̄n ≪ µ̄ for all n ∈ N.

Proof. For t ≥ 0, let µ̄t− denote the law of θWt−ξt under Pµ. First we will show that µ̄t− ≪ µ.
This is a consequence of the fact that µ is translation-invariant equilibrium, and remains true
if we replace Wt− by any random variable taking values in Zd . Indeed, if µ(A) = 0 then
Pµ(θxξt ∈ A) = 0 for every x ∈ Zd , so

µ̄t−(A) = Pµ(θWt−ξt ∈ A) =


x∈Zd

Pµ(Wt− = x, θxξt ∈ A) = 0. (6.1)

Now take n ∈ N and let gn :=
dµ̄n−

dµ . For any measurable f ≥ 0,

Eµ


f (θWnξn)


= Eµ̄


f (θZnξn)


=


x∈Zd

Eµ̄

1{Zn−Zn−=x} f (θxθZn−

ξn)


=


x∈Zd

Eµ̄

PθZn−

ξn (W0 = x) f (θxθZn−
ξn)


=


x∈Zd

Eµ

PθWn−

ξn (W0 = x) f (θxθWn−
ξn)


=


x∈Zd

Eµ

gn(ξ0)Pξ0(W0 = x) f (θxξ0)


=


x∈Zd

Eµ

gn(ξ0)1{W0=x} f (θxξ0)


= Eµ


gn(ξ0) f (θW0ξ0)


(6.2)

where, for the second equality, we use (A3). �

Lemma 6.2. For L large enough and for all nonnegative f ∈ CR,∞(m) ∨ Y∞,Eη [θL f | ΓL ] − Eµ̄[θL f | ΓL ]
 ≤ ΦL∥ f ∥∞ for µ̄-a.e. η. (6.3)
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Proof. Put fy(η) = f (η, y) and abbreviate Y (L) = (Yk)k>L . Then θL f = θL fY (L) . Since ΓL
depends on Y only through (Yk)k≤L , we have

Eη[θL f 1ΓL | Y (L)] = Eη

θL f(·) 1ΓL


◦ (Y (L)), (6.4)

and (6.3) follows from (H4) applied to fy . �

6.2. Proof of Theorem 4.1

Proof. Extend ξ and Z for times t ∈ [−1, 0] by taking them constant in this interval, and let Y0
be a copy of Y1 independent of F∞. Put

X0 :=

ξ[−1,0], Z[−1,0], Y0


,

Xn+1 :=

θZnξ[n,n+1], (Z t+n − Zn)0≤t≤1, Yn+1


, n ∈ N0.

(6.5)

Then (Xn)n∈N0 is a time-homogeneous Markov chain; to avoid confusion, we will denote its
time-shift operator by θ̄n . Note that Fn = Fn∀n ∈ N ∪ {∞} and that, for functions f ∈ F∞,
θ̄n f = θZnθn f ∀n ∈ N0.

Fix L ∈ N large enough and put

TL := L + 1ΓL ⌈θL S⌉. (6.6)

By (3.5) and since ΓL ∈ FL and Z is F -adapted, TL is an F -stopping time and (Zn)n∈N0 is an
additive functional of (Xn)n∈N as in Section 5.2.

Next, we will verify (5.25) for X and the hypotheses of Proposition 5.4 for Z and TL under Pµ̄.
These hypotheses will be referred to with the prefix P. The notation here is consistent in the sense
that parameters in Section 3 are named according to their role in Section 5; the presence/absence
of a subscript L indicates whether the parameter depends on L or not.

(5.25): Noting that, for nonnegative f ∈ F∞ and n ∈ N0,

EXn [ f ] = EθZn ξn [ f ] Pµ̄-a.s., (6.7)

this follows from Lemma 6.1 and (3.3)–(3.4).

P(i): We will find Dn for n ≥ L . This is enough, since both ITL and ĪTL are subsets of [L ,∞)∩N.
Using (A1) and (H1), we may write

D = ΓL ∩ {∥Z t+L∥ ≤ mt ∀t ≥ 0},

θ̄n D = θ̄nΓL ∩ {∥Z t+n+L − Zn∥ ≤ mt ∀t ≥ 0}.
(6.8)

Intersecting the two above events, we get

D ∩ θ̄n D = ΓL ∩ {∥Z t∥ ≤ mt ∀t ∈ [0, n]} ∩ θ̄n D, (6.9)

i.e., P(i) holds with Dn := ΓL ∩ {∥Z t∥ ≤ mt ∀t ∈ [0, n]} ∈ Fn for n ≥ L .
For the remaining items, note that, by (6.7), the distribution of (Z , TL) under PX0 is Pµ̄-a.s.

the same as under Pξ0 .

P(ii)(a): Since {TL = ∞} = {θL S = ∞} ∩ ΓL , we get from (H2) and (H3)(1) that, Pµ̄-a.s.,

Pξ0 (TL = ∞) = Pξ0 (θL S = ∞ | ΓL)Pξ0(ΓL) ≥ κLγL > 0, (6.10)

so that we can take ρL := κLγL .
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P(ii)(b): By the definition of TL , we have

T a
L 1{TL<∞} = La1Γ c

L
+ (L + ⌈θL S⌉)a 1ΓL∩{θL S<∞}

≤ La1Γ c
L

+ (L + 1 + θL S)a 1ΓL∩{θL S<∞}

≤ 2a−1(L + 1)a + 2a−1 (θL S)a1{θL S<∞}


1ΓL . (6.11)

Therefore, by (H3)(2), we get

Eξ0


T a

L 1{TL<∞}


≤ 2a((L + 1)a + (1 ∨ ψL)

a) ≤ [2(L + 1 + 1 ∨ ψL)]a Pµ̄-a.s.,

(6.12)

so that we can take CL := 2(L + 1 + 1 ∨ ψL).

P(ii)(c): This follows from (H1) and the definition of S .

P(ii)(d): First note that, for any n ∈ ĪTL , θ̄n TL ∈ σ(Z , θ̄nΓL). Since n ≥ L , on {TL = ∞} =

ΓL ∩ {θL S = ∞}, Z , θ̄nΓL and {θL S = ∞} are all measurable in θL(CR,∞(m) ∨ Y∞);
this follows from (A2), (H1) and the assumptions on ΓL . Noting that, for any two probability
measures ν1, ν2 and an event A,

∥ν1(· | A)− ν2(· | A)∥T V ≤ 2
∥ν1 − ν2∥T V

ν1(A) ∨ ν2(A)
(6.13)

where ∥ · ∥T V stands for total variation distance, we see that P(ii)(d) follows from Lemma 6.2
and (H3)(1) with φL := 2ΦL/κL → 0 as L → ∞ by (H4).

Thus, for large enough L , we can conclude by Proposition 5.4 that there exists a sequence of
times (τk)k∈N0 with limk→∞ τk = ∞ a.s. such that (Zτk , τk)k∈N0 ∈ AV (εL , (vL , uL)), where

vL = Eµ̄[Zτ1 |D],

uL = Eµ̄[τ1|D] > 0,
εL = 12(m + 1)uLφ

(a−1)/a
L .

(6.14)

From (6.14) and P(ii)(c), Proposition 5.2 implies that Z ∈ AV (δL , wL), where

wL = vL/uL ,

δL = (3m + 1)12(m + 1)φ(a−1)/a
L .

(6.15)

By (H4), limL→∞ δL = 0. As was observed after Definition 5.1, this implies that w :=

limL→∞wL exists and that limt→∞ t−1 Z t = wPµ̄-a.s., which, by (3.3)–(3.4), implies the same
for W , Pµ-a.s. �

We have at this point finished the proof of our LLN. In the following sections, we will look
at examples that satisfy (H1)–(H4). Section 7 is devoted to the (∞, 0)-model for two classes of
one-dimensional spin-flip systems. In Section 8 we discuss three additional models where the
hypotheses are satisfied, and one where they are not.

7. Proof of Theorem 4.2

We begin with a proper definition of the (∞, 0)-model in Section 7.1, where we identify Z
and W0 of Section 3.2. In Section 7.2, we first define suitable versions of spin-flip systems with
bounded rates. After checking assumptions (A1)–(A3), we define events ΓL satisfying (H1) and
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(H2) for which we then verify (H3). We also derive uniform integrability properties of t−1Wt
which are the key for convergence in L p once we have the LLN. In Sections 7.3 and 7.4, we
specialize to particular constructions in order to prove (H4), which is the hardest of the four
hypotheses. Section 7.5 is devoted to proving a criterion for positive or negative speed.

7.1. Definition of the model

Assume that ξ is a càdlàg process with state space E := {0, 1}
Z. We will define the walk W

in several steps, and a monotonicity property will follow.

7.1.1. Identification of Z and W0

First, let T r+
= T r+(η) and T r−

= T r−(η) denote the locations of the closest traps to the
right and to the left of the origin in the configuration η ∈ E , i.e.,

T r+(η) := inf{x ∈ N0 : η(x) = 1, η(x + 1) = 0},

T r−(η) := sup{x ∈ −N0 : η(x) = 1, η(x + 1) = 0},
(7.1)

with the convention that inf ∅ = ∞ and sup ∅ = −∞. For i, j ∈ {0, 1}, abbreviate ⟨i, j⟩ := {η ∈

E : η(0) = i, η(1) = j}. Let Ē := ⟨1, 0⟩, i.e., the set of all the configurations with a trap at the
origin.

Next, we define the functional J that gives the jumps in W . For b ∈ {0, 1} and η ∈ E , let

J (η, b) := T r+

1⟨1,1⟩ + b1⟨0,1⟩


+ T r−


1⟨0,0⟩ + (1 − b)1⟨0,1⟩


, (7.2)

i.e., J is equal to either the left or the right trap, depending on the configuration around the
origin. In the case of an inverted trap (⟨0, 1⟩), the direction of the jump is decided by the value of
b. Observe that J = T r+

= T r−
= 0 when η ∈ Ē , independently of the value of b.

Let b0 be a Bernoulli( 1
2 ) random variable independent of ξ and set

W0 = X0 := J (ξ0, b0). (7.3)

Now let (bn,k)n,k∈N be a double-indexed i.i.d. sequence of Bernoulli( 1
2 ) r.v.’s independent of

(ξ, b0). Put τ0 := 0 and, for k ≥ 0,

τk+1 :=


∞

inf {t > τk : (ξt (Xk), ξt (Xk + 1)) ≠ (1, 0)}
if |Xk | = ∞,

otherwise,

Xk+1 :=


Xk
Xk + J


θXk ξτk , b⌈τk+1⌉,k+1

 if τk+1 = ∞,

otherwise.

(7.4)

Since ξ is càdlàg, for any k ∈ N0 we either have τk = ∞ or τk+1 > τk . We define (Wt )t≥0 as the
path that jumps Xk+1 − Xk at time τk+1 and is constant between jumps, i.e.,

Wt :=

∞
k=0

1{τk≤t<τk+1} Xk . (7.5)

With this definition, it is clear that Wt is càdlàg and, by (7.3)–(7.4),

Wn+t − Wn = θWnθnWt on {Wn < ∞} ∀n ∈ N0, t ≥ 0. (7.6)
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Therefore, defining Z by

Z t := 1
{ξ0∈Ē}

Wt , t ≥ 0, (7.7)

we get Wt = W0 + θW0 Z t on {W0 < ∞} since, in this case, θW0ξ0 ∈ Ē , and W0 = 0 on Ē .

7.1.2. Monotonicity
The following monotonicity property will be helpful in checking (H3). In order to state it, we

first endow both E and D([0,∞), E)with the usual partial ordering, i.e., for η1, η2 ∈ E , η1 ≤ η2
means that η1(x) ≤ η2(x) for all x ∈ Z, while, for ξ (1), ξ (2) ∈ D([0,∞), E), ξ (1) ≤ ξ (2) means
that ξ (1)t ≤ ξ

(2)
t for all t ≥ 0.

Lemma 7.1. Fix a realization of b0 and (bn,k)n,k∈N. If ξ (1) ≤ ξ (2), then

Wt


ξ (1), b0, (bn,k)n,k∈N


≤ Wt


ξ (2), b0, (bn,k)n,k∈N


(7.8)

for all t ≥ 0.

Proof. This is a straightforward consequence of the definition. We need only to understand what
happens when the two walks separate and, at such moments, the second walk is always to the
right of the first. �

7.2. Spin-flip systems with bounded flip rates

7.2.1. Dynamic random environment
From now on we will take ξ to be a single-site spin-flip system with translation-invariant and

bounded flip rates. We may assume that the rates at the origin are of the form

c(η) =


c0 + λ0 p0(η) when η(0) = 1,
c1 + λ1 p1(η) when η(0) = 0,

(7.9)

where ci , λi > 0 and pi ∈ [0, 1]. We assume the existence conditions of Liggett [6], Chapter I,
which in our setting amounts to the additional requirement that c(·) has finite triple norm. This
is automatically satisfied in the M < ϵ regime or when c(·) has finite range.

From (7.9), we see that the IPS is stochastically dominated by the system ξ+ with rates

c+(η) =


c0 when η(0) = 1,
c1 + λ1 when η(0) = 0,

(7.10)

while it stochastically dominates the system ξ− with rates

c−(η) =


c0 + λ0 when η(0) = 1,
c1 when η(0) = 0.

(7.11)

These are the rates of two independent spin-flip systems with respective densities ρ+
:= (c1 +

λ1)/λ
+ and ρ−

:= c1/λ
− where λ+

:= c0 + c1 + λ1 and λ−
:= c0 + λ0 + c1. Consequently, any

equilibrium for ξ is stochastically dominated by νρ+ and dominates νρ− , where νρ is a Bernoulli
product measure with density ρ.

We will take as the dynamic random environment the triple Ξ := (ξ−, ξ, ξ+) starting from
the same initial configuration and coupled together via the basic (or Vasershtein) coupling, which
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implements the stochastic ordering as an a.s. partial ordering. More precisely, Ξ is the IPS with
state space E3 whose rates are translation invariant and at the origin are given schematically by
(the configuration of the middle coordinate is η),

(000) →

(111) c1,

(011) c(η)− c1,

(001) c1 + λ1 − c(η),

(001) →

(111) c1,

(011) c(η)− c1,

(000) c0,

(011) →

(111) c1,

(000) c0,

(001) c(η)− c0,

(111) →

(000) c0,

(001) c(η)− c0,

(011) c0 + λ0 − c(η).

(7.12)

7.2.2. Verification of (A1)–(A3)
Under our assumptions, limk→∞ τk = ∞ and X0 < ∞ Pµ-a.s., as ξ has bounded flip rates per

site and µ dominates and is dominated by non-trivial product measures. By induction, Xk < ∞

a.s. for every k ∈ N as well, since the law of θXk−1ξτk is absolutely continuous w.r.t. µ, which can
be verified by approximating τk from above by times taking values in a countable set. Therefore,
Wt is finite for all t ≥ 0.

Set Yn := (bn,k)k∈N. Then Z is F -adapted as it is independent of b0. (A1) follows by (7.6)
and (7.7), and (A3) follows either from the recursive construction (7.4) or by noting that Z has
no deterministic jumps and θZnθnW0 = 0. To verify (A2), note that {J = x} depends on η only
through (η(y))y∈{0∧x,...,0∨x+1} so we may take R = 1.

7.2.3. Definition of ΓL and verification of (H1)–(H3)
Using Ξ , we can define the events ΓL by

ΓL :=

ξ±

t (x) = ξ±

0 (x)∀t ∈ [0, L], x = 0, 1

. (7.13)

Then ΓL ∈ C1,L(m) for any m > 0. When ξ±

0 ∈ Ē , ΓL implies that there is a trap at the origin
between times 0 and L; since µ̄(Ē) = 1, (H1) holds. The probability of ΓL is positive and
depends on Ξ0 only through the states at 0 and 1, so (H2) is also satisfied.

In order to verify (H3), we will take advantage of Lemma 7.1 and the stochastic domination in
Ξ to define two auxiliary processes H±

= (H±
t )t≥0 which we can control and which will bound

Z . This will also allow us to deduce uniform integrability properties.
In the following we will suppose that ξ±

0 ∈ Ē . Let G0 = U0 := 0 and, for k ≥ 0,

Uk+1 := inf

t > Uk : ξ+

t (Gk + 1) = 1

,

Gk+1 := Gk + T r+


θGk ξ

+

Uk+1

 (7.14)

and put

H+
t :=

∞
k=0

1{Uk≤t<Uk+1}Gk+1. (7.15)
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Define H− analogously, using T r− and ξ− instead and switching 1’s to 0’s in (7.14). Then H+

(H−) is the process that, observing ξ+ (ξ−), waits to the left of a hole (on a particle) until it flips
to a particle (hole), and then jumps to the right (left) to the next trap. Therefore, by Lemma 7.1
and the definition of Z , H−

t ≤ Z t ≤ H+
t ∀ t ≥ 0. Note that H+ depends only on (ξ+(x))x≥1,

and analogously for H−.
In the following, we will write Z≤x := Z ∩ (−∞, x] and analogously for Z≥x .

Lemma 7.2. Fix ρ∗ ∈ (0, ρ−
] and ρ∗

∈ [ρ+, 1). There exist m, a, ψ∗ ∈ (0,∞) and κ∗ ∈ (0, 1),
depending on ρ∗, ρ∗ and λ±, such that, for any probability measure ν̄ on Ē that stochastically
dominates νρ∗

on Z≤−1 and is dominated by νρ∗ on Z≥2,

(a) sup
t≥1

Eν̄

ea

t−1

|H±
t |


≤ ψ∗ (7.16)

and, setting

S ±
:= inf{t > 0 : |H±

t | > mt}, S ±
:= sup{t > 0 : |H±

t | > mt}, (7.17)

then

(b) Pν̄


S ±
= ∞


≥ κ∗,

(c) Eν̄

eaS ±


≤ ψ∗.

(7.18)

Before proving this lemma, let us see how it leads to (H3). We will show that there exist
m, a, ψ ∈ (0,∞) and κ ∈ (0, 1) such that, for all L ≥ 1 and η ∈ Ē ,

Pη (θL S = ∞ | ΓL) ≥ κ (7.19)

and

Eη

ea(θL S)1{θL S<∞} | ΓL


≤ ψ, (7.20)

which clearly imply (H3).
Let us verify (7.19). First note that θL S ≥ θL(S +

∧ S −), and that the latter is nonincreasing
in (η(x))x≥2 and nondecreasing in (η(x))x≤−1. Therefore we may assume that η = η01 which is
the configuration in Ē with all 0’s on Z≤−1 and all 1’s on Z≥2. In this case, ξ−

L is distributed as
νρL

0
on Z≤−1 and ξ+

L as νρL
1

on Z≥2, where ρL
0 = ρ−(1−e−λ−L) and ρL

1 = ρ+
+e−λ+L(1−ρ+).

Furthermore, on ΓL , ξ±

L ∈ Ē .
Let now m, a, ψ∗ and κ∗ as in Lemma 7.2 for ρ∗ := ρ1

0 and ρ∗
:= ρ1

1 , and let ν̄L be the
distribution of η̄L ∈ Ē given by ξ−

L on Z≤−1 and ξ+

L on Z≥2. Noting that η̄L is independent of
ΓL and that S + and S − are independent, we use the previous observations, the Markov property
and Lemma 7.2(b) to write

Pη (θL S = ∞ | ΓL) ≥ Pη01


θL(S +

∧ S −) = ∞ | ΓL


= Eη01


1ΓL Pη̄L


S +

∧ S −
= ∞


Pη01 (ΓL)

−1

= Pν̄L


S +

= ∞

Pν̄L


S −

= ∞


≥ κ2
∗ ∈ (0, 1), (7.21)

and we may take κ := κ2
∗ . For (7.20), note now that, when finite, θL S < θL(S +

∨ S −) and the
latter is nondecreasing in (η(x))x≥2 and nonincreasing in (η(x))x≤−1. Therefore we may again
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assume η = η01 and write, using Lemma 7.2(c),

Eη

θL

eaS 1{S=∞}


| ΓL


≤ Eη01


θLea

S +
+S −


| ΓL


= Eν̄L


eaS +


Eν̄L


eaS −


≤ ψ2

∗ ∈ (0,∞), (7.22)

and we can take ψ := ψ2
∗ . All that is left to do is to prove Lemma 7.2.

Proof of Lemma 7.2. By symmetry, it is enough to prove (a)–(c) for H+. Since H+, S + andS + are monotone, we may assume that ξ+ has rates λ+ρ∗ to flip from holes to particles and
λ+(1 − ρ∗) from particles to holes and starts from νρ∗ , which is the equilibrium measure. In this
case, the increments Gk+1 − Gk are i.i.d. Geom(1 − ρ∗), and Uk+1 − Uk are i.i.d. Exp(λ+ρ∗),
independent from (Gk)k∈N0 . Therefore, H+ is a càdlàg Lévy process and H+

1 has an exponential
moment, so (a) promptly follows. Moreover, H+ satisfies a large deviation estimate of the type

Pνρ∗


∃s > t such that H+

s > ms


≤ K1e−K2t for all t > 0, (7.23)

where m, K1 and K2 are functions of (ρ∗, λ+), which proves (c). In particular, S + < ∞ a.s.,
which implies that Pνρ∗ (H+

s ≤ m(s + n∗) ∀s ≥ 0) ≥
1
2 for some n∗ large enough; then

Pνρ∗


S +

= ∞


≥ Pνρ∗


H+

n∗ = 0, H+

n∗+s − H+

n∗ ≤ m(s + n∗) ∀s ≥ 0


= Pνρ∗


H+

n∗ = 0

Pνρ∗


H+

s ≤ m(s + n∗) ∀s ≥ 0


=: κ∗ > 0, (7.24)

proving (b). �

7.2.4. Uniform integrability
The following corollary implies that, for systems given by (7.9), (t−1

|Wt |
p)t≥1 is uniformly

integrable for any p ≥ 1, so that, whenever we have a LLN, the convergence holds also in L p.

Corollary 7.3. Let ξ be a spin-flip system with rates as in (7.9), starting from equilibrium. Then
(t−1Wt )t≥1 is bounded in L p for all p ≥ 1.

Proof. The claim for Z under Pµ̄ follows from Lemma 7.2(a) by noting that µ̄ stochastically
dominates νρ− on Z≤−1 and is dominated by νρ+ on Z≥2; this can be verified noting that W0 ≥ 0
corresponds to finding particles to the left of W0, and W0 ≤ 0 to holes to its right. The same for
W follows from (3.3)–(3.4) since W0 has exponential moments under Pµ. �

We still need to verify (H4). This will be done in Sections 7.3 and 7.4 below. As κ in (7.19)
could be taken independently of L for (H3), we only need limL→∞ ΦL = 0 in (H4).

7.3. Example 1: M < ϵ

We recall the definition of M and ϵ for a translation-invariant spin-flip system:

M :=


x≠0

sup
η

c(ηx )− c(η)
 , (7.25)

ϵ := inf
η


c(η)+ c(η0)


, (7.26)

where ηx is the configuration obtained from η by flipping the x-coordinate.
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7.3.1. Mixing for ξ
If ξ is in the M < ϵ regime, then there is exponential decay of space–time correlations

(see Liggett [6], Section I.3). In fact, if ξ , ξ ′ are two copies starting from initial configurations
η, η′ and coupled according to the Vasershtein coupling, then, as was shown in Maes and
Shlosman [8], the following estimate holds uniformly in x ∈ Z and in the initial configurations:

Pη,η′


ξt (x) ≠ ξ ′

t (x)


≤ e−(ϵ−M)t . (7.27)

Since the system has uniformly bounded flip rates, it follows that there exist constants K1, K2 ∈

(0,∞), independent of x ∈ Z and of the initial configurations, such that

Pη,η′


∃s > t s.t. ξs(x) ≠ ξ ′

s(x)


≤ K1e−K2t . (7.28)

For A ⊂ Z × R+ measurable, let Discr(A) be the event in which there is a discrepancy between
ξ and ξ ′ in A, i.e., Discr(A) := {∃ (x, t) ∈ A : ξt (x) ≠ ξ ′

t (x)}. Recall the definition of CR(m) in
Section 3.1, and let CR,t (m) := CR(m) ∩ Z × [0, t]. From (7.28) we deduce that, for any fixed
m > 0 and R ∈ N0, there exist (possibly different) constants K1, K2 ∈ (0,∞) such that

Pη,η′(Discr(CR(m) \ CR,t (m))) ≤ K1e−K2t . (7.29)

7.3.2. Mixing for Ξ
Bounds of the same type as (7.27)–(7.29) hold for ξ±, since M = 0 and ϵ > 0 for independent

spin-flips. Therefore, in order to have such bounds for the triple Ξ , we need only couple a pair Ξ ,
Ξ ′ in such a way that each coordinate is coupled with its primed counterpart by the Vasershtein
coupling. A set of coupling rates for Ξ , Ξ ′ that accomplishes this goal is given in (A.1), in
Appendix A. Redefining Discr(A) := {∃ (x, t) ∈ A : Ξt (x) ≠ Ξ ′

t (x)}, by the previous results we
see that (7.29) still holds for this coupling, with possibly different constants. As a consequence,
we get the following lemma.

Lemma 7.4. Define d(η, η′) :=


x∈Z 1{η(x)≠η′(x)}2−|x |−1. For any m > 0 and R ∈ N0,

lim
d(Ξ0,Ξ

′

0)→0
PΞ0,Ξ

′

0


Discr(CR(m))


= 0. (7.30)

Proof. For any t > 0, we may split Discr(CR(m)) = Discr(CR,t (m))∪Discr(CR(m)\CR,t (m)),
so that

Pη,η′


Discr(CR(m))


≤ Pη,η′


Discr(CR,t (m))


+ Pη,η′


Discr(CR(m) \ CR,t (m))


. (7.31)

Fix ε > 0. By (7.29), for t large enough the second term in (7.31) is smaller than ε uniformly in
η, η′. For this fixed t , the first term goes to zero as d(η, η′) → 0, since CR,t (m) is contained in a
finite space–time box and the coupling in (A.1) is Feller with uniformly bounded total flip rates
per site. (Note that the metric d generates the product topology, under which the configuration
space is compact.) Therefore lim supd(η,η′)→0 Pη,η′ (Discr(CR(m))) ≤ ε. Since ε is arbitrary,
(7.30) follows. �

7.3.3. Conditional mixing
Next, we define an auxiliary process Ξ̄ that, for each L , has the law of Ξ conditioned on

ΓL up to time L . We restrict to initial configurations η ∈ Ē . In this case, Ξ̄ is a process on
{0, 1}

Z\{0,1}
3

with rates that are equal to those of Ξ , evaluated with a trap at the origin. More
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precisely, for η̄ ∈ {0, 1}
Z\{0,1}, denote by (η̄)1,0 the configuration in {0, 1}

Z that is equal to η̄
in Z \ {0, 1} and has a trap at the origin. Then set C̄x (η̄) := Cx ((η̄)1,0), where C̄x are the rates
of Ξ̄ and Cx the rates of Ξ at a site x ∈ Z. Observe that the latter depend only on the middle
configuration η, and not on η±. These rates give the correct law for Ξ̄ because Ξ conditioned on
ΓL is Markovian up to time L . Indeed, the probability of ΓL does not depend on η (for η ∈ Ē)
and, for s < L , ΓL = Γs ∩ θsΓL−s . Thus, the rates follow by uniqueness. Observe that they are
no longer translation-invariant.

Two copies of the process Ξ̄ can be coupled analogously to Ξ by restricting the rates in (A.1)
to Ē . Since each coordinate of Ξ̄ has similar properties as the corresponding coordinate in Ξ
(i.e., ξ̄± are independent spin-flip systems and ξ̄ is in the M < ϵ regime), it satisfies an estimate
of the type

P̄η,η′ (Discr([−t, t] × {t})) ≤ K1e−K2t
∀η, η′

∈ Ē, (7.32)

for appropriate constants K1, K2 ∈ (0,∞). From this estimate we see that d(Ξ̄t , Ξ̄ ′
t ) → 0 in

probability as t → ∞, uniformly in the initial configurations. By Lemma 7.4, this is also true for
P(Ξ̄t )1,0,(Ξ̄

′
t )1,0

(Discr(CR(m))). Since the latter is bounded, the convergence holds in L1 as well,

uniformly in η, η′.

7.3.4. Proof of (H4)
Let f be a bounded function measurable in CR,∞(m) and estimateEη [θL f | ΓL ] − Eη′ [θL f | ΓL ]

 ≤ 2∥ f ∥∞Pη,η′


θLDiscr(CR(m)) | ΓL


≤ 2∥ f ∥∞ sup

η,η′

Ēη,η′


P(Ξ̄L )1,0,(Ξ̄

′
L )1,0

(Discr(CR(m)))

, (7.33)

where Ē denotes expectation under the (coupled) law of Ξ̄ . Therefore (H4) follows with

ΦL := 2 sup
η,η′

Ēη,η′


P(Ξ̄L )1,0,(Ξ̄

′
L )1,0

(Discr(CR(m)))

, (7.34)

which converges to zero as L → ∞ by the previous discussion. This is enough since κL could
be taken constant in the verification of (H3)(1), as we saw in (7.19).

7.4. Example 2: subcritical dependence spread

In this section, we suppose that the rates c(η) have a finite range of dependence r ∈ N0. In
this case, the system can be constructed via a graphical representation as follows.

7.4.1. Graphical representation

For each x ∈ Z, let I j
t (x) and Λ j

t (x) be independent Poisson processes with rates c j and

λ j respectively, where j = 0, 1. At each event of I j
t (x), put a j-cross on the corresponding

space–time point. At each event of Λ j (x), put two j-arrows pointing at x , one from each side,
extending over the whole range of dependence. Start with an arbitrary initial configuration
ξ0 ∈ {0, 1}

Z. Then obtain the subsequent states ξt (x) from ξ0 and the Poisson processes by,
at each j-cross, choosing the next state at site x to be j and, at each j-arrow pair, choosing the
next state to be j if an independent Bernoulli(p j (θxξs)) trial succeeds, where s is the time of the
j-arrow event. This algorithm is well defined since, because of the finite range, up to each fixed
positive time it can a.s. be performed locally.
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Any collection of processes with the same range and with rates of the form (7.9) with ci ,
λi fixed (i = 0, 1) can be coupled together via this representation by fixing additionally for
each site x a sequence (Un(x))n∈N of independent Uniform[0, 1] random variables to evaluate
the Bernoulli trials at j-arrow events. In particular, ξ± can be coupled together with ξ in the
graphical representation by noting that, for ξ−, p0 ≡ 1 and p1 ≡ 0 and the opposite is true for
ξ+. For example, ξ− is the process obtained by ignoring all 1-arrows and using all 0-arrows.
This gives the same coupling as the one given by the rates (7.12). In particular, we see that in this
setting the events ΓL are given by (when ξ0 ∈ Ē)

ΓL :=


I 0
L(0) = Λ0

L(0) = I 1
L(1) = Λ1

L(1) = 0

. (7.35)

7.4.2. Coupling with a contact process
We will couple Ξ with a contact process ζ = (ζt )t≥0 in the following way. We keep all

Poisson events and start with a configuration ζ0 ∈ {i, h}
Z, where i stands for “infected” and

h for “healthy”. We then interpret every cross as a recovery, and every arrow pair as infection
transmission from any infected site within a neighborhood of radius r to the site the arrows point
to. This gives rise to a ‘threshold contact process’ (TCP), i.e., a process with transitions at a site
x given by

i → h with rate c0 + c1,

h → i with rate (λ0 + λ1)1{∃ infected site within range r of x}.
(7.36)

In the graphical representation for ξ , we can interpret crosses as moments of memory loss
and arrows as propagation of influence from the neighbors. Therefore, looking at the pair
(Ξt (x), ζt (x)), we can interpret the second coordinate being healthy as the first coordinate being
independent of the initial configuration.

Proposition 7.5. Let i represent the configuration with all sites infected, and let Ξ0, Ξ ′

0 ∈ E3.
Couple Ξ , Ξ ′ and ζ by fixing a realization of all crosses, arrows and uniform random variables,
where Ξ and Ξ ′ are obtained from the respective initial configurations and ζ is started from i.
Then a.s. Ξt (x) = Ξ ′

t (x) for all t > 0 and x ∈ Z such that ζt (x) = h.

Proof. Fix t > 0 and x ∈ Z. With all Poisson and uniform random variables fixed, an algorithm
to find the state at (x, t), simultaneously for any collection of systems of type (7.9) with fixed
ci , λi and finite range r from their respective initial configurations runs as follows. Find the first
Poisson event before t at site x . If it is a j-cross, then the state is j . If it is a j-arrow, then to
decide the state we must evaluate p j and, therefore, we must first take note of the states at this
time at each site within range r of x , including x itself. In order to do so, we restart the algorithm
for each of these sites. This process ends when time 0 or a cross is reached along every possible
path from (x, t) to Z × {0} that uses arrows (transversed in the direction opposite to which they
point) and vertical lines. In particular, if along each of these paths time 0 is never reached, then
the state at (x, t) does not change when we change the initial configuration. On the other hand,
time 0 is not reached if and only if every path ends in a cross, which is exactly the description of
the event {ζt (x) = h}. �

7.4.3. Cone-mixing in the subcritical regime
The process (ζt )t≥0 is stochastically dominated by a standard (linear) contact process (LCP)

with the same range and rates. Therefore, if the LCP is subcritical, i.e., if λ := (λ0 + λ1)/(c0 +

c1) < λc where λc is the critical parameter for the corresponding LCP, then the TCP will die out
as well. Moreover, we have the following lemma:
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Lemma 7.6. Let At be the set of infected sites at time t. If λ < λc, then there exist positive
constants K1, K2, K3, K4 such that

Pi

∃ s > t : As ∩ [−K1eK2s, K1eK2s

] ≠ ∅


≤ K3e−K4t . (7.37)

Proof. This is a straightforward consequence of Proposition 1.1 in [1]. �

According to Lemma 7.6, the infection disappears exponentially fast around the origin. For
r = 1, a proof can be found in Liggett [6], Chapter VI, but it relies strongly on the nearest-
neighbor nature of the interaction.

Let us now prove cone-mixing for ξ when the rates are subcritical. Pick a cone Ct with
any inclination and tip at time t , and let Ht := {all sites inside Ct are healthy}. This event is
independent of ξ0 and, because of Lemma 7.6, has large probability if t is large. Furthermore, by
Proposition 7.5, on Ht the states of ξ in Ct are equal to a random variable that is independent of
ξ0, which implies the cone-mixing property.

7.4.4. Proof of (H4)
In order to prove the conditional cone-mixing property, we couple the conditioned process to

a conditioned contact process as follows. First, let

Γ̃L :=


I j
L (i) = Λ j

L(i) = 0 : j, i ∈ {0, 1}

. (7.38)

Proposition 7.7. Let î represent the configuration with all sites infected except for {0, 1}, which
are healthy. Let Ξ0, Ξ ′

0 ∈ Ē3. Couple Ξ , Ξ ′ conditioned on ΓL and ζ conditioned on Γ̃L by fixing
a realization of all crosses, arrows and uniform random variables as in Proposition 7.5 and
starting, respectively, from Ξ0, Ξ ′

0 and î , but, for Ξ and Ξ ′, remove the Poisson events that
characterize ΓL and, for ζ , remove all Poisson events up to time L at sites 0 and 1, which
characterizes Γ̃L . Then a.s. Ξt (x) = Ξ ′

t (x) for all t > 0 and x ∈ Z such that ζt (x) = h.

Proof. On ΓL , the states at sites 0 and 1 are fixed for time [0, L]. Therefore, in order to determine
the state at (x, t), we need not extend paths that touch {0, 1}×[0, L]: when every path from (x, t)
either ends in a cross or touches {0, 1}×[0, L], the state at (x, t) does not change when the initial
configuration is changed in Z \ {0, 1}. But this is precisely the characterization of {ηt (x) = h}

on Γ̃L when started from î . �

The proof of (H4) is finished by noting that (ηt )t≥0 starting from î and conditioned on Γ̃L is
stochastically dominated by (ηt )t≥0 starting from i . Therefore, by Lemma 7.6, the “dependence
infection” still dies out exponentially fast, and we conclude as for the unconditioned cone-
mixing.

7.5. The sign of the speed

For independent spin flips, we are able to characterize with the help of a coupling argument the
regimes in which the speed is positive, zero or negative. By the stochastic domination described
in Section 7.2, this gives us a criterion for positive (or negative) speed in the two classes addressed
in Sections 7.3 and 7.4 above.

7.5.1. Lipschitz property of the speed for independent spin-flip systems
Let ξ be an independent spin-flip system with rates d0 and d1 to flip to holes and particles,

respectively. Since it fits both classes of IPS considered in Sections 7.3 and 7.4, by Theorem 4.1
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there exists a w(d0, d1) ∈ R that is the a.s. speed of the (∞, 0)-walk in this environment. This
speed has the following local Lipschitz property.

Lemma 7.8. Let d0, d1, δ > 0. Then

w(d0, d1 + δ)− w(d0, d1) ≥
d0

d0 + d1
δ. (7.39)

Proof. Our proof strategy is based on the proof of Theorem 2.24, Chapter VI in [6]. Construct ξ
from a graphical representation by taking, for each site x ∈ Z, two independent Poisson processes
N i (x)with rates di , i = 0, 1, with each event of N i representing a flip to state i . For a fixed δ > 0,
a second system ξ δ with rates d0 and d1 + δ can be coupled to ξ by starting from a configuration
ξ δ0 ≥ ξ0 and adding to each site x an independent Poisson process N δ(x) with rate δ, whose
events also represent flips to particles, but only for ξ δ . Let us denote by W and W δ the walks in
these respective environments. Under this coupling, ξ ≤ ξ δ , so, by monotonicity, Wt ≤ W δ

t for
all t ≥ 0 as well. We aim to prove that

Eµδ

W δ

t


− Eµ [Wt ] ≥

d0

d0 + d1
δt, (7.40)

where µ and µδ are the equilibria of the respective systems. From this the conclusion will follow
after dividing by t and letting t → ∞.

Define a third walk W ∗ that is allowed to use one and only one event of N δ . More precisely,
let S be the first time when there is an event of N δ at WS + 1. Take W ∗ equal to W on [0, S) and,
for times ≥S, let W ∗ evolve by the same rules as W but adding a particle at WS + 1 at time S,
and using no more N δ events. By construction, we have Wt ≤ W ∗

t ≤ W δ
t ∀t ≥ 0.

Let η1 := θWSξS ∈ Ē and η2 := (η1)
1 be the configurations around WS and W ∗

S−
, respectively.

Then

Eµδ

W δ

t


− Eµ [Wt ] ≥ Eµ


W ∗

t − Wt , S ≤ t


≥ Eµ

W ∗

t − Wt , S ≤ t, η1(2) = 0


= Eµ

Eη1,η2


W 2

t−S − W 1
t−S


, η1(2) = 0, S ≤ t


, (7.41)

where W i , i = 1, 2 are copies of W starting from ηi and coupled via the graphical representation.
We claim that, if η1(2) = 0,

Eη1,η2


W 2

s − W 1
s


≥ 1 ∀s ≥ 0. (7.42)

Indeed, we will argue that the difference W 2
s − W 1

s can only decrease when we flip all states of
η1, η2 on Z≤−1 to particles and on Z≥2 to holes; but after doing these operations, we find that W 2

has the same distribution as W 1
+ 1, which gives (7.42). It is enough to consider a single x > 2.

Let τ := inf{t > 0 : N 0
t (x)+ N 1

t (x) > 0} ∧ s, and put T := inf{t > 0 : W 1
t = x − 1}. There are

two cases: either T > τ or not. In the first case, W 1
s remains constant if we set η1,2(x) = 0, while

W 2
s does not increase. In the second case, if η1,2(x) = 0, then W 1

T = W 2
T ; but then they must

remain equal thereafter since, for them to meet, the state at site 1 must have flipped, and therefore
they see the same configuration in the environment at time T . Hence, in this case, W 2

s − W 1
s = 0

which is the minimum value, and our claim follows.
From (7.41) and (7.42) we get

Eµδ

W δ

t


− Eµ [Wt ] ≥ Pµ (η1(2) = 0, S ≤ t) . (7.43)
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Consider the event {η1(2) = 0}. There are two possible situations: either at time S the site WS +2
was not yet visited by W , in which case η1(2) is still in equilibrium, or it was. In the latter case,
let s be the time of the last visit to this site before S. By geometrical constraints, at time s only
a hole could have been observed at this site, so the probability that its state at time S is a hole is
larger than at equilibrium, which is d0/(d0 + d1). In other words,

Pµ

η1(2) = 0 | S,W[0,S]


≥

d0

d0 + d1
, (7.44)

which, together with (7.43) and the fact that S has distribution Exp(δ), gives us

Eµδ

W δ

t


− Eµ [Wt ] ≥

d0

d0 + d1


1 − eδt


. (7.45)

Since δ is arbitrary, we may repeat the argument for systems with rates d1 + (k/n)δ, n ∈ N and
k = 0, 1, . . . , n, to obtain

Eµδ

W δ

t


− Eµ [Wt ] ≥

d0
d0+d1

n

1 − eδt/n


, (7.46)

and we get (7.40) by letting n → ∞. �

7.5.2. Sign of the speed
If d0 = d1, then w = 0, since by symmetry Wt = −Wt in distribution. Hence we can

summarize as follows.

Corollary 7.9. For an independent spin-flip system with rates d0 and d1,

w ≥
d0

d0 + d1
(d1 − d0) if d1 > d0,

w = 0 if d1 = d0,

w ≤ −
d1

d0 + d1
(d0 − d1) if d1 < d0.

(7.47)

Applying this result to the systems ξ± of Section 7.2, we obtain the following.

Proposition 7.10. Let W be the random walk for the (∞, 0)-model in a spin-flip system with
rates given by (7.9). Then, Pµ-a.s.,

lim inf
t→∞

t−1Wt ≥
c0 + λ0

c1 + c0 + λ0
(c1 − c0 − λ0) if c1 ≥ c0 + λ0,

lim sup
t→∞

t−1Wt ≤ −
c1 + λ1

c0 + c1 + λ1
(c0 − c1 − λ1) if c0 ≥ c1 + λ1.

(7.48)

This concludes the proof of Theorem 4.2 and the discussion of our two classes of IPSs for
the (∞, 0)-model. In Section 8 we give additional examples and discuss some limitations of our
setting.

8. Other examples

We describe here three types of examples that satisfy our hypotheses: generalizations of the
(α, β)-model and of the (∞, 0)-model, and mixed models. We also discuss an example that is
beyond the reach of our setting.
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1. Internal noise models. For x ∈ Z\{0} and η ∈ E , let πx (η) be functions with a finite range of
dependence R. These are the rates to jump x from the position of the walk. Let πx := supη πx (η)

and suppose that, for some u > 0,
x∈Z\{0}

eu|x |πx < ∞. (8.1)

This implies that also

Π :=


x∈Z\{0}

πx < ∞. (8.2)

The walk starts at the origin, and waits an independent Exponential(Π ) time τ until it jumps to
x with probability πx (ξτ )/Π . These probabilities do not necessarily sum up to one, so the walk
may well stay at the origin. The subsequent jumps are obtained analogously, with ξτ substituted
by the environment around the walk at the time of the attempted jump. It is clear that (A1)–(A3)
hold. The walk has a bounded probability of standing still independently of the environment, and
its jumps have an exponential tail. We take

ΓL := {τ > L}. (8.3)

By defining an auxiliary walk (Ht )t≥0 that also tries to jump at time τ , but only to sites x > 0
with probability πx/Π , we see that Wt ≤ Ht and that Ht has properties analogous to the process
defined in the proof of Lemma 7.2. Therefore, (H1)–(H3) are always satisfied for this model.
Since ΓL is independent of ξ , (H4) is the (unconditional) cone-mixing property. Observe that
W0 = 0, so that µ̄ = µ. Therefore the LLN for this model holds in both examples discussed
in Section 7, and also for the IPSs for which cone-mixing was shown in Avena et al. [2]. The
(α, β)-model is an internal noise model with R = 0 (the rates depend only on the state of the
site where the walker is) and πx (η) = 0, except for x = ±1, for which π1(1) = α = π−1(0) and
π1(0) = β = π−1(1).

2. Pattern models. Take ℵ to be a finite sequence of 0’s and 1’s, which we call a pattern, and
let R be the length of this sequence. Take the environment ξ to be of the same type used to
define the (∞, 0)-walk. Let q : {0, 1}

R
\ {ℵ} → [0, 1]. The pattern walk is defined similarly

as the (∞, 0)-walk, with the trap being substituted by the pattern, and a Bernoulli(q) random
variable being used to decide whether the walk jumps to the right or to the left. More precisely,
let ϑ = (ξ0(0), . . . , ξ0(R − 1)). If ϑ = ℵ, then we set W0 = 0, otherwise we sample b0 as an
independent Bernoulli(q(ϑ)) trial. If b0 = 1, then W0 is set to be the starting position of the first
occurrence of ℵ in ξ0 to the right of the origin, while if b0 = 0, then the first occurrence of ℵ to
the left of the origin is taken instead. Then the walk waits at this position until the configuration
of one of the R states to its right changes, at which time the procedure to find the jump is repeated
with the environment as seen from W0. Subsequent jumps are obtained analogously. The (∞, 0)-
model is a pattern model with ℵ := (1, 0), q(1, 1) := 1, q(0, 0) := 0 and q(0, 1) := 1/2.

For spin-flip systems given by (7.9), the pattern walk is defined and finite for all times, no
matter what ℵ is, the reasoning being exactly the same as for the (∞, 0)-walk. Also, it may be
analogously defined so as to satisfy assumptions (A1)–(A3). Defining the events ΓL as

ΓL :=

ξ±

s ( j) = ξ±

0 ( j) ∀s ∈ [0, L] and j ∈ {0, . . . , R − 1}

, (8.4)

we may indeed, by completely analogous arguments, reobtain all the results of Section 7, so that
hypotheses (H1)–(H4) hold and, therefore, the LLN as well.



188 F. den Hollander et al. / Stochastic Processes and their Applications 123 (2013) 156–190

3. Pattern models with extra jumps. Examples of models that fall into our setting and for
which the events ΓL depend non-trivially both on ξ and Y can be constructed by taking a pattern
model and adding noise in the form of non-zero jump rates while sitting on the pattern. More
precisely, add to Y an independent Poisson process N with positive rate and let W jump also at
events of N but with the same jump mechanism, i.e., choosing the sign of the jump according
to the result of a Bernoulli(q) random variable, and the displacement using the pattern. Taking
ΓL := Γℵ

L ∩ {NL = 0}, where Γℵ

L is the corresponding event for the pattern model, we may
check that, for the two examples of dynamic random environments considered in Theorem 4.2,
(A1)–(A3) and (H1)–(H4) are all verified.

4. Mixtures of pattern and internal noise models. Another class of models with nontrivial
dependence structure for the regeneration-inducing events can be constructed as follows. Let W 0

be an internal noise model and W 1 a pattern model (with or without extra jumps) on the same
random environment ξ and let Y i , i ∈ {0, 1}, be the corresponding random elements associated to
each model. Let X = (X)n∈N be a sequence of i.i.d. Bernoulli(p) random variables independent
of all the rest, where p ∈ (0, 1). Then the mixture is the model for which the dynamics associated
to i ∈ {0, 1} are applied in the time interval [n − 1, n) when Xn = i . Note that this model will
have deterministic jumps.

Letting Y :=

Y 0, Y 1, X


where Y i is the corresponding random element associated to the

model i , it is easily checked that this model indeed falls into our setting.
Choosing

ΓL := Γ 1
L ∩ {Xk = 1, k = 1, . . . , L} (8.5)

where Γ 1
L is the corresponding event for the pattern model, it is not hard to verify, using the results

of Section 7, that, for the two classes of random environments considered in Theorem 4.2, the
mixed model satisfies (A1)–(A3) and (H1)–(H4).

An open example. We will close with an example of a model that does not satisfy the hypotheses
of our LLN (in dynamic random environments given by spin-flip systems). When ξ(0) = j , let
C j be the cluster of j’s around the origin. Define jump rates for the walk as follows:

π1(η) =


|C1

| if η(0) = 1,
|C0

|
−1 if η(0) = 0,

π−1(η) =


|C0

| if η(0) = 0,
|C1

|
−1 if η(0) = 1.

(8.6)

Even though this looks like a fairly natural model, it does not satisfy (A2). It also will not satisfy
(H1) and (H2) together for any reasonable random environment, which is actually the hardest
obstacle. The problem is that, while we are able to transport a.s. properties of the equilibrium
measure to the measure of the environment as seen from the walk, we cannot control the
distortion in events of positive measure. Thus, even if ΓL has positive probability at time zero,
there is no a priori guarantee that it will have an appreciable probability from the point of view
of the walk at later times. Because of this, we cannot implement our regeneration strategy, and
our proof of the LLN breaks down.

Appendix. Coupling rates

Here we give the rates for a coupling between Ξ and Ξ ′, mentioned in Section 7.3.2, such
that corresponding pairs of coordinates are distributed according to the Vasershtein coupling. Let



F. den Hollander et al. / Stochastic Processes and their Applications 123 (2013) 156–190 189

η, η′ be the state of the middle coordinates ξ and ξ ′; the states outside the origin of the other
coordinates play no role. Then the flip rates at the origin are given schematically by

(000)(000) →


(111)(111) c1,

(011)(011) c(η) ∧ c(η′)− c1,

(011)(001) c(η)− c(η) ∧ c(η′),

(001)(011) c(η′)− c(η) ∧ c(η′),

(001)(001) c1 + λ1 − c(η) ∨ c(η′),

(001)(001) →


(111)(111) c1,

(011)(011) c(η) ∧ c(η′)− c1,

(011)(001) c(η)− c(η) ∧ c(η′),

(001)(011) c(η′)− c(η) ∧ c(η′),

(000)(000) c0,

(001)(011) →


(111)(111) c1,

(011)(011) c(η)− c1,

(001)(001) c(η′)− c0,

(000)(000) c0,

(000)(001) →



(111)(111) c1,

(011)(011) c(η) ∧ c(η′)− c1,

(011)(001) c(η)− c(η) ∧ c(η′),

(001)(011) c(η′)− c(η) ∧ c(η′),

(001)(001) c1 + λ1 − c(η) ∨ c(η′),

(000)(000) c0,

(000)(011) →


(111)(111) c1,

(011)(011) c(η)− c1,

(001)(011) c1 + λ1 − c(η),
(000)(000) c0,

(000)(001) c(η′)− c0,

(000)(111) →



(111)(111) c1,

(011)(111) c(η)− c1,

(001)(111) c1 + λ1 − c(η),
(000)(000) c0,

(000)(001) c(η′)− c0,

(000)(011) c0 + λ0 − c(η′).

(A.1)

The other transitions, starting from

(111)(111), (011)(011), (011)(001), (111)(011),

(111)(001) and (111)(000),
(A.2)

can be obtained from the ones in (A.1) by symmetry, by exchanging the roles of η/η′ or of
particles/holes.
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