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Abstract CRTH2 is a recently described chemoattractant
receptor for the prostaglandin, PGD2, expressed by Th2 cells,
eosinophils and basophils, and believed to play a role in allergic
inflammation. Here we describe the potency of several PGD2

metabolites at the receptor to induce cell migration and activa-
tion. We report for the first time that the PGD2 metabolite,
9a,11b-PGF2, and its stereoisomer, PGF2a, are CRTH2 ago-
nists. 9a,11b-PGF2 is a major metabolite produced in vivo fol-
lowing allergen challenge, whilst PGF2a is generated
independently of PGD synthetase, with implications for CRTH2
signalling in the presence or absence of PGD2 production.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

PGD2 is the major prostaglandin (PG) released by mast cells

following activation [1], and mice over-expressing PGD syn-

thase exhibit marked eosinophil and T-lymphocyte recruit-

ment to the lung [2], implying a role for the PG in allergic

inflammation. PGD2 signals through the DP receptor [3],

and in a model of allergic airway inflammation, mice lacking

DP failed to develop airway hyperreactivity and showed re-

duced cell infiltration [4]. Recently, a novel PGD2 receptor,

chemoattractant receptor homologous molecule expressed by

Th2 cells (CRTH2), was identified [5], which is expressed by

eosinophils, Th2 cells and basophils [6] and facilitates the

migration of these cells in response to PGD2 [5].

PGD2 is a labile molecule [7,8], and the PGD2 metabolites,

D12-PGD2, 15d-PGD2, 15d-PGJ2, D12-PGJ2 and PGJ2 (de-

picted in Fig. 1), have been shown to bind to CRTH2

[5,9,10] and to activate eosinophils [10–12]. 9a,11b-PGF2 is

generated from PGD2 by the action of PGF synthase [13]
Abbreviations: CRTH2, chemoattractant receptor homologous mole-
cule expressed by Th2 cells; GAFS, gated auto-fluorescence forward
scatter assay; PG, prostaglandin; PGDS, PGD2 synthetase
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and is one of the major metabolites of PGD2 formed in vivo

[13,14], being found in the urine and plasma of asthmatics fol-

lowing allergen challenge [15,16]. PGF2a is a stereoisomer of

9a,11b-PGF2 (Fig. 1), produced from PGH2 by the action of

PGF synthase [17], and from PGE2 by the action of PGE 9-

ketoreductase [18]. PGF2a, 9a,11b-PGF2 and PGD2 have been

reported to cause smooth muscle contraction with similar po-

tency [19], and the three PGs exhibit potent bronchoconstric-

tor activity [20]. 9a,11b-PGF2 and PGF2a exhibit activity at

DP, albeit with lower affinity than PGD2 [19,21]. In addition,

9a,11b-PGF2 has been demonstrated to induce the upregula-

tion of CD11b on eosinophils [11], and to inhibit cAMP gen-

eration in CRTH2 transfected cells [9], whilst PGF2a induced

actin polymerisation and CD11b upregulation in eosinophils

[22], and in CRTH2 transfectants, induced calcium mobilisa-

tion and inhibited cAMP generation, actions presumably med-

iated by CRTH2. Here we provide further evidence that

9a,11b-PGF2 and PGF2a are CRTH2 agonists, and character-

ise their effects at this receptor.
2. Materials and methods

2.1. Materials
Unless otherwise stated, all reagents were from Sigma–Aldrich

(Poole, UK). PGs and ramatroban were from Cayman Chemicals
(MI, USA), and tissue culture reagents were from Invitrogen (Paisley,
UK).

2.2. Cell culture
Naı̈ve BaF/3 cells and those stably expressing CRTH2

(CRTH2.BaF/3 cells) were cultured as described [23].

2.3. Chemotaxis assay
Assays were carried out as previously described [23]. Briefly, agonists

were diluted in RPMI + 0.1% BSA and placed in the wells of a 96 well
Neuroprobe chemotaxis plate (Receptor Technologies, UK). 2 · 105

cells were placed on top of the filter and the plate incubated at
37 �C, 5% CO2, in a humidified box for 5 h. Cells traversing the filter
were counted on a haemocytometer. Results are expressed as the per-
centage of migrating cells, following the subtraction of basal migra-
tion, to buffer alone.

2.4. Preparation of granulocytes
Granulocytes were prepared as described [24]. Peripheral venous

blood from healthy volunteers was anticoagulated with trisodium cit-
rate. Platelets were removed by centrifugation, and erythrocytes by
dextran sedimentation. Leukocytes were separated according to
blished by Elsevier B.V. All rights reserved.
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Fig. 1. The structures of the PGD2 metabolites of interest, modified from [8], PGF2a, PGE2 and PGA2.
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density by centrifugation over Histopaque 1077. Residual erythrocytes
were removed by hypotonic lysis. Granulocytes were resuspended in
handling buffer (0.1% BSA, 10 mM glucose, 10 mM HEPES in PBS
without Ca2+ and Mg2+, pH 7.4).

2.5. Eosinophil gated-autofluorescence forward scatter assay (GAFS)
The GAFS assay was performed as described [25]. Granulocytes

were incubated at room temperature for 1 h in handling buffer and
resuspended in GAFS assay buffer (handling buffer with Ca2+ and
Mg2+). 5 · 105 cells were added to the indicated agonist, incubated
for 4 min at 37 �C, and the cells fixed by the addition of 1· CellFix
(Becton-Dickinson, Cowley, UK) which had been further diluted 1:4
with FACSFlow sheath fluid. Data were aquired on a FACSCalibur
flow cytometer, with collection terminated once 500 high FL-2 events
(eosinophils) had been acquired [25]. Agonist induced eosinophil shape
change was calculated as a percentage of the baseline forward scatter
(FSC).

2.6. Statistical analysis
Statistical analyses, curve fitting, and calculation of EC50 values was

performed using Prism 3.0 (Graphpad Software Inc., San Diego,
USA).
3. Results

3.1. Relative activities of PGD2 metabolites at CRTH2

PGD2, PGJ2, D12-PGJ2, 15d-PGJ2, DK-PGD2, D12-PGD2

and 15d-PGD2 induced the migration of BaF/3 cells stably
expressing CRTH2 (Fig. 2) but had no effect on the migration

of naı̈ve cells (data not shown), implying that this response is

mediated by CRTH2. Although two orders of magnitude less

potent than PGD2, the J-series PGs were the most efficacious

agonists tested at inducing chemotaxis of these cells

(Fig. 2,A–D).

As previously reported [23], PGD2 induced a potent shape

change response in eosinophils with activity in the sub-nano-

molar range. The PGD2 metabolites also induced eosinophil

shape change (Fig. 3), with a rank order of potency of

PGD2 = 15d-PGD2 > D12-PGD2 = DK-PGD2 > PGJ2 > D12-

PGJ2 = 15d-PGJ2. Calculated EC50 values for these re-

sponses are shown in Table 1. The responses appeared to

be mediated via CRTH2 rather than DP as they were com-

pletely abrogated by pretreatment of the leukocytes with the

CRTH2 antagonist, ramatroban (Table 1), which had no ef-

fect on the CCR3-mediated response to eotaxin (data not

shown).

3.2. 9a,11b-PGF2 and PGF2a cause eosinophil activation

Both 9a,11b-PGF2 and PGF2a showed similar efficacy to

PGD2 in assays of eosinophil shape change, but were less

potent than PGD2 (P < 0.0001) with EC50 values of

1.56 · 10�7 and 1.47 · 10�7 M, respectively (Fig. 4A and

B). Ramatroban inhibited these responses in a dose depen-

dent manner (Fig. 4C and D), suggesting that they were
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Fig. 2. The migratory response of CRTH2.BaF/3 cells in response to PGD2 and some of its metabolites is shown. Results are the means ± S.E.M. of
n = 4–8 experiments. \ indicates P < 0.05, \\, P < 0.01, and \\\, P < 0.001, by ANOVA with Friedman post test, comparing the number of cells
migrating to PG with the number migrating to buffer alone.

Table 1
The EC50 values of PG-induced eosinophil shape change were calculated and are given with the 95% confidence intervals (n = 5–8)

EC50(M) 95% CI for EC 50(M) IC50for ramatroban (M)

PGD2 3.94 · 10�10 1.95 · 10�10–7.98 · 10�10 2.73 · 10�9 (1 nM)
DK-PGD2 1.13 · 10�9* 5.26 · 10�10–2.45 · 10�9 1.06 · 10�8 (10 nM)
PGJ2 2.22 · 10�9** 8.99 · 10�10–5.49 · 10�9 1.04 · 10�8(10 nM)
D12-PGJ2 3.74 · 10�9*** 2.43 · 10�9–5.75 · 10�9 3.40 · 10�9 (10 nM)
15d-PGJ2 8.37 · 10�9*** 3.97 · 10�9–1.76 · 10�8 1.97 · 10�8(100 nM)
D12-PGD2 7.34 · 10�10* 2.86 · 10�10–1.88 · 10�9 4.40 · 10�9(3 nM)
15d-PGD2 2.39 · 10�10 8.98 · 10�11–6.35 · 10�10 6.15 · 10�8(10 nM)

EC50 values of the tested PG were compared to that of PGD2 by t test. * indicates P < 0.05, **, P < 0.005, and ***, P < 0.0001. IC50 values for the
inhibition of the response by a 10 min pretreatment with ramatroban are also given, with the PG concentrations used to generate a response indicated
in parenthesis (n = 4).
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Fig. 3. Panels A–G show eosinophil shape change in response to a range of concentrations of PG. Results are the means ± S.E.M. of n = 5–8
experiments.
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mediated via CRTH2. Ramatroban is also an antagonist of

the TP receptor, but it seems unlikely that these responses

are due to TP signalling as there is no evidence for TP on

eosinophils [22].
3.3. 9a,11b-PGF2 and PGF2a, but not PGA2 or PGE2, are

agonists of CRTH2

9a,11b-PGF2 and PGF2a induced migration of the CRTH2

transfectants, with 100-fold less potency than PGD2 (Fig. 5A
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Fig. 4. Panels A and B show the eosinophil shape change induced by 9a,11b-PGF2, PGF2a and PGD2. Panels C and D show eosinophil shape change
to 1 lM 11b-PGF2a or PGF2a, respectively, in the presence of the indicated ramatroban concentrations. Results are the means ± S.E.M. of n = 4
experiments.

Fig. 5. Panels B and D, naı̈ve Baf/3 cells, and A, C and E, CRTH2 expressing BaF/3 cells, were exposed to the indicated concentrations of PG for
5 h, and the resulting migration determined. Results are means ± S.E.M. of n = 3 (B, D and E) or n = 5 (A and C) experiments. \ indicates P < 0.05
and \\, P < 0.01 by ANOVA with Friedman post test comparing the number of cells migrating to PG to the number migrating to buffer.
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and C). Naı̈ve BaF/3 cells were unresponsive to both PGs, de-

spite migrating to the chemokine SDF-1a via endogenous

CXCR4 (Fig. 5B and D), implying that the migratory response

is mediated via the presence of CRTH2.

As CRTH2 is activated by PGs containing D, J and F rings,

it was of interest to establish whether PGs with the A or E ring

could also activate the receptor. Neither PGA2 nor PGE2

(structures shown in Fig. 1) caused the migration of BaF/3 cells

expressing CRTH2, at a range of concentrations active for the

other CRTH2 agonists (Fig. 5,E and F).
4. Discussion

CRTH2 is a remarkably promiscuous receptor, with ligands

including PGD2 and its metabolites, a TXA2 metabolite and

the non-steroidal anti-inflammatory drug indomethacin

[5,10–12,23,24,26]. PGF2a and 9a,11b-PGF2a have been previ-

ously demonstrated to stimulate CRTH2 transfectants [9] and

eosinophils [11,22]. Here, we investigate the ability of the pros-

taglandins to induce the migration of CRTH2 transfected cells,

and with the use of an antagonist, demonstrate for the first

time that 9a,11b-PGF2 PGF2a, and several PGD2 metabolites

stimulate eosinophils via CRTH2.

The J-series PGs caused eosinophil shape change and the

migration of CRTH2 transfected BaF/3 cells with less po-

tency than PGD2 itself, reflecting the findings of previous

studies [5,9,11]. Studies have shown that high concentrations

of 9a,11b-PGF2 and PGF2a are able to displace radiola-

belled PGD2 from CRTH2 [5,9], in agreement with our

findings that these PGs signal via CRTH2, although with

lower potency than PGD2. PGs containing the A or E ring

were inactive at CRTH2, suggesting CRTH2 is not activated

by PGs containing a ketone at carbon 9. In contrast, the

identity of the group at carbon 11 appears to be less impor-

tant, as the F-series PGs with a hydroxyl at this position

rather than the ketone of PGD2 are able to activate the

receptor.

Whilst 9a,11b-PGF2a is several orders of magnitude less po-

tent than PGD2, it is reported to be more stable in vivo, as fol-

lowing administration of PGD2 to humans, 9a,11b-PGF2 but

not PGD2 was found in the urine [14]. It is therefore likely that

the metabolite may accumulate in vivo. Indeed, plasma levels

of 1.4 lM have been reported in a patent with severe mastocy-

tosis [27], whilst a mean concentration of 42.3 pM was found

in the plasma of allergen challenged asthmatics [15]. It there-

fore seems plausible that levels of 9a,11b-PGF2a at concentra-

tions sufficient to activate CRTH2 are generated in vivo. Since

PGD2 is produced in the lung in response to allergen challenge

[28], and PGF synthase is also expressed in the lung [29,30], lo-

cal generation of 9a,11b-PGF2a may play a role in allergic lung

inflammation by activating eosinophils, Th2 cells and baso-

phils, via CRTH2.

Interestingly, PGF2a is the first PG produced in the absence

of PGD synthase to be described as a CRTH2 ligand. There-

fore, PGF2a, along with the thromboxane metabolite, 11d-

TXB2 [23] allow for the possibility of CRTH2 signalling

in vivo in the absence of PGD2 production, as PGF2a is pro-

duced from either PGH2 [17] or PGE2 [18], and 11d-TXB2 is

formed as a TXB2 metabolite. These data reinforce the poten-

tial importance of CRTH2 signalling in the regulation of aller-

gic inflammation.
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