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The analysis of ethical, legal, and social implications (ELSI) associated with genetics (“genethics”) has focused on
traditional concerns in bioethics, such as privacy and informed consent. The analysis of ELSI associated with
neuroscience (“neuroethics”) has focused on concerns related to personhood, such as free will or cognitive

enhancement. With neurogenomics coming of age, this is an appropriate time to attend to the set of novel con-
cerns that arises when we consider the confluence of these two lines of research. I call this area of ethics inquiry
“neurogenethics”, map out the problem space, and highlight future areas of inquiry related to genome editing
and gene therapy, optogenetics and memory manipulation, and genomic identity and online communities.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

I previously introduced the term “neurogenethics” to characterize an
emerging field from its parent disciplines, genethics and neuroethics
(Canli, 2015). These parent disciplines share a common concern for
traditional bioethics themes such as informed consent, subject safety,
data security, and incidental findings. Yet, each also adopted unique
concerns, such as the ethical, legal, and social implications (ELSI) of
changes to the germline in genethics, and questions regarding person-
hood, consciousness or free will in neuroethics (lIlles et al., 2007;
Roskies, 2007). I suggested that a unique set of new ELSI themes
emerges when the study of genetics is applied to the study of the
brain, because of its privileged status among all organs as the generator
of behavior and our sense of Self and Identity. With neurogenomics
coming of age, these themes continue to gain in prominence.

E-mail address: turhan.canli@stonybrook.edu.

http://dx.doi.org/10.1016/j.atg.2015.05.002

2. Themes in neurogenethics

One way to systematically map out what kinds of themes may be
unique to neurogenethics is to map out a “problem space”. I have chosen
a three-dimensional space organized along scale, brain processes, and
ethical-legal-social-implications (Fig. 1, reprinted from Canli, 2015).

Along the dimension of scale, themes can emerge from the level of
single molecules to brain circuits, the behaviors they give rise to, and
the social structures that emerge from the interactions of large
sets of individuals. Along the dimension of brain processes, themes
may be related to specific functions, from the narrow and granular
(e.g., specific cognitive processes such as memory) to the broad and
holistic (e.g., processes related to consciousness and mind). Along the
dimension of ELSI, one can again conceptualize a continuum ranging
from the narrow and granular (e.g., subject safety) to the broad and
holistic (e.g., questions related to regulatory controls of the state
versus individual empowerment). I have discussed examples of
neurogenethics themes within different quadrants of this problem
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The Problem Space of Neurogenethics

Social Structures

Behavior

Brain Circuits

Scale

Cells

Genes/Epigenetics/-omics

Molecules

Brain Processes in Health and Pathology

Cognition
Emotion
Personality

Socialand cultural processes
Development and aging
Consciousness & Mind

Fig. 1. The problem space of neurogenethics. Illustrated are three dimensions of the
problem space of neurogenetics: scale, brain processes, and ELSI.

space elsewhere (Canli, 2015). In the following three sections, I will
present new or updated discussions on three specific case studies:
genome editing, optogenetics, and genomic identity.

3. Case study 1: genome editing and gene therapy

At the molecular level of scale, new tools in genome editing will like-
ly come into the field of view of neurogenethics, as these tools will be
applied to neurodegenerative diseases and behavior. Efforts to accom-
plish site-specific manipulation of the genome have been catalyzed by
the 2012 development of a programmable, RNA-guided DNA endonu-
clease, the CRISPR-Cas9 system (Jinek et al., 2012). Bacteria such as
Escherichia coli use clustered regularly interspaced palindromic repeats
(CRISPRs) (Ishino et al., 1987) in a complex with CRISPR-associated
(Cas) proteins to fight viral infection (Brouns et al., 2008). (For a brief
but detailed review of the history of CRISPR-Cas, see Doudna and
Charpentier (2014).) In 2012, Jinek and colleagues then engineered
CRISPR into a complex with Cas9 (CRISPR-associated gene
9) (Barrangou et al.,, 2007; Deltcheva et al., 2011) in a way that a single
guide RNA (sgRNA) could direct Cas9 to any DNA sequence of choice
(Jinek et al.,, 2012). The simplicity of the programmable RNA accelerated
applications to the point that in less than two years, 1300 publications
had used this approach (Doudna and Charpentier, 2014; Maggio and
Goncalves, 2015; Xiao-Jie et al., 2015; Pelletier et al., 2015; Hsu et al.,
2014).

A recent innovation was the development of “multiplexed” CRISPR-
Cas9 for human applications (Konermann et al., 2015). These investiga-
tors compiled a library of sgRNAs to target all 70,290 human protein-
coding mRNA sequences in the RefSeq database and engineered a
CRISPR-Cas9 complex that could activate ten genes simultaneously.
With this set of tools, any human protein-coding gene (and sets of up
to 10 genes) can be targeted for modification.

Another significant innovation was the application of the CRISPR
toolkit to the epigenome (Hilton et al., 2015). These investigators
fused a nuclease-null dCas9 protein to the catalytic core of the
human acetyltransferase p300, to catalyze acetylation of histone H3
lysine 27 at directed target sites. This tool allows for the targeted tran-
scriptional activation from promoters and enhancers, and regulation
of gene expression through epigenomic acetylation. Manipulations of
additional epigenomic regulatory mechanisms using the CRISPR-Cas
platform are likely to follow.

One application of genome editing by CRISPR-Cas9 will be in gene
therapy (Lombardo and Naldini, 2014; Meissner et al., 2014; Wang
et al,, 2015; Wang and Gao, 2014; Kennedy and Cullen, 2015). Indeed,
preclinical studies have already demonstrated its potential utility, such
as in HIV-1 provirus (Hu et al., 2014; Ebina et al., 2013) and X-linked
severe combined immunodeficiency (Genovese et al., 2014). Of
relevance in the context of neurogenomics are potential applications
to basic brain functions or neurodegenerative diseases. For example,
one study (Swiech et al., 2015) used a sgRNA designed to target the
MeCP2 (methyl CpG binding protein 2) gene, which is implicated in
Rett syndrome (Chahrour and Zoghbi, 2007). The sgRNA and a Cas9
were packaged into two separate adeno-associated viral (AAV) vectors
and injected into the dentate gyrus (DG) of the hippocampus of mice.
Following behavioral training, this intervention produced impairments
in contextual fear memory that was specific to the learned context
and unimpaired in other cognitive or affective tests.

One significant limitation of the CRISPR-Cas9 system in gene thera-
py has been the challenge of its in vivo delivery, which relies on adeno-
associated virus (AAV) vectors. Recombinant AAV (rAAV) vectors have a
good safety record, even when injected into the brain (Klein et al., 2002;
Tenenbaum et al., 2003; McCown, 2011; Bowers et al., 2011; High and
Aubourg, 2011; Weinberg et al.,, 2013). However, these AAVs can usual-
ly only package small genes, approximately 4.5 kb; yet, the Cas9 derived
from Streptococcus pyogenes (SpCas9) itself is already 4.2 kb in size. This
makes it technically challenging to package both the SpCas9 and the
sgRNA into a single AAV vector and leave room for further modifica-
tions. This limitation was recently overcome by Zhang's laboratory,
which analyzed over 600 Cas9 orthologues to find a smaller Cas9
enzyme for in vivo delivery (Ran et al., 2015). They discovered that
Cas9 derived from Staphylococcus aureus (SaCas9), which is more than
1 kb shorter than SpCas9, effectively targeted the intended cholesterol
regulatory gene Pcsk9 in the mouse liver, as measured by reduced
serum Pcsk9 and total cholesterol levels. Toxicity and off-target analyses
also suggested the utility of this novel Cas9 targeting system.

Human applications of gene therapy directed at the brain are
currently limited, because they are invasive (injection of the AAV vector
directly into the brain). Clinical studies are therefore limited to patients
in very advanced stages of neurodegenerative diseases with no further
options, as reviewed by Chtarto et al. (2013). The ethical implications
of such trials were discussed by Lowenstein (2008), who noted that
ethical/safety considerations stand in opposition to therapeutic consid-
erations: the former limit clinical trial participation to patients at very
advanced stages, while excluding those at early stages who could
potentially most benefit from therapeutic intervention.

I add another potential concern: off-target behavioral effects. The
literature of CRISPR-Cas applications is replete with assessments of its
off-target effects, reassuring us that the technology reaches its intended
targets with minimal modifications to unintended genomic sites. To
date, there are very few behavioral studies to determine whether mod-
ifications of single, let alone multiplexed, genes produce only changes in
targeted behaviors. This could become a significant concern, as this
technology will be used to correct genetic deficits related to neurode-
generative diseases or other behavioral deficits. To address this concern,
there should be extensive future behavioral studies to examine not only
modifications to targeted behaviors but also “off-target” behaviors. It
may be impractical to accomplish this in any single study, although
individual studies could still be designed to examine off-target
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behaviors that share common circuitry. For example, a CRISPR-Cas
study designed to target the hippocampus and memory functions
could also examine behavior related to spatial navigation, which is
also subserved by this region. Null results of studies designed to test
off-target behavioral effects should be as publishable as the original pos-
itive results reporting on “on-target” effects.

4. Case study 2: optogenetics and memory manipulation

One neurogenethics theme straddling the molecular and cellular/
circuit level of scale is the manipulation of memory using optogenetics.
The basic idea behind the optogenetics approach is to insert light-
sensitive molecules called opsins into genetically defined cells of the
central nervous system (Boyden et al., 2005). By using different kinds
of opsins and wavelengths, and different viral delivery vectors, investi-
gators can select specific types of cells to be excited or inhibited with
millisecond resolution. Optogenetics studies have begun to demon-
strate how memories can be activated, implanted, or inhibited.

One application of this approach demonstrated activation of a previ-
ous memory (Liu et al., 2012). Mice were exposed to a mild electric
footshock while placed in one environment (context A) and neurons
activated during this experience were labeled with an excitatory opsin
called channelrhodopsin-2 (ChR2). When these mice were placed in a
novel environment (which elicits exploratory behavior under normal
conditions) and the neurons labeled in context A re-activated, these
animals exhibited freezing behavior, an index of fear. Thus, reactivation
of those neurons that had encoded a fearful memory (footshock expo-
sure in context A) was sufficient to reinstate the memory trace and its
accompanying behavior.

A follow-up study by this group demonstrated implantation of a
false memory (Ramirez et al., 2013). In a first step, mice were placed
into a ‘safe’ environment (context A, no footshock), while neurons
encoding the experience were labeled with ChR2. The animals were
then placed into a novel environment (context B), in which they did
receive footshock at the same time that neurons encoding context A
were re-activated. When the animals were placed back into context A,
they exhibited fearful behavior despite the fact that they had never
experienced foot shock in that environment. Thus, reactivation of the
memory of context A while the animals were exposed to context B
had been associated with footshock exposure in context B, generating
a false memory.

Just as activation of critical neurons can activate a memory, inhibi-
tion of neurons can impair its formation. For example, one group inves-
tigated the role of the medial prefrontal cortex (mPFC) in episodic
memory (Bero et al., 2014). They transfected excitatory cells in the
mPFC with an inhibitory opsin (halorhodopsin eNpHR3.0) to allow for
inhibition of this region during contextual fear conditioning, which
impaired long-term memory, as indexed by reduced freezing behavior
in the same context 28 days later.

Although optogenetics in its current form is invasive - requiring
injection of viral vectors into the brain and/or transgenic manipulations
- human applications are widely anticipated for a range of diseases
including neuropsychiatric conditions (Tourino et al., 2013; Huang
etal,, 2013). A potentially significant step towards non-invasive applica-
tions was accomplished by Tsien's group (Lin et al., 2013) who
engineered a novel channelrhodopsin (ChR) called red-activatable
channelrhodopsin (ReaChR) that is optimally excited by wavelengths
that can penetrate the intact skull. In awake mice, a red light shone
through the intact skull could activate ReaChR expressing cells in the
vibrissa motor cortex to drive vibrissa movements.

In addition to “off-target effects” (discussed in the previous section),
another ethical consideration concerns the nature of memory manipu-
lations. In particular, the removal of painful memories has been subject
to a vigorous juxtaposition of viewpoints by the President's Council on
Bioethics (2010) and Kolber (2010). The President's Council on Bioeth-
ics articulated several concerns about memory blunting or removal.

Among them was a concern that such a procedure would compromise
“our own truthful identities” (p. 91). Kolber, in response, questioned
the premise of truthful identity, noting that memories are not verbatim
transcripts of experienced events but rather the product of synthesis
and reconstruction. Another concern voiced by the Council was
that memory dampening would break the link to moral responsibility,
such that an amnesic perpetrator could not be held accountable,
and hence there could be neither justice nor opportunity for forgive-
ness. Kolber responded that individuals are indeed held responsible
for their actions if they fail to remember. In his arguments, Kolber
stressed personal choice, by which one's deliberate decision to either
pursue memory dampening or leave it intact would increase one's
responsibility.

A striking aspect of ethics debates on memory modifications is that
they tend to be void of data, instead reflecting stakeholders' belief
systems. Yet, the choices that people would make about modifications
of their memories are empirically accessible, and should be explored
in future neurogenethics studies.

5. Case study 3: genomic identity and online communities

An emerging neurogenethics theme at the level of social structures is
genomic identity, catalyzed by the availability of direct-to-consumer
(DTC) commercial genomics services. Small studies of early adopters
showed that they were motivated by an interest in health-related
information and their individual risk factors (McGowan et al., 2010) or
genealogy (Su et al,, 2011).

Surveys of medical and genetics experts questioned consumers'
ability to interpret genomic information and expected them to overre-
act to perceived diagnostic results (Hunter et al., 2008; Cho, 2009;
McGuire et al., 2009). The data on actual consumer behavior show
that customers are more sophisticated, as they take an active role in
processing their genomic information, acting on it deliberately, with
the input of additional information or health care consultation. A survey
of 1048 DTC genomics customers found that consumers did not solely
rely on commercial test results, but sought additional information
(48%) and discussed their results with a healthcare professional
(28%); in 9% of cases, these consultations led to follow-up lab testing.

A recent survey of 998 consumers examined changes in consumers'
genetics knowledge and self-efficacy following personal genomic test-
ing (PGT) (Carere et al., 2015). Participants completed survey questions
designed to measure genetics knowledge and genetics self-efficacy at
baseline and 6 months after receiving genomics results. Whereas genet-
ics knowledge scores were near the ceiling and unchanged across
both time points (8.15/9 and 8.25/9, respectively), participants' mean
self-efficacy score dropped significantly from 29.1/35 at baseline to
27.7/35 at 6 months (P < 0.0001). On the other hand, the reduction
in self-efficacy correlated positively with health-care provider con-
sultation (P = 0.0042), and perceived control over one's health
(P < 0.0001). The authors concluded that “[IJowered genetics self-
efficacy following PGT may reflect an appropriate reevaluation by
consumers in response to receiving complex genetic information”.
However, in the absence of baseline data on consumers' intent to solicit
health-care provider consultation, this conclusion is speculative.

Does consumers' consultation of health care providers automatically
translate to better-informed medical decision-making? A survey of 130
genetic counselors and 38 clinical geneticists in Australia and New
Zealand found that only 7% felt confident in accurately interpreting
and explaining the results of DTC genomics results (Brett et al., 2012).
A systematic review of the literature found “low level of awareness
and experience of direct-to-consumer testing in health professionals”
(Goldsmith et al., 2013). A survey of 382 primary care physicians and
internal medicine providers found that 85% felt unprepared to answer
patient questions (Powell et al., 2012). McGowan and colleagues
conducted qualitative in-depth interviews with 18 clinicians providing
genomic risk assessment services in partnership with the DTC
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companies DNA Direct and Navigenics (McGowan et al., 2014). These
interviews revealed that clinicians' knowledge was based on informa-
tion provided by these commercial entities “without the ability to
critically evaluate the knowledge or assess risks”.

What about the relationship of DTC-genomics regulation versus con-
sumer access to their own genomic data? On the one hand, consumers
want access to their genomic data without governmental oversight
(66%), although they do want either governmental (73%) or nongovern-
mental (84%) monitoring of the scientific claims made by DTC genomic
service companies (Bollinger et al., 2013).

On the other hand, the regulatory appetite of governmental agencies
moved front-and-center in the case of 23andMe and the Food and Drug
Administration (FDA), which in November 2013 stopped the company
from offering consumers health-related genetic tests. The FDA claimed
that the company's Saliva Collection Kit and Personal Genome Service
(PGS) constituted a “device within the meaning of section 201(h) of
the FD&C Act, 21 U.S.C. 321(h), because it is intended for use in the di-
agnosis of disease or other conditions or in the cure, mitigation, treat-
ment, or prevention of disease, or is intended to affect the structure or
function of the body” (FDA, 2013). These claims were examined by
Green and Farahany (2014) who agreed with the FDA that there was a
need for transparency in the accuracy of reported data, but also were
critical of over-regulation. In the absence of any evidence that con-
sumers respond to genomic health information inappropriately that
would cause them physical harm, they found that preventing con-
sumers access to their genomic information constitutes a social harm,
in opposition to a “historical trend of patient empowerment that
brought informed-consent laws, access to medical records and now di-
rect access to electronic personal health data” (p. 287).

So far, the discussion of DTC genomics has not touched on any
aspects relevant to neuroscience. The missing element is the potential
that genomic information can have in shaping our sense of Self, as it
pertains to behavioral traits, mental illness, or neuropathology. As
neurogenomics is coming of age, deeper insights about the relation
between genome, brain, and behavior will emerge. I think that the
emergence of DTC genomics services may disrupt the traditional
model of research that will generate these insights. One of the most
exciting and disruptive aspects of DTC genomics is the changing role
of the research subject, as illustrated by the approach taken by
23andMe.

In 2009, 23andMe began promoting a “do-it-yourself revolu-
tion”, in which the company invited its customers to contribute
their genomics data to large-scale datasets. By 2014, 23andMe
claimed 500,000 research participants (23andMe, 2014). Data
generated from this dataset led to peer-reviewed publications on
Parkinson's disease (Do et al., 2011), a replication study of 22
physical traits as well as novel trait associations (Eriksson et al.,
2010), and a replication study of another 180 known genetic associ-
ations (Tung et al., 2011).

Perhaps more importantly, 23andMe consumers have online tools to
share their genomic results with others, and have begun to form online
social networks organized around genomic identities. The social and
ethical implications of such networks were discussed by Lee and
Crawley (2009a,b). One concern they raised was that consumers may
be unaware that even pooled genomic datasets can be breached to iden-
tify individuals (Homer et al., 2008). On the other hand, the existence of
such networks could be used to study how information flows across
them, with ramifications for social and ethical considerations such as in-
formed consent, which is currently designed for individual consumers/
research participants, but may need to be amended when other parties
are affected by sharing genomic information.

I identified three areas of future neurogenethics examination (Canli,
2015). The first is how the change in research participant agency, from
passive subject to active consumer, may affect research priorities,
design, and interpretation. The second is how the emergence of online
social networks based on genomic identity may alter offline behavior,

such as social support for Alzheimer's patients and their caregivers.
The third area of future neurogenethics examination is global mental
health. Given that online social networks have no national boundaries,
how will information exchange among individuals who identify
themselves by genomic identity change cross-cultural views on mental
health, treatment, and stigma? The answers to these and related ques-
tions may impact our very sense of Self, as individuals and as a commu-
nity of Selves.

6. Concluding thoughts

As neurogenomics comes of age, new ethical, legal, and social impli-
cations emerge. The pace of technological innovation is breathtaking, as
illustrated by the recency of most references in this article. And whereas
the applications of these new technologies are, for the most part, eagerly
anticipated — the “known unknowns”, their larger implications outside
the laboratory or clinic are harder to gauge. Are these the “unknown
unknowns”? Perhaps not quite. But even though neurogenethics
now moves forward guided by the roadmap of neurogenomics, we
will know that the field has come of age itself when it can begin to ask
questions that will guide future neurogenomics research.
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