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A new look at anomaly cancellation in heterotic M-theory
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Abstract

This Letter considers anomaly cancellation for eleven-dimensional supergravity on a manifold with boundary and theories related to heterotic
M-theory. The Green–Schwartz mechanism is implemented without introducing distributions. The importance of the supersymmetry anomaly
in constructing the low energy action is discussed and it is argued that a recently proposed action for low-energy heterotic M-theory gives a
supersymmetric theory to all orders in the gravitational coupling κ .
© 2006 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Horava and Witten have argued that the strong coupling limit
of the ten-dimensional heterotic string is eleven-dimensional
supergravity with gauge multiplets confined to two ten-dimen-
sional hypersurfaces forming the boundary of the eleven-
dimensional spacetime manifold [1,2]. This theory is a very
promising starting point for phenomenological models based on
compactifications to four dimensions (see, for example, [3–7]).
In applications such as these, it is important to know the action
in as much detail as possible.

The form of the low-energy action originally put forward
was found by relying partly on anomaly cancellation and super-
symmetry. Gauge and gravitational anomalies in the theory can-
cel via a novel modification of the Green–Schwartz mechanism
involving the supergravity 3-form. The cancellation, which in-
volves some remarkable algebraic coincidences, requires that
the matter action contains a factor of order κ2/3 compared to the
supergravity action, where κ is the eleven-dimensional gravita-
tional coupling strength.

Imposing local supersymmetry on the action fixes all of the
terms at order κ2/3. However, when the same procedure is ap-
plied to order κ4/3, singular terms depending on the square of
the delta-function start to arise. This problem has recently been
overcome by modifying the boundary conditions on the grav-
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itino and the supergravity 3-form, so that now an action can
be constructed which is non-singular and supersymmetric to
higher orders [8]. The theory reduces to the correct Yang–Mills
supergravity theory in 10 dimensions for the low-energy het-
erotic string by dimensional reduction, with the boundary con-
ditions playing a role in obtaining the correct 10-dimensional
gaugino terms [9].

The main issue to be addressed in this Letter is the effect of
the new boundary conditions on anomaly cancellation. As we
extend the theory to higher orders in the gravitational coupling,
we have to take account of the supersymmetry anomaly which
appears at order κ2 (i.e. κ2 times the gravitational action). The
most important point is that the existence of a supersymmetry
anomaly implies that the classical action should not be super-
symmetric at this order. However, it is reasonable to suppose
that the supersymmetry anomaly, like the gauge anomaly, is
cancelled by the Green–Schwartz mechanism, and the action
should therefore be supersymmetric up to the variation of the
Green–Schwartz terms [10,11]. This was not appreciated in [9],
where it was shown that the supersymmetric variation of the
new action for heterotic M-theory reduced to just the varia-
tion of the Green–Schwartz terms. Now, taking into account
the supersymmetry anomaly, this theory is supersymmetric to
all orders in κ , at least when truncated to terms up to first order
in the Riemann tensor.

A heuristic argument can be made for the cancellation of
the supersymmetry anomaly by the Green–Schwartz terms. The
Wess–Zumino consistency conditions relate the supersymme-
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try anomaly to the gauge anomaly [10,11]. When the Green–
Schwartz terms are added to the effective action, the total has
vanishing gauge variation. If the consistency conditions have
a unique solution, then the effective action with the Green–
Schwartz terms should have vanishing supersymmetry variation
as well. Below, we shall see how this works out explicitly.

We shall consider the gauge and supersymmetry anomaly
cancellation now in more detail. We work throughout on the
‘downstairs picture’ of a manifold with boundary, rather than
lifting to the covering space R10 × S1. For the present, we trun-
cate the action to first order in the Riemann tensor. The gauge
anomaly from the chiral fermion on one of the boundary com-
ponents can be described by a formal 12-form I12(F ) [12]. To
generate the anomaly, we introduce the notation T , such that lo-
cally dT ω = ω for a closed form ω. The anomalous variation of
the chiral fermion effective action under gauge transformations
δα is given by integrating a 10-form IA

10, defined by

(1)IA
10 = T δαT I12.

The anomalous variation of the chiral fermion effective action
under supersymmetry variations has been discussed by Itoyama
et al. [10,11]. It is given by the sum of two different 10-forms,
IS

10 + IS′
10, where

(2)IS
10 = lηT I12

and IS′
10 is a gauge invariant expression which we leave for later.

The operator lη is an anti-derivative defined by lηA = 0 and
lηF = δηA.

In the case of the gauge group E8,

(3)I12 = 1

12(4π)5

(
trF 2)3

and we have

(4)IA
10 = 1

12(4π)5
tr(αF )

(
trF 2)2

(5)

IS
10 = 1

12(4π)5
tr(δηAA)

(
trF 2)2

+ 1

3(4π)5
tr(δηAF)T

(
trF 2)2

.

Now the key observation of Horava and Witten was that IA
10 can

be cancelled by a variation of the CGG term in the supergrav-
ity action [13]. This can be done by requiring G ∼ trF 2 on the
boundary and δαC ∼ δ(x11) tr(αF ). If we follow this route fur-
ther, we are eventually lead to the theory with δ(x11)2 terms [2].

An alternative way to arrange the Green–Schwartz cancella-
tion was first described in [14]. If we let δαC ∼ da, where a is
any 2-form which satisfies a = tr(αF ) on the boundary, and re-
quire that G ∼ trF 2 on the boundary, then the variation of the
Green–Schwartz term is a total derivative,

(6)δCGG ∼ d(aGG).

This integrates to give a boundary term which can cancel the
anomaly (4). Similarly, if we add an extra supersymmetry vari-
ation δηC ∼ df to the 3-form, where f = tr(δηAA) on the
boundary, then part of the supersymmetry anomaly IS
10 is can-

celled [9]. (The rest of the anomaly is cancelled by the usual
variation of C, as we shall see shortly.)

The gauge and supersymmetry variations of C are precisely
those which are required to maintain the gauge and supersym-
metry invariance of the 3-form boundary condition given in [9],
namely

(7)C =
√

2

12
ε(ωY + ωχ)

on the boundary, where ωY is the Chern–Simons form T trF 2

and

(8)ωχ = 1

4
χ̄aΓABCχa.

The constant ε in Eq. (7) is related to the gauge coupling con-
stant λ by ε = κ2/2λ2. This boundary condition is responsible
for obtaining the correct combination of two-form and gaugino
fields in the action when the theory is reduced to 10 dimensions
[9].

Since the Chern–Simons form has a gauge transformation
δαωY = d(trαF), the boundary condition remains valid if the
variation of C is given by

(9)δαC =
√

2

12
ε da

where a = tr(αF ) on the boundary. (Some details of the use
of p-form boundary conditions in quantum field theory can be
found in [15,16]. A more careful treatment would consider the
Abelian BRST variations of the boundary condition, but these
are similar in form to the Abelian gauge variations with the
gauge parameter replaced by the ghost field, and the argument
remains essentially unchanged.)

The fermion term (8) in the boundary condition is required
to make the boundary condition supersymmetric. It also plays
an important role in obtaining the correct ten-dimensional re-
duction. Unfortunately, the gaugino enters into the variation of
the CGG term through the value of G = 6dC on the boundary,

(10)G = ε√
2

(
trF 2 + dωχ

)
.

The gauge anomaly has no fermion terms, therefore in order to
avoid spoiling the anomaly cancellation, we have to add bound-
ary corrections to the Green–Schwartz terms. The CGG term
is taken from the usual supergravity action (with gravitational
coupling κ2/2 [17]),

(11)SC = −2
√

2

κ2

∫
M

CGG.

The boundary terms can only involve ωY , ωχ and F and they
must vanish when ωχ = 0. The unique combination which has
the desired effect is

(12)S3 = − ε3

6κ2

∫
∂M

ωY ωχ

(
2 trF 2 + dωχ

)
.
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The variation of SC and S3 using (9) is then

(13)δαSC + δαS3 = − ε3

6κ2

∫
∂M

tr(αF )
(
trF 2)2

.

This has the desired form to cancel the gauge anomaly (4), and
fixes the value of ε,

(14)ε = 1

4π

(
κ

4
√

2π

)2/3

.

This agrees with [17], which corrected a factor of 2 in [2]. The
result differs by a factor of 3 from the one obtained on the cov-
ering space in [18]. The difference is possibly due to the way in
which the theory is lifted to the covering space.

If our assumptions are correct, then the supersymmetric vari-
ation of the Green–Schwartz terms should now cancel the su-
persymmetry anomaly, i.e.

(15)δηSC + δηS3 +
∫ (

IS
10 + IS′

10

) = 0.

A supersymmetry variation of SC and S3 allows us to read off
the non-gauge-invariant part of the anomaly

(16)IS
10 = ε3

6κ2
tr(δηAA)

(
trF 2)2 + 2ε3

3κ2
tr(δηAF)ωY trF 2.

This is in complete agreement with (5), proving that this part of
the supersymmetry anomaly does indeed cancel. We also gen-
erate the gauge invariant part of the supersymmetry anomaly,

IS′
10 = ε3

κ2
tr(δηAF)ωχ

(
2 trF 2 + dωχ

)

(17)+ ε3

6κ2
(δηωχ)ωχ

(
3 trF 2 + 2dωχ

)
.

In these expressions, we have included local supersymmetry
transformations

(18)δηA = 3

2
η̄ΓAχ,

(19)

δηωχ = 1

8
η̄ΓABCΓ DEχaF̂ a

DE + 3

8
η̄ΓDψ[Aχ̄aΓ D

BC]χa,

where F̂AB = FAB −ψ̄[AΓB]χ . The supersymmetry anomaly in
ten dimensions has been calculated previously up to four Fermi
terms [19,20]. Our result has a similar form, although a direct
comparison is not possible because our result contains contri-
butions from the eleventh dimension (indicated by the presence
of the gravitino field ψA).

We can make use of the anomaly (16) in connection with
the action of heterotic M-theory. The action S proposed in [9]
consisted of usual supergravity action with boundary terms S0
and a boundary matter action

S1 = −2ε

κ2

∫
∂M

dv

(
1

4
Fa

ABFaAB + 1

2
χ̄aΓ ADA

(
Ω∗∗)χa

(20)+ 1

4
ψ̄AΓ BCΓ AFa∗

BCχa

)
,

where F ∗ = (F + F̂ )/2, Ω is the supergravity spin connection
and Ω∗∗

ABC = ΩABC + 1
24ψDΓABCDEψE . We have now dis-

covered a new result that we must also add the term S3 for the
anomaly cancellation to work properly. In [9], it was shown that
the supersymmetry variation of the action was

(21)δηS = 2
√

2

κ2

∫
∂M

δηCCG,

up to one possible four Fermi term and all orders in κ . We
now recognize this as the variation of the Green–Schwartz term,
and therefore it cancells with the supersymmetry anomaly. The
extra four Fermi terms in (17) explain also why there was
a four-Fermi term left in the variation. Up to the limitations
of truncating out the higher order curvature terms, the action
S = S0 + S1 + S3 describes a theory which is supersymmetric
to all orders in κ .

It is interesting to see how the Green–Schwartz terms behave
in the weakly coupled string limit when the 11-dimensional the-
ory is reduced to 10 dimensions. The reduction ansatz for the C

field which is consistent with the boundary condition (7) is [9]

(22)

CABC = −
√

2

12
εy(ω2Y + ω2χ ) +

√
2

12
ε(1 − y)(ω1Y + ω1χ ),

(23)C11AB = 1

6
BAB,

where the subscripts 1 and 2 refer to the gauge multiplets on the
hypersurfaces at y = 0 and y = 1. The CGG term reduces to
the usual Green–Schwartz term ‘B(trF 2)2’ for the low-energy
limit of the heterotic superstring (for the gauge group E8 ×E8)
plus some terms depending on fermion fields [21]. The new
boundary term S3 reduces to an O(α′3) fermion term in the
ten-dimensional action. These fermion terms must be consis-
tent with the supersymmetry of the action which has not been
broken in the reduction, but they could also be checked directly
against the six point heterotic string loop amplitude.

The treatment of gauge and gravitational anomalies in the
original Horava–Witten model included terms which are higher
order in the Riemann tensor [2]. The 12-form which generates
the anomalies was obtained from the gauginos and boundary
effects on the gravitino [1],

(24)I12 = 1

12(2π)5

(
I 3

4 − 4I4X8
)
,

where I4 = trF 2 − 1
2 trR2 and X8 = − 1

8 trR4 + 1
32 (trR2)2. The

gauge, gravitational and supersymmetry anomalies due to the
first term in I12 can be removed by the CGG term as described
above, provided that the boundary condition on C is modified,

(25)C =
√

2

12
ε

(
ωY − 1

2
ωL + ωχ − 1

2
ωψ

)
,

where ωL = T trR2 is the Lorentz Chern–Simons term and ωψ ,
according to dimensional analysis, is bilinear in the derivative
of the gravitino. The construction of a fully supersymmetric
theory with this boundary condition has not yet been done,
but it seems inevitable that R2 terms will also appear in the
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action [22,23]. These terms would be needed to ascertain the
precise form of ωψ .

Similarly, the X8 terms in the gauge anomaly should be can-
celled by a Green–Schwartz term CX8 in eleven-dimensions
[2,22]. This can be done with δαC ∼ da as above, but the can-
cellation is not exact, because the eleven-dimensional curvature
appears in the Green–Schwartz term but, so far, only the ten-
dimensional curvature appears in the anomaly. This problem
could be removed by adding additional boundary terms to the
action, but the most likely possibility is that there are new con-
tributions to the anomaly depending on the extrinsic curvature
of the boundary.

In conclusion, it is possible to cancel the gauge anomalies in
eleven-dimensional supergravity with boundaries without intro-
ducing singular gauge transformations. The CGG term in the
supergravity action acts as a Green–Schwartz term, but since
there are fermions present in the boundary conditions it is nec-
essary to introduce an extra boundary term in the action de-
pending on the gaugino field. It is interesting that the boundary
conditions and action appear to be well-determined from gauge
and supersymmetry invariance. This agrees with recent work by
van Nieuwenhuizen and Vassilesvich [24], who have found that
supersymmetry severely restricts the boundary conditions for
pure supergravity. Given also that eleven-dimensional super-
gravity with more than two boundaries can now be consistently
formulated (at least as κ → 0) [25], it looks increasingly likely
that the manifold with boundary picture is the more fundamen-
tal way of formulating heterotic M-theory.

We have seen the supersymmetry anomaly has to be taken
into account when constructing the action and, at least in the
limit of small curvature, the action for supergravity with E8
gauge multiplets on the boundaries gives a fully supersym-
metric quantum field theory. It has been show elsewhere that
this theory reduces to the same 10-dimensional Yang–Mills su-
pergravity theory as the low energy heterotic string [9]. How-
ever, dimensional reduction from eleven to four dimensions
involves curvature terms in the internal dimensions which are
not small, but comparable in size to the gauge field strength
[3–7]. It would be very desirable to find a supersymmetric ac-
tion which includes the R2 terms suggested by the gauge and
gravity anomalies, and then we would have confidence in using
this version of heterotic M-theory as a basis for particle physics
phenomenology.
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