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SUMMARY

Targeting ‘‘oncogene addiction’’ is a promising strategy for anticancer therapy. We report a potent inhibition
of crucial oncogenes by p53 upon reactivation by small-molecule RITA in vitro and in vivo. RITA-activated p53
unleashes the transcriptional repression of antiapoptotic proteins Mcl-1, Bcl-2, MAP4, and survivin; blocks
the Akt pathway on several levels; and downregulates c-Myc, cyclin E, and b-catenin. p53 ablates c-Myc
expression via several mechanisms at the transcriptional and posttranscriptional level. We show that the
threshold for p53-mediated transrepression of survival genes is higher than for transactivation of proapop-
totic targets. Inhibition of oncogenes by p53 reduces the cell’s ability to buffer proapoptotic signals and
elicits robust apoptosis. Our study highlights the role of transcriptional repression for p53-mediated tumor
suppression.
INTRODUCTION

The notion that initial oncogenic lesions remain essential for

tumor maintenance is supported by a number of studies,

including in vivo experiments in mice switching off Myc (Felsher

and Bishop, 1999; Pelengaris et al., 2002), BCR-ABL (Huettner

et al., 2000), or H-ras (Chin et al., 1999). ‘‘Oncogene addiction,’’

i.e., the dependency of tumor cells on oncogenic activity that

initially contributed to tumor phenotype, first coined by Wein-

stein (2002), potentially reveals an ‘‘Achilles’ heel’’ of cancer

cells. Targeting this ‘‘Achilles’ heel’’ is currently a major strategy

for the development of novel anticancer drugs.

Strategies aimed toward restoring the function of the tumor

suppressor p53 have been much less popular so far. Recent

studies in mice with ‘‘switchable’’ p53 demonstrated that resto-

ration of p53 function leads to the suppression of already estab-

lished tumors, such as lymphomas, soft tissue sarcomas, and
hepatocellular carcinomas (Martins et al., 2006; Ventura et al.,

2007; Xue et al., 2007). The important conclusion from these

studies is that developed tumors remain vulnerable to p53 resto-

ration. Taken together with the identification of TP53 as the most

commonly mutated gene in a recent systematic study of genetic

alterations in breast and colon cancer (Sjoblom et al., 2006),

these findings firmly support the notion that restoring p53 func-

tion might be an attractive strategy for treating cancer. Reactiva-

tion of p53 appears to be feasible, because p53 protein is usually

expressed in tumors, although it is functionally inert.

Different strategies of p53 rescue for the selective elimination

of tumors could be envisioned, depending on the type of p53

inactivation. Refolding mutant p53 in tumors carrying TP53 point

mutations appears to be a promising approach (Bykov et al.,

2002). In tumors carrying wild-type p53, p53’s function is often

inhibited by MDM2, which binds p53, inhibits its transcriptional

function, and promotes proteasomal degradation of p53 (Haupt
SIGNIFICANCE

p53 reinstatement leads to impressive regression of established tumors in mice, supporting the idea that restoring p53 is
a good strategy in cancer treatment. Our study adds another dimension to the p53 story, demonstrating that p53 reactiva-
tion triggers ablation of crucial oncogenes. The multitude of oncogenes inhibited by p53 and the multiple levels on which
they are targeted create external robustness of the p53 response. This capability might allow p53 to cope with the daunting
challenge of anticancer therapy: multiple genetic abnormalities in individual cancers. Our finding that a combination of a low
dose of p53-reactivating drug with oncogene inhibitors produced a synergistic effect provides a rationale for drug combi-
nations to minimize side effects and newly developed resistance in patients.
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et al., 1997; Kubbutat et al., 1997). Several classes of small mole-

cules inhibiting the p53/MDM2 interaction or targeting the enzy-

matic activity of MDM2 have been reported (Lain et al., 2008;

Vassilev et al., 2004; Yang et al., 2005). We have identified a small

molecule RITA, which induces p53 accumulation and activation

and suppresses the growth of tumor cells and human tumor

xenografts in mice in a p53-dependent manner without obvious

toxic effects (Issaeva et al., 2004). In addition to serving as lead

compounds for the development of anticancer drugs, p53-reac-

tivating molecules, such as RITA, can be useful tools for the

study of p53 functional activity.

It has been well established that p53 is a transcriptional factor

that regulates the expression of genes involved in control of the

cell cycle and cell death upon activation by genotoxic or onco-

genic stress (Vogelstein et al., 2000). p53 can activate the tran-

scription of the proapoptotic genes PUMA, PMAIP, Bax, Fas,

and others (Vogelstein et al., 2000), along with repression of

the transcription of the survival genes Bcl-2, MAP4, BIRC5 (sur-

vivin), Mcl-1, IGF-1R, MYC, EIF4E, and PIK3CA (Miyashita et al.,

1994; Murphy et al., 1996; Hoffman et al., 2002; Pietrzak and

Puzianowska-Kuznicka, 2008; Werner et al., 1996; Ho et al.,

2005; Zhu et al., 2005; Astanehe et al., 2008). According to the

current view, transrepression by p53 might occur via different

mechanisms, including steric interference, squelching of the tran-

scriptional activators, and p53-mediated recruitment of histone

deacetylases (Riley et al., 2008). However, the relative contribu-

tion of transactivation and transrepression functions in the p53-

induced biological response has not been established yet.

The question of how p53 chooses between its different targets

received great attention, due to its paramount relevance to

cancer therapy (Oren, 2003). The response of cells to p53 can

vary greatly depending on a cellular context, the key component

being the presence of survival signals, which render cells resis-

tant to apoptosis. The overexpression of factors blocking

apoptosis downstream of p53, such as Mcl-1 or Bcl-2, might

lead to escape from p53-induced cell death. It is believed that

when survival signals prevail, p53 activation will more likely result

in growth arrest (Lowe et al., 2004; Oren, 2003). Thus, it remains

to be elucidated whether p53 activation can counteract survival

signaling, which is persistently expressed in cancer cells.

Using the p53-reactivating molecule RITA, we addressed the

questions of whether and how p53 can overcome antiapoptotic

and survival signals. We demonstrate that p53 activated by RITA

represses the set of prosurvival oncogenes that play a critical

role in p53-induced apoptosis.

RESULTS

Transcriptional Repression of Oncogenes
upon p53 Reactivation by RITA
To explore the effects of restoring p53 function in tumor cells, we

analyzed the changes in gene expression in isogenic p53-posi-

tive and p53 null HCT116 colon carcinoma cells after treatment

with 1 mM RITA by using genome-wide DNA microarrays (Affy-

metrix; for details, see Enge et al. [2009]). Upon RITA treatment,

a significant number of genes were downregulated in a p53-

dependent manner, including the oncogenes IGF-1R, PIK3CA,

PIK3CB, MYC, EIF4E, BCL-2, MAP-4, and MCL-1 (Figure 1A).

To test whether a similar effect occurs in a tumor cell line of
442 Cancer Cell 15, 441–453, May 5, 2009 ª2009 Elsevier Inc.
a different origin, we performed a DNA microarray experiment

in breast carcinoma MCF7 cells addressing the kinetics of tran-

scriptional repression upon RITA treatment (Figure 1B). We

observed a very good correlation with the HCT116 microarray

data. p53 reactivation resulted in strong transcriptional repres-

sion of the same set of oncogenes, with the exception of EIF4E

and MAP-4, whose levels were not affected.

To verify our microarray data, we examined the mRNA levels of

these genes by quantitative real-time PCR (qPCR). We observed

a marked downregulation of the mRNA levels of IGF-1R, PIK3CA,

PIK3CB, MYC, EIF4E, BCL-2, MAP-4, and MCL-1 in both HCT116

and in MCF7 cells (Figures 1C and 1D, respectively). According

to qPCR, transcriptional repression of oncogenes was much

stronger in MCF7 cells, compared with HCT116 cells.

Transrepression of oncogenes was dependent on p53,

because we did not detect any changes in the expression of

these genes after RITA treatment in the p53 null cell lines

HCT116 TP53�/� (Figure 1C), Saos-2, and H1299 (Figure 1E).

In order to address p53 dependence in MCF7 cells, we blocked

p53 function by using the small-molecule p53 inhibitor pifithrin-a

(Komarov et al., 1999) or p53shRNA. Pifithrin-a was a superior

p53 inhibitor compared to p53 depletion by shRNA, completely

blocking p53 induction by RITA, whereas p53shRNA had only

a partial effect (Figure 2A and Figure S1A available online,

respectively); therefore, we used pifithrin-a in our subsequent

experiments. Repression of the oncogenes by p53 (Figure 1D)

in MCF7 cells, as well as transactivation of p53 targets (data

not shown), was efficiently prevented by pifithrin-a, supporting

the notion that downregulation of oncogenes is p53 dependent.

In general, we observed a very good correlation of microarray

data with qPCR in both cell lines, with the exception of EIF4E,

whose repression in MCF7 cells was detected by qPCR, but

not by microarray. In addition, qPCR showed a clear p53-depen-

dent reduction of expression of another p53 target gene, BIRC5

(survivin) in both cell lines (Figures 1C and 1D), which was not

detected in microarray experiments. These differences probably

reflect a poor hybridization with the probes in the array.

Consistent with the decrease of mRNA levels, protein levels of

IGF-1R, c-Myc, survivin, and Mcl-1 were downregulated by RITA

inwild-typep53-expressingHCT116,MCF7,A549,andU2OScells,

but not in the p53 null cell lines HCT116 TP53�/�, Saos-2, and

H1299 and in cells pretreated with pifithrin-a (Figures 2A and 2B).

Importantly, the transcriptional program resulting in oncogene

inhibition by p53 was not restricted to the in vitro phenomenon.

We applied RITA to HCT116 and HCT116 TP53�/� xenografts in

SCID mice. Upon 18 hr of RITA treatment, we observed a decline

of c-Myc, Mcl-1, survivin, and IGF-1R in p53-positive, but not

p53-negative tumors (Figure 2C).

Taken together, our results demonstrate that reactivation of

p53 by RITA markedly ablated the expression of a set of impor-

tant oncogenes in tumor cells in vitro and in vivo. Because most

of these factors are crucial for the viability of both tumor and

normal cells, it appears important to assess the effect of RITA

on this set of genes in nontransformed cells.

RITA Does Not Affect the Expression of Survival Genes
in Nontransformed Cells
We examined the effect of RITA on survival genes in several non-

transformed cell lines: human diploid fibroblasts (HDFs); and two
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mammary epithelial lines, MCF10A and 184A1. The levels of

IGF1R, c-Myc, Mcl-1, and survivin were not affected by

RITA in these cell lines (Figure 2D). This was matched by

the lack of induction of p53 and its target gene PUMA, in

line with the absence of p53 activation in nontransformed

fibroblasts and lymphocytes, reported by us previously (Is-

saeva et al., 2004). The viability of nontransformed cell lines

was not affected by RITA either (Figure 2E; Figure S1B).

However, the chemotherapeutic agent 5-fluorouracil (5-FU),

known to cause DNA damage, induced p53 and PUMA in

these cells and reduced the expression of c-Myc and survivin

(Figure 2D), along with the induction of cell death (Figure 2E;

Figure S1B). We therefore conclude that targeting p53 by

RITA does not result in p53 activation and/or block of survival

gene expression in nontransformed cells, in contrast to DNA-

damaging drugs. Tumor-selective inhibition of proproliferative

and antiapoptotic genes might provide a powerful weapon

against cancer cells without evoking toxic effects in normal

tissues. Thus, we set out to explore in more detail the down-

Figure 1. p53-Induced Transcriptional

Repression of a Set of Oncogenes

(A) Microarray analysis of gene expression in

wtp53-expressing HCT116 and p53 null HCT116

TP53�/� after 4 hr and 12 hr of treatment with 1 mM

RITA. Shown is the heatmap of genes differentially

expressed at 1% FDR, F-test. Vertical rows indi-

cate separate arrays, and horizontal rows indicate

genes. Values are normalized by row. Green indi-

cates low expression; red indicates high expres-

sion.

(B) Microarray analysis of MCF7 cells treated with

1 mM RITA for 2–24 hr presented as in (A). Values

are normalized to untreated control.

(C) mRNA levels of oncogenes were detected by

qPCR in HCT116 and HCT116 TP53�/� cells 4

and 8 hr after treatment with 1 mM RITA (mean ±

SEM, n = 3).

(D) mRNA levels of oncogenes were detected by

qPCR in untreated MCF7 cells or upon pretreat-

ment with 10 mM of the p53 inhibitor pifithrin-a 4

and 8 hr after RITA treatment (mean ± SEM, n = 3).

(E) mRNA levels of oncogenes in p53 null Saos-2

and H1299 cells, as detected by qPCR 4 and

8 hr after RITA treatment (mean ± SEM, n = 3).

stream effects of RITA-induced inhibi-

tion of oncogenes in tumor cells

and the contribution of oncogene inhibi-

tion to the p53-mediated biological

response.

Inhibition of Key Downstream
Players of the Akt Pathway
Pathway analysis of microarray data

obtained in HCT116 cells identified

the PI(3)K/Akt pathway as one of the

most affected by RITA (Enge et al.,

2009). Indeed, we found that several

genes involved in Akt signaling were

repressed, as illustrated in Figure 3A.

These include IGF-1R, EIF4E, as well as PIK3CA and PIK3CB,

which encode catalytic subunits of PI(3) kinase, p110a and

p110b, respectively (for the details of the Akt pathway, see

Figure 3A).

Next, we examined whether inhibition of IGF-1R and PI(3)K

affects the abundance and phosphorylation status of down-

stream factors. Upon treatment with RITA, we observed a p53-

dependent decline of the active, phosphorylated form of Akt

kinase, as well as phosphorylated mTOR downstream of Akt

(Figures 3B and 3C). Furthermore, Akt kinase activity was sig-

nificantly reduced in RITA-treated cells, as manifested by a

decreased ability of Akt to phosphorylate its substrate GSK3ab

in vitro (Figure 3G).

Along with inhibition of mTOR phosphorylation, mRNA of

EIF4E, one of the important downstream mediators of mTOR,

was significantly downregulated (Figures 1A, 1C, and 1D).

Because eIF4E is implicated in the regulation of translation of

several important oncoproteins, including c-Myc (Averous and

Proud, 2006), we set out to investigate whether inhibition of
Cancer Cell 15, 441–453, May 5, 2009 ª2009 Elsevier Inc. 443
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EIF4E plays a role in the downregulation of oncoproteins upon

RITA treatment.

We employed a translational reporter construct, encoding

a luciferase whose mRNA translation is CAP dependent and regu-

lated by eIF4E. Indeed, CAP-dependent translation was inhibited

by RITA in p53-positive cells, but not in p53 null cells (Figure 3D).

However, we did not observe a general inhibition of translation, as

growth suppressor proteins were induced upon RITA treatment

(Figure 3E). Notably, ectopic expression of eIF4E alleviated the

block of CAP-dependent translation (Figure 3D), supporting the

notion that the effect is eIF4E dependent.

Next, we assessed whether eIF4E can rescue the decline of

oncoproteins by RITA (Figure 3F). Ectopic expression of eIF4E

conferred only partial protection of the c-Myc level at a late

time point (24 hr), indicating a minor contribution of translational

block to c-Myc depletion. Downregulation of Mcl-1 was not

restored at all. Unexpectedly, we observed a potent rescue of

IGF-1R level upon eIF4E overexpression, indicating that in addi-

tion to repression of IGF-1R transcription, p53 induces downre-

gulation of IGF-1R protein via an eIF4E-dependent mechanism.

Subsequently, we studied the status of another downstream

target of Akt, GSK-3b (Figure 3A). In accordance with inhibition

of Akt activity (Figure 3G), phosphorylation of endogenous

Figure 2. p53-Dependent Downregulation

of the Oncoproteins c-Myc, IGF-1R, Mcl-1,

and Survivin In Vitro and In Vivo

(A) Immunoblotting of IGF-1R, c-Myc, Mcl-1, and

survivin in cell extracts from the wtp53 cell lines

U2OS, MCF7, A549, and HCT116 treated with

RITA or with RITA in combination with pifithrin-a.

(B) Immunoblotting of oncoproteins in cell extracts

from p53 null Saos-2 and H1299 cells, treated or

nontreated with RITA.

(C) Protein levels of IGF-1R, c-Myc, survivin, and

Mcl-1 upon 18 hr of RITA treatment (1 mg/kg) of

HCT116 and HCT116 TP53�/� tumor xenografts

in SCID mice, as detected by immunoblotting.

(D) Protein levels of oncoproteins in nontrans-

formed human diploid fibroblasts (HDFs) and the

mammary epithelial cell lines MCF10A and

184A1 upon 12 hr treatment with 1 mM RITA or

100 mM 5-FU was detected by western blot.

(E) Phase-contrast microscopy of nontransformed

MCF10A and 184A1 cells treated with 1 mM RITA

or 100 mM 5-FU for 48 hr. Scale bars represent

100 mm.

GSK3b was reduced by RITA in HCT116

cells, but not in p53 null cells (Figure 3H).

Rescue of GSK3b activity due to inhi-

bition of Akt is expected to result in

proteasomal degradation of GSK3b

substrates. Indeed, as shown in Fig-

ure 3I, activation of p53 by RITA led

to a profound downregulation of the

GSK3b substrates c-Myc, b-catenin (Do-

ble and Woodgett, 2003), Mcl-1 (Maurer

et al., 2006), and cyclin E (Figures 4G

and 4H) in a p53-dependent manner. In

line with these findings, GSK3b-dependent phosphorylation of

c-Myc was increased (Figure 4D), supporting the notion that

GSK3b activity is induced by RITA.

p53 Induces GSK3b-Dependent Degradation of c-Myc
The data presented above suggest that, in addition to transcrip-

tional repression of MYC (Figures 1A–1D), c-Myc might also be

targeted at a protein level due to phosphorylation by GSK3b.

To address the impact of a posttranscriptional mechanism on

c-Myc inhibition, we tested whether c-Myc expressed from

a p53-independent promoter will be affected. RITA treatment re-

sulted in strong reduction of overexpressed ectopic c-Myc, indi-

cating regulation on a posttranscriptional level (Figure 4A).

Next, we examined the involvement of proteasomal degrada-

tion in the depletion of c-Myc. The proteasomal inhibitor MG132

partially prevented downregulation of c-Myc by RITA (Figure 4B;

Figure S2A). Consistent with these data, we observed a decrease

in c-Myc half-life upon p53 activation by RITA (Figure 4C).

However, the stability of Mcl-1, another putative target of

GSK3b, was not decreased (Figure S2B). Thus, p53 appears to

unleash the proteasomal degradation of c-Myc, but not of Mcl-1.

In order to validate whether GSK3b is required for c-Myc

downregulation, we blocked GSK3b activity by the specific
444 Cancer Cell 15, 441–453, May 5, 2009 ª2009 Elsevier Inc.
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inhibitor B1686 BIO. This resulted in a partial rescue of c-Myc

levels, evident at 8 hr after RITA treatment (Figure 4E). However,

after 24 hr, c-Myc levels were reduced to the same level as in the

absence of the GSK3b inhibitor, presumably due to the tran-

scriptional repression of MYC.

In contrast to c-Myc, the level of Mcl-1 was not rescued by

B1686 BIO (Figure 4E), indicating that downregulation of Mcl-1

by RITA is not GSK3b dependent. Taken together with our results

presented above, that stability or translation of Mcl-1 were not

affected by RITA, this allowed us to conclude that the observed

decline of Mcl-1 protein occurs only on an mRNA level. On the

other hand, c-Myc is targeted for degradation, at least partially

due to GSK3b-induced phosphorylation.

Impact of the p53 Target Fbxw7/hCdc4 on c-Myc
and Cyclin E Downregulation
GSK3b-phosphorylated c-Myc is a substrate for the F box

protein Fbxw7/hCdc4, the substrate specificity factor of

SCFFbxw7/hCdc4 E3 ubiquitin ligase (Yada et al., 2004). Microarray

analysis (Figure 1A) and qPCR (Figure 4F) showed that the mRNA

levels of two FBXW7/hCDC4 isoforms (b and g) were significantly

Figure 3. p53-Dependent Inhibition of the

Akt Pathway upon RITA Treatment

(A) Scheme depicting the major players in the

PI(3)K/Akt pathway and oncogenes that are tran-

scriptionally repressed upon RITA treatment (in

bold).

(B) Levels of IGF-IR and phosphorylated Akt

HCT116 and HCT116 TP53�/� cells were analyzed

by western blot.

(C) Phosphorylation of mTOR upon RITA treatment

was assessed by western blot.

(D) Effect of RITA on CAP-dependent translation

was evaluated by using the luciferase translation

reporter in the presence or absence of ectopic

expression of eIF4E (mean ± SEM, n = 4).

(E) Levels of GADD45a, Fas, and p53 proteins

were detected by western blot.

(F) IGF-IR, c-Myc, and Mcl-1 protein levels upon

1 mM RITA in the presence or absence of ectopic

expression of eIF4E in HCT116 cells, as detected

by immunoblotting.

(G) Akt kinase activity was determined by an

in vitro kinase assay with Akt kinase immunopre-

cipitated from HCT116 and HCT116 TP53�/� cells

and purified GST-GSK3ab as a substrate. Phos-

phorylation of GST-GSK3ab was analyzed by

western blot with phospho-specific antibodies.

(H) Phosphorylation of cellular GSK3b upon treat-

ment with 1 mM RITA of HCT116 and HCT116

TP53�/� cells was assessed by immunoblotting

with phospho-specific antibodies.

(I) p53-dependent downregulation of the GSK3b

substrates b-catenin, c-Myc, and Mcl-1 upon

treatment with 1 mM RITA was analyzed by

western blot.

upregulated by RITA in a p53-dependent

manner. Induction of the b isoform is

consistent with published data demon-

strating that the FBXW7/hCDC4 gene is

a direct p53 target (Kimura et al., 2003), whereas the g isoform

has not yet been demonstrated to be regulated by p53.

Inorder toexamine the impactofFbxw7/hCdc4onc-Mycdegra-

dation, we compared the levels of c-Myc upon RITA treatment of

HCT116 and HCT116 hCDC4�/� cells in which the FBXW7/

hCDC4 gene has been deleted. In the absence of Fbxw7/hCdc4,

the kinetics and extent of c-Myc depletion were significantly

impeded, confirming the involvement of Fbxw7/hCdc4 (Figure 4G).

Nevertheless, the level of c-Myc was not completely rescued in

these cells upon p53 reactivation by RITA, supporting our data

that more than one mechanism contributes to c-Myc downregula-

tion. Importantly, the level of another critical oncoprotein, cyclin E,

a well established substrate for the SCFFbxw7/hCdc4 E3 ubiquitin

ligase (Strohmaier et al., 2001), was downregulated in a p53-

dependent manner (Figure 4H). Contrary to c-Myc, cyclin E was

completely rescued byFbxw7/hCdc4 deficiency (Figure 4G), impli-

cating Fbxw7/hCdc4 as the major factor contributing to cyclin E

decline. However, deletion of FBXW7/hCDC4 was not sufficient

to protect cells from growth inhibition by RITA, as shown by using

a short-term cell proliferation assay and a long-term colony forma-

tion assay (Figure 4I, left and right panels, respectively).
Cancer Cell 15, 441–453, May 5, 2009 ª2009 Elsevier Inc. 445
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Thus, we conclude that induction of Fbxw7/hCdc4 by p53 trig-

gers proteasome-dependent degradation of c-Myc and cyclin E.

Dose-Dependent Repression of Oncogenes by RITA
Our results suggest that pharmacologically reactivated p53 acts

as a potent repressor of a number of oncogenic and survival

factors, as well as functions as a powerful trigger of proapoptotic

proteins (Figure 5A) (Enge et al., 2009). Furthermore, we found

that the transactivation of proapoptotic genes requires a lower

dose of RITA than transrepression of prosurvival genes. As

evident from Figure 5A, the response to 0.1 and 1 mM RITA

was quite similar in terms of induction of p53 and its targets

PUMA and Noxa. In contrast, oncogenes were regulated differ-

ently: whereas 1 mM RITA was sufficient to trigger a sharp down-

regulation of c-Myc, Mcl-1, and survivin, upon treatment with

0.1 mM RITA the decline of these oncogenes was either absent

or less pronounced (Figure 5B).

qPCR confirmed that the transcriptional repression of MCL-1,

MYC, BIRC5, EIF4E, PIK3CA, and PIK3CB was fully unleashed

Figure 4. Reactivation of p53 by RITA

Induces Proteasomal Degradation of c-Myc

via Activation of GSK3b and Fbxw7/hCdc4

(A) The level of c-Myc expressed under a Tet-reg-

ulatable promoter in U2OS-Myc cells treated or

nontreated with RITA was detected by western

blot.

(B) Immunoblotting of c-Myc upon proteasomal

inhibition with MG132 combined with RITA treat-

ment.

(C) Half-life of c-Myc after RITA treatment, as as-

sessed by immunoblotting of c-Myc upon treat-

ment with cycloheximide for the indicated periods.

(D) Western blot of phosphorylated c-Myc 2 and

4 hr after treatment with 1 mM RITA. HCT116 cells

were pretreated with MG132 to prevent downre-

gulation of c-Myc.

(E) c-Myc and Mcl-1 levels upon RITA treatment

combined with inhibition of GSK3b with B1686

BIO, as detected by immunoblotting.

(F) mRNA levels of b and g isoforms of FBXW7/

hCDC4 in HCT116 cells were detected by qPCR

(mean ± SEM, n = 3).

(G) c-Myc and cyclin E levels in HCT116 CDC4�/�

cells after RITA treatment as assessed by western

blot.

(H) Cyclin E levels in wtp53 expressing U2OS and

MCF7 and in p53 null Saos-2 cells were detected

by western blot.

(I) Growth suppression by RITA was assessed by

a cell proliferation assay (left panel) (mean ± SEM,

n = 3) and a long-term colony formation assay in

HCT116 and HCT116 CDC4�/� cells (right panel).

at 1, but not at 0.1 mM, in both HCT116

and MCF7 cells, whereas p53 target

genes encoding p21 and Noxa were

readily induced at a low dose (Figures

5C and 5D).

Notably, in the absence of oncogene

inhibition at 0.1 mM RITA, tumor cells

died much less efficiently compared to

1 mM (Figure 7A), indicating that inhibition of oncogenes contrib-

utes to apoptosis induction by p53. To rule out the possibility that

downregulation of survival factors was a consequence of

apoptosis and/or caspase activation, we examined their level

upon blocking apoptosis by the pan-caspase inhibitor Z-VAD-

fmk. Caspase inhibition did not prevent the downregulation of

Mcl-1, survivin, and c-Myc by RITA (Figure 5E), supporting the

notion that their decline is due to p53-mediated transcriptional

repression.

To address the differences underlying the regulation of proa-

poptotic and prosurvival genes by p53, we examined the subcel-

lular distribution of p53 upon treatment with0.1 and1 mM RITA.We

repeatedly noted a striking disproportion in the subnuclear distri-

bution of p53 upon these two doses of RITA. Abundance of p53 in

the chromatin-bound fraction was greatly enhanced by 1, but not

by 0.1 mM, RITA (Figure 6A). Thus, a higher level of p53 on chro-

matin triggered by 1 mM RITA correlated with the induction of

transrepression by p53. As a reference transcriptional factor impli-

cated in both transcriptional activation and transcriptional
446 Cancer Cell 15, 441–453, May 5, 2009 ª2009 Elsevier Inc.
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repression (Adhikary and Eilers, 2005), we tested subcellular

distribution of c-Myc. c-Myc was also present in the chromatin

fraction in untreated control cells (Figure 6A), whereas its level

was reduced in treated cells, in line with results demonstrated

above.

Recent chromatin immunoprecipitation (ChIP) studies demon-

strated that p53 is already bound to most of its target genes in

cancer cells before the genotoxic stress (Kaeser and Iggo, 2002;

Shaked et al., 2008). However, in spite of being present at the

promoters, p53 is not fully active as a transcriptional factor in the

absence of stress, suggesting the involvement of a p53 inhibitor

that blocks p53 function directly on promoters. A possible candi-

date for this role is MDM2, which can associate with chromatin in

a p53-dependent manner (Minsky and Oren, 2004; White et al.,

2006). We therefore tested whether the presence of MDM2 on

chromatin is affected by RITA. We readily detected MDM2 in the

chromatin fraction in nontreated MCF7 and HCT116 cells

(Figure 6B). The amount of MDM2 in this fraction decreased

upon RITA treatment, mirroring the increase of chromatin-bound

p53 (Figure 6B). However, although both concentrations of RITA

reduced the amount of p53/MDM2 complexes and induced p53

accumulation in the soluble fraction to the same extent (Figures

5A and 5B; Figures S3A and S3B), a lower dose of RITA was less

efficient in releasing MDM2from chromatin-bound p53 (Figure6B).

Figure 5. Dose-Dependent Effect of RITA

on the Transcriptional Activation of Proa-

poptotic Genes and the Repression of

Oncogenes

(A) Levels of proapoptotic factors Puma and Noxa

upon 0.1 and 1 mM RITA in HCT116 and MCF7

cells were detected by immunoblotting.

(B) Immunoblot of p53, c-Myc, Mcl-1, and survivin

in HCT116 and MCF7 cells after treatment with 1

and 0.1 mM RITA.

(C and D) Upper panels: mRNA levels of MCL-1,

MYC, BIRC5, EIF4E, PIK3CA, and PIK3CB after

1 and 0.1 mM RITA as detected by qPCR. Lower

panels: mRNA levels of CDKN1A and PMAIP after

0.1 mM RITA. Experiments in (C) and (D) were per-

formed in HCT116 and MCF7 cells treated with

RITA for 12 and 8 hr, respectively (mean ± SEM,

n = 3).

(E) Levels of c-Myc, Mcl-1, and cleaved PARP

upon treatment with RITA combined with the cas-

pase inhibitor zVAD (80 mM).

Furthermore, we compared the relative

abundance of p53 and MDM2 on p53-acti-

vated versus p53-repressed promoters by

using ChIP. We found that in untreated

cells, the p53/MDM2 ratio on the p53-acti-

vated CDKN1A promoter was significantly

higher than on p53-repressed MCL-1

promoter (Figure 6C). Treatment with

0.1 mM RITA increased the p53/MDM2

ratio on CDKN1A, but not on the MCL-1

promoter (Figure 6D), whereas 1 mM RITA

increased the p53/MDM2 ratio on both

promoters (Figure 6D). Taken together,

our results are consistent with the idea that MDM2 is more easily

dislocated by RITA from p53-activated than from p53-repressed

promoters. It is therefore possible that transactivation of p53 might

be less tightly controlled by MDM2 than transrepression. If this is

the case, the prediction is that the basal levels of expression of

survival genes that p53 can repress should be similar in the

absence and presence of p53, whereas the expression of at least

some p53-transactivated genes should be higher in p53-positive

cells. Indeed, the analysis of microarray data of the gene expres-

sion profiles of untreated HCT116 and HCT116 TP53�/� cells re-

vealed a significant difference between the basal levels of

expression of these two groups of genes. A number of genes

known to be positively regulated by p53, including CDKN1A,

FAS, DDB2, and others had a higher level of expression in

p53-positive than in p53 null cells. On the contrary, the mRNA

levels of the p53-repressed genes IGF1R, MYC, EIF4E, BCL2,

MAP4, MCL1, and BIRC5 did not differ between the lines

(Figure 6E).

Taken together, our data suggest that p53-mediated transre-

pression is more tightly controlled than transactivation; MDM2

associated with chromatin might play an important part in this

process. The dose-dependent effect of RITA on the expression

of oncogenes appears to be due to a less efficient release of

MDM2 from the promoters of p53-repressed genes.
Cancer Cell 15, 441–453, May 5, 2009 ª2009 Elsevier Inc. 447
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Contribution of Oncogene Ablation to the Induction
of Apoptosis by p53
To address whether the inhibition of oncogenes is essential

for the apoptosis induction by p53, we used genetic and phar-

macological approaches. We selected three representative

oncogenes—prosurvival and proproliferation factor Akt, propro-

liferative c-Myc, and antiapoptotic Mcl-1—and ‘‘restored’’ their

depletion at 0.1 mM RITA by applying a chemical inhibitor or cor-

responding siRNA.

Downregulation of Mcl-1 by siRNA, although it exerted only

a weak proapoptotic effect per se, synergized with 0.1 mM

RITA in apoptosis induction (Figures 7B–7D; Figures S4A and

S4B). The effect of c-Myc ablation was also synergistic, albeit

less pronounced (Figures 7B–7D; Figures S4A and S4B).

Furthermore, we examined whether the downregulation of

survival genes plays a role in apoptosis induction by another

known p53 activator, nutlin3a (Vassilev et al., 2004). The effect

of nutlin3a on survival genes was not prominent in MCF7,

U2OS, and HCT116 lines (Figure 7E). Nutlin3a caused a decline

of c-Myc and survivin in MCF7 cells, but not in U2OS and

Figure 6. Dose-Dependent Differences in

the Subcellular Distribution of p53 Correlate

with Distinct Transcriptional Programs

Induced by p53

(A) Cytoplasmic fraction, soluble nuclear fraction

(extracted with 300 mM NaCl), and chromatin-

bound fraction (nuclear pellet after extraction)

were obtained from MCF7 cells treated with 0.1

and 1 mM RITA and analyzed by immunoblotting.

We used actin as a marker and loading control

for the cytoplasmic fraction, PARP for both the

soluble nuclear and chromatin-bound fractions,

and Histone H3 for the chromatin-bound fraction.

A cell-equivalent amount of each fraction was

used for the comparisons.

(B) Abundance of p53 and MDM2 on chromatin

upon treatment with 0.1 and 1 mM RITA was de-

tected as in (A).

(C) The ratio between p53 and MDM2 bound to

MCL-1 and CDKN1A promoters in untreated

HCT116 cells was detected by chromatin immu-

noprecipitation (ChIP).

(D) Changes in the p53/MDM2 ratio on MCL-1 and

CDKN1A promoters upon treatment with 0.1 and

1 mM RITA were detected by ChIP.

(E) Basal levels of mRNAs of p53-transactivated

and p53-repressed genes were estimated using

microarray analysis of HCT116 and HCT116

TP53�/� cells (mean ± SEM, n = 3).

HCT116 lines, whereas IGF1R and Mcl-

1 were not affected at all (Figure 7E).

These three lines are known to be only

partially susceptible to nutlin3a-induced

apoptosis (Enge et al., 2009; Tovar

et al., 2006). However, in nutlin3a-sensi-

tive SJSA cells, Mcl-1 is downregulated

(Wade et al., 2008). To evaluate whether

the depletion of Mcl-1 or c-Myc will affect

the response to nultin3a, we combined

nutlin3a with siRNA to c-Myc or Mcl-1.

Indeed, depletion of c-Myc or Mcl-1 synergized with nutlin3a in

cell killing (Figure 7E), confirming that downregulation of c-Myc

and Mcl-1 plays an important role in the apoptosis induced

upon pharmacological reactivation of p53.

Next, we tested whether inhibition of the PI(3)K-Akt pathway

contributes to p53-mediated cell death. Blocking the PI(3)K

pathway by the pharmacological inhibitor LY294002 induced

a low number of apoptotic cells, similarly to 0.1 mM RITA (Figures

7F and 7G; Figure S4C). Notably, a combination of both treat-

ments induced apoptosis much more efficiently, in a synergistic

manner, indicating that the lack of inhibition of the PI(3)K

pathway by 0.1 mM RITA impedes efficient apoptosis induction.

Taken together, our data imply that ablation of oncogenes and

survival factors plays an important role in the induction of

apoptosis by pharmacologically reactivated p53.

DISCUSSION

Given the pivotal role of apoptosis in successful anticancer

therapy, it is of crucial importance to understand the
448 Cancer Cell 15, 441–453, May 5, 2009 ª2009 Elsevier Inc.
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mechanisms behind tumor cell susceptibility and resistance to

cell death and, in particular, to p53-mediated apoptosis. Here,

we applied the p53-reactivating compound RITA (Issaeva

et al., 2004) to further decipher the consequences of restoration

of p53 function in tumor cells. We previously demonstrated that

transactivation of proapoptotic genes is required for cell death

induced by RITA-reactivated p53 (Enge et al., 2009). In the

present study, we show that upregulation of proapoptotic

targets is not sufficient for a full-scale induction of cell death

by RITA. We found that p53 triggers a dramatic and rapid down-

regulation of a number of critical oncogenes, thus overcoming

survival signaling. Functional studies demonstrated that this

facet of p53 activity is critical for a robust induction of apoptosis

by pharmacologically reactivated p53.

Importantly, our results indicate that induction of proapoptotic

genes and inhibition of antiapoptotic/survival genes represent

two branches of the p53 response, which are differentially regu-

lated. Evidence for this comes from the dose-dependent exper-

Figure 7. Inhibition of Oncogenes Plays a

Significant Role in Apoptosis Induction by

Pharmacologically Activated p53

(A) Detection of apoptotic cells by FACS of

annexin-stained HCT116 and MCF7 cells after

24 hr of treatment with 0.1 and 1 mM RITA and

by phase-contrast microscopy of MCF7 cells.

(B and C) Cell death induction was assessed by

trypan blue staining of cells treated with a low

dose of RITA upon knockdown of c-Myc and

Mcl-1 by siRNA in (B) HCT116 and (C) MCF7 cells

(mean ± SEM, n = 3).

(D) Phase-contrast microscopy of MCF7 cells

treated with 0.1 mM RITA upon c-Myc or Mcl-1

knockdown. Scale bars represent 100 mm.

(E) Upper panel: levels of IGF1R, c-Myc, Mcl-1,

survivin, and p53 in MCF7, U2OS, and HCT116

cells treated with 10 mM nutlin3a were assessed

by western blot. Lower panel: cell death induced

by nutlin3a in the presence or absence of c-Myc

or Mcl-1 depletion by siRNA was detected by try-

pan blue staining (mean ± SD, n = 3).

(F and G) Cell death of HCT116 cells treated with

the indicated combinations of RITA and the PI3-

kinase inhibitor LY294002 was assessed by (F) try-

pan blue staining (mean ± SD, n = 3) or (G) phase-

contrast microscopy.

The scale bars in (A), (G), and (D) represent

100 mm. The asterisk in (B), (C), (E), and (F) denotes

an expected additive effect.

iments showing induction of proapop-

totic factors in the absence of

transcriptional repression of survival

genes at a submicromolar concentration

of RITA. We show that induction of the

transcriptional repression program corre-

lated with a higher p53/MDM2 ratio on

chromatin as a result of increased p53

and reduced MDM2 abundance on chro-

matin. Previous studies demonstrated

that p53-dependent association of

MDM2 on chromatin blocks transcrip-

tional activation by p53 (Minsky and Oren, 2004; White et al.,

2006). It has only begun to be examined how p53 and MDM2

interrelate on chromatin. Interesting mechanism of blocking

p53 transcriptional activation on the promoters has been discov-

ered (Minsky and Oren, 2004), which is mediated by MDM2-

dependent ubiquitination of histones; there are likely to be other

mechanisms. Our results suggest that p53-mediated transre-

pression is controlled more tightly than transactivation and

involves MDM2 associated with the promoters of p53-repressed

genes. The mechanism(s) by which MDM2 blocks transrepres-

sion by p53 awaits further investigation. It is possible that asso-

ciation of MDM2 with promoters of p53-repressed genes might

favor recruitment of histone acetylases, such as p300, instead

of histone deacetylases. In spite of intensive research, the mech-

anisms behind p53-mediated transcriptional repression remain

largely unknown (Laptenko and Prives, 2006; Riley et al.,

2008). Dose-dependent induction of p53-mediated transactiva-

tion versus transrepression by RITA might provide a new tool
Cancer Cell 15, 441–453, May 5, 2009 ª2009 Elsevier Inc. 449
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by which to address the molecular mechanisms of transrepres-

sion.

A number of p53-repressed genes that play a role in cell

survival have been identified in previous studies (Laptenko and

Prives, 2006; Oren, 2003). However, it is still unclear whether re-

activation of p53 can overcome survival signaling in cancer cells.

Our data suggest that only upon simultaneous engagement of

both branches, i.e., activation of proapoptotic genes and inhibi-

tion of survival genes, can an efficient apoptotic response can be

elicited. This is consistent with recently published in vivo data,

suggesting that other p53 functions, such as transcriptional

repression, may be the key to an efficient apoptotic response.

It has been shown that the VP16-p53 chimeric protein displayed

profound apoptotic defects in a variety of settings, despite being

fully competent in the transcriptional upregulation of proapop-

totic genes (Johnson et al., 2008).

Based on our results, we propose a model in which two

distinct p53-dependent transcriptional programs are required

to trigger a full-scale apoptotic response (Figure 8). Our data

suggest that induction of just one branch, i.e., enhanced expres-

Figure 8. Model: Two Branches of the p53 Transcriptional Program

Are Required for Efficient Apoptosis Induction

Upper panel: a low dose of RITA can displace MDM2 from p53 proapoptotic

targets, but is insufficient to displace MDM2 from p53-repressed survival

genes. Transcriptional activation of the proapoptotic p53 targets PUMA,

Noxa, Fas, and Bax is counteracted by prosurvival signaling, blocking

apoptosis at the submicromolar dose of RITA. Lower panel: 1 mM RITA effi-

ciently dislocates MDM2 both from p53-activated target genes and from

p53-repressed targets. This triggers the transcriptional repression of prosur-

vival and proproliferative oncogenes by p53. Simultaneous activation of proa-

poptotic genes and repression of oncogenes results in robust apoptosis.
450 Cancer Cell 15, 441–453, May 5, 2009 ª2009 Elsevier Inc.
sion of proapoptotic proteins, might be insufficient to shift the

survival/death balance and to produce a robust apoptotic

outcome. Concurrent downregulation of prosurvival factors

might work in concert with the upregulation of proapoptotic

factors to cross a threshold for firing the apoptotic program,

because only when proapoptotic factors outweigh the prosur-

vival buffer can the program run to completion. In addition to

the degradation of p53, MDM2 controls both branches of the

p53-mediated response directly on promoters of p53 target

genes. The threshold for displacing MDM2 from p53-repressed

genes is higher than that for p53-activated genes. This creates

an additional level of regulation of the p53 choice between the

life and death of a cell.

Our results show that the initial transcriptional repression of

individual genes by p53 unleashes a cascade of events leading

to inhibition of oncogenic factors at several different levels,

including transcriptional, translational, and posttranslational

changes. Reactivated p53 represses transcription of the anti-

apoptotic target genes BCL-2, MCL-1, and BIRC5 (survivin)

and a set of target genes encoding upstream and downstream

components of the Akt survival pathway, IGF-1R, PIK3CA, and

EIF4E. Consequently, the block of PI(3)K signaling and inhibition

of Akt phosphorylation/activity induce pleiotropic effects and

result in profound changes in the survival program. As a result

of mTOR and eIF4E inhibition, translation of c-Myc and IGF-1R

mRNAs was also decreased. Moreover, active GSK3b promoted

the proteasomal degradation of its downstream targets c-Myc,

cyclin E, and b-catenin, which was facilitated by p53-mediated

induction of the E3 ubiquitin ligase Fbxw7/hCdc.

We believe that the pleiotropic effect of p53 on c-Myc, i.e.,

repression of c-Myc transcription, block of its translation, and

induction of proteasomal degradation, creates an external

robustness of the p53-mediated ablation of c-Myc. This ensures

that downregulation of c-Myc by p53 is achieved irrespective of

the particular combination of mutations in a given cell. Dysfunc-

tion of one mechanism of c-Myc downregulation by p53, such

as, for example, loss of FBXW7/hCDC4, constitutive activation

of Akt, MYC gene translocation, or mutation, will be compen-

sated for by other branches in the hierarchy. Since tumors are

often dependent on deregulated c-Myc expression (Felsher

and Bishop, 1999), its elimination might be an essential compo-

nent for anticancer therapies targeting p53.

We have analyzed the effect of p53 on a number of oncogenic

factors, but we possibly obtained only a glimpse of the whole

picture of p53-induced effects. Systems biology studies aimed

at characterizing the whole proteome of cancer cells upon p53

activation will help to better characterize the p53 network in

the future.

Rescue of p53 tumor suppressor function by blocking the

inhibitory role of MDM2 is a promising strategy by which to

combat cancer that is pursued both in academia and industry

(Lain et al., 2008; Yang et al., 2005). However, the question

remains as to whether p53 reactivation by small molecules will

be harmful for normal cells. A number of studies pointed toward

the ability of p53 to kill cancer cells without detrimental effects in

normal cells in vitro, although the mechanism of this phenom-

enon has not been defined (Selivanova, 2004). We have demon-

strated that p53 induction by RITA in the absence of oncogene

expression in nontransformed cells is transient and does not
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induce growth suppression (Issaeva et al., 2004). Our present

study extends these observations and indicates that the ability

of p53 to target oncogene addiction might provide selective

killing of cancer cells by molecules reactivating p53. We specu-

late that tumor cells might be particularly sensitive to p53 reacti-

vation due to p53’s ability to target oncogene addiction and

disable survival programs that tumor cells are critically depen-

dent on. Consequently, normal cells that are not dependent on

oncogenes for their survival will remain largely unaffected.

Additional studies including animal models will be required to

address this issue.

Side effects and development of drug resistance remain

a formidable barrier for the successful treatment of cancer.

One way to solve these problems is to apply drug combinations,

because multitargeted therapies will decrease the chance of

mutations conferring resistance. At the same time, drug combi-

nations that produce synergistic effects will allow a lower dose to

be used and thus will decrease nonspecific toxicity of drugs.

Combining targeted drugs in a more effective manner is a chal-

lenge; therefore, it becomes increasingly important to decipher

the interactions between signaling pathways in cancer cells.

Our data might help to identify pathways and/or factors whose

targeting can provide a synergy with p53-reactivating

compounds. Importantly, we show that combination of a low

dose of p53-reactivating compound with inhibition of the

PI(3)K/Akt pathway, c-Myc, or Mcl-1 produced a synergistic

effect. Further work aimed at detailed characterization of molec-

ular events upon p53 activation might help to guide rational

development of more efficient and less toxic drug combinations.

EXPERIMENTAL PROCEDURES

Cell Lines, Plasmids, shRNA, and siRNA

Colon carcinoma HCT116, HCT116 TP53�/�, and HCT116 CDC4�/� cells were

gifts from B.Vogelstein and K.W. Kinzler. Osteosarcoma U2OS cells stably

transfected with a Tet-regulatable c-Myc construct were obtained from J. Bar-

tek. Translational reporter pcDNA/REN/HCV/FF was obtained from J. Pelletier.

The eIF4E expression vector pcDNA3-3HA-meIF4Ewt was a gift from N. So-

nenberg. Lentiviral p53 shRNA constructs were obtained from A. Jochemsen

and from P. Chumakov. MYC siRNA was kindly provided by L.-G. Larsson,

MCL-1 siRNA was purchased from Santa Cruz, and GFP siRNA was purchased

from Oligoengine. Plasmid DNA and siRNA transfections were performed with

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

Cell viability assays were performed as we described (Enge et al., 2009).

Reagents

RITA was obtained from the National Cancer Institute (NCI) and was used at

a concentration of 1 mM, unless otherwise stated. The proteasomal inhibitor

MG132 was used at a concentration of 20 mM, the inhibitor of GSK3b kinase

B1686 BIO was used at 5 mM, and the PI3-kinase inhibitor LY294002 was

used at 20 mM (all from Sigma). Z-VAD-fmk (R&D Systems) was used at

20 mM concentration, and the p53 inhibitor PFTa, a gift from A. Gudkov, was

used at 10 mM concentration.

Genome-Wide Analysis of Gene Expression Profiles

Analysis of gene expression profiles in HCT116 cells was performed as

described (Enge et al., 2009). Microarray analysis in MCF7 cells treated with

1 mM RITA for 2–24 hr was performed by using hgu133a2 chips (Affymetrix).

Raw data (.cel files) were analyzed by using the ExPlain software package

(Wingender et al., 2007). Normalization and the quality control of the data

were done with MAS 5.0 (‘‘Quantiles,’’ normalization method; ‘‘PM only,’’ PM

correction method). The data from arrays representing 2-4, 6-8-10, and

12-14-16 hr (indicated in Figure 1B as 2, 8, and 16 hr, respectively) were pooled
together, and the average fold change was calculated by using the t test

method implemented in R package.

In Vitro Assays

For quantitative real-time reverse transcriptase-PCR analysis, mRNA from

cells was isolated by using the RNeasy Kit (Quiagen). mRNA quantification

was performed by using a fluorescence-based real-time RT-PCR technology

(Power SYBR Green PCR Master Mix [ABI]). Primer sequences are described

in Table S1. The preparation of cell extracts and western blot were performed

according to standard procedures. Antibodies for immunoblotting were as

follows: Phospho-Akt (anti-Ser473, 587F11), Akt, mTOR, Phospho-GSK3ab

(27C10), and Phospho-c-Myc (Ser62/Thr58) were from Cell Signaling; p53

(DO1), IGF-IR (C-20), Mcl-1 (S-19), c-Myc (N-262), PARP (H-250), GADD45a

(C4), b-catenin, Bcl-2 (C-2), cyclin E (HE-12), survivin (FL-142), Fas (N-18),

and MDM2(SMP14) were from Santa Cruz; b-actin (Sigma) and Phospho-

mTOR (S2448) were from R&D Systems; p21 was from Beckton Dickinson;

Noxa and PUMA were from Calbiochem; and Histone H3 was from Abcam.

Secondary HRP-conjugated antibodies and Super Signal West Dura Extended

Duration Substrate were from Pierce. To detect human c-Myc in xenografts,

we used c-Myc (A-14) antibody (Santa-Cruz). Akt kinase activity was assessed

by using the Nonradioactive Akt Kinase Assay Kit (Cell Signaling) according to

the manufacturer’s instructions. To measure CAP-dependent translation, cells

were transiently transfected with the luciferase translational reporter construct

pcDNA/REN/HCV/FF, and 24–48 hr after transfection the signal from Firefly

luciferase was detected by using the Dual-Glo Luciferase Assay System

(Promega). Small-scale biochemical fractionation to purify cytoplasmic,

nuclear, and chromatin fractions was performed as described (Wysocka

et al., 2001). Chromatin immunoprecipitation (ChIP) was performed as

described (Enge et al., 2009), and the ChIP primers are presented in Table S1.

Animal Experiments

The Northern Stockholm Animal Ethical Committee approved all animal

studies, and animal care was in accordance with Karolinska Institutet guide-

lines. Male SCID mice, 4–6 weeks old, were implanted subcutaneously with

1 3 106 HCT116 or HCT116 TP53�/� cells in 90% Matrigel (Becton Dickinson).

Palpable tumors were established 7 days after cell injection; at this point, we

injected 1 mg/kg RITA in tumors in a total volume of 100 ml phosphate-buffered

saline.

Calculation of Expected Additive Effect

The expected additive effect was calculated using the following formula: D =

A + (B � A) + (C � A), where D is the expected additive effect, A is the

percentage of apoptosis in untreated cells, and B and C are the percentages

of apoptosis in cells upon first or second treatments, respectively.
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