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Abstract

Examples are constructed to illustrate: (i) The LS category of a 1-connected, finite type CW-complex
X which is the homotopy colimit of a sequence X, > X, —»>X;— --- of 1-connected, finite CW -complexes may
exceed the LS category of each X;; and (i) LS category is not an invariant of the localization genus of
a 1-connected, finite type CW-complex. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

In this note, we settle in the negative various questions which have been raised about cat(X), the
Lusternik-Schnirelmann category of a (pointed) CW -complex X. [ We follow the convention which
yields cat(point) = 0. Thus, cat(X) < 1 is equivalent to X admitting the structure of a co-H-space. ]

In [4], Ganea discusses the problem of finding an upper bound for cat(X) when X is a homotopy
colimit of the form

X = hocolim (X; L5 X, {5 X, ),
assuming that the set of integers {cat(X;)}, i > 1, is bounded. His example

K(Q, 1) = hocolim($* L §1 L5 §1 .., (1.1)
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where f; is a map of degree i, shows that cat(X) may exceed sup; - ;{cat(X;)}. Note the non-simple
connectivity of the spaces in (1.1); indeed, the invariant which proves cat(K(Q, 1)) > 1 is precisely
the fundamental group 7, (K(Q, 1)), which is not a free group. The same argument shows that for
any proper subset P of primes, the P-localization K(Z p), 1) of S* satisfies cat(K (Zp), 1)) > 1. By way
of contrast, Toomer [13; Theorem 4] proves that if X is 1-connected, then

Cat(X(P)) < Cat(X)

for all P. Thus, one might ask

Question 1. If X is a homotopy colimit of 1-connected CW -complexes X;, is cat(X) < sup;s
{cat(X;)}?

Our first example answers this question negatively.

Example 1. There exists a 1-connected, finite type (over Z) CW-complex X which is a homotopy
colimit of 1-connected, finite CW-complexes X; such that

cat(X;)=1,i=>1 and cat(X)=2.

Another question, raised by Toomer in [13] following his Theorem 4 (and attributed to Peter
Hilton), concerns relating cat(X) with cat(X,), p a prime. Here, X is assumed to be a nilpotent
space.

Question 2. When is cat(X) = sup,{cat(X,)}?

Cornea shows in [3] that for X 1-connected, of finite type (over Z),

cat(X) < 2 sup,{cat(X,)} + 1. (1.2)
He furthermore expresses the belief that the stronger inequality

cat(X) < 2-sup,{cat(X,)} (1.3)

holds, and proves (1.3) under the additional assumption that X be a finite CW -complex.
A question somewhat related to Question 2 was posed by McGibbon in his survey paper [ 8]; see
Problem 2.2.

Question 3. s cat() a generic property, that is if X, Y are (nilpotent) of finite type and X ,) ~ Y|, for
all primes p, is cat(X) = cat(Y)?

Our second example, which is actually a refinement of Example 1, shows that: (i) equality in
Question 2 does not necessarily hold, even if X is 1-connected; (ii) the conjectured inequality (1.3),
if true, is sharp; and (iii) Question 3 has a negative answer.
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Example 2. There exist 1-connected, finite type (over Z) CW-complexes X, Y in the same genus
such that

cat(X,) = 1 = cat(Y|,), all primes p,
cat(X) =2, cat(Y) = 1. (1.4)

Example 2 is also relevant to a result and a problem in [10]. Namely, Corollary 5.1 of that
paper implies the statement that “cat(X) = 1 is a generic property provided X is a 1-connected,
finite CW-complex”. Furthermore, in the paragraph following Corollary 5.1, McGibbon essential-
ly reiterates Question 3 in the case cat(Y) < 1, which our Example 2 answers negatively. Inciden-
tally, [10; Corollary 5.1] suggests that there may be a positive answer to Question 3 if X is
a 1-connected, finite CW-complex.

The following theorem leads to both Examples 1 and 2.

Theorem. Let ¢:XK(Z,5)— S* be an essential phantom map and let X be the mapping cone of .
Then cat(X) = 2.

The proof of this theorem, and the deductions of Examples 1 and 2 from it, will be carried out in
the next section. The invariant we use to prove cat(X) =2 is a “Hopf invariant” of the type
employed by Berstein and Hilton in their study of LS category [1] and recently generalized and
exploited by Iwase [6] in his construction of counterexamples to the “cat(X x §") = cat(X) + 17
problem of Ganea. We rely heavily on some results in [6].

We would be remiss in not saying a word about the Eckmann-Hilton duals of our examples.
Particularly interesting is the outstanding question of whether admitting an H-space structure is
a generic property; see [8; Problem 1.3]. Our examples suggest that we should upgrade this
question to a

Conjecture. There exist 1-connected, finite type (over Z) CW -complexes V., W in the same genus such
that V admits an H-space structure while W admits no H-space structure.

A more precise form of this conjecture will be given at the end of the paper.?

2. Proofs
Proof of Theorem. We abbreviate K = K(Z, 5) and take the obvious (suspension) co-H-structures
on XK, S* (the latter being unique); thus
cat(ZTK) = 1 = cat(S*).
For ¢:XK — S%, it is classical [1; Theorem 2.6 (i)] that
cat(X) < 2.
We aim to prove that

cat(X) =2,
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if (and only if) ¢ is essential. To this end, consider the diagram

Qe
TQOCK) — zQs*

Sk & st
where ey, e, denote the respective evaluation maps and o4, o, are induced by the given co-H-
structures on XK, S*. We have
8100'121, 8200221, eZOZQ(pz(poel (21)

where “1” generically denotes the identity map. However, XQ@oag,; need not be homotopic to
g,0 @. By (2.1), the difference

— 0,00 + XQ@oay (2.2)
lifts to the homotopy fiber E*(QS*) = QS* x QS* of e,. Moreover, the lift is unique since, in the long
fibration sequence

- 50845 EA(QSH - TOS* 5 §4,

the fiber inclusion QS*— E?(QS*) is inessential. Thus, (2.2) gives rise to a well-defined element
Hi(p) e[ZK, E*(QS%)],

which may be called the Iwase-Berstein—-Hilton—Hopf invariant of ¢, and which clearly measures
the failure of ¢ to be a co-H-map with respect to the given co-H-structures on LK, S*. The map

H,:[ZK, S*]-[ZK, EXQS%)] (2.3)

is easily checked to be a homomorphism [6; Definition 2.4]. A special case of [6; Theorem 3.8 (1)]
asserts that if X is the mapping cone of a map ¢: 4 — B of co-H-spaces, then cat(X) = 2 if the
following conditions are met:

(i) A is (e — 1)-connected, B is (d — 1)-connected, ¢ = d = 2;

(1)) dim(B) < 2(d — 1);
(iii) E*(Qi)o H{ () is essential, where

EX(Qi): E*(QB) > E*(QX) (2.4)

is induced by the inclusion i: B — X.

In our situation, with 4 = LK, B = §*, conditions (i) and (ii) plainly hold, so we concentrate on
verifying (iii).

First we show that (2.3) is an isomorphism of non-0 groups. Let
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be a rationalization map, where S, is the rationalized 6-sphere; r is a co-H-map with respect to the
given co-H-structure on £K and the (unique) co-H-structure on Sf,,. Consider the diagram

1

[3K.5] —-  [3K, EXQS")]
[r T I 2.5)

’

H,
[S5, 81—  [S5, EX(QSY)],

where the vertical arrows are induced by r and where H is defined in the same way as Hy; by
appealing to [6; Proposition 2.9 (1)], we see that (2.5) is commutative. By phantom map theory (see,
e.g., [9; Theorem 5.4] or [12; Theorem 4.2]), r¥, r¥ are isomorphisms and each element of
[ZK, S*], [ZK, E*(QS*)] is represented by a phantom map. [ In the case of [ZK, E*(Q5%)], we need
to observe that although E?(QS*) is not a finite CW-complex, it admits a decomposition into
a bouquet of spheres, with a single S as its bottom cell, hence its mod p cohomology ring is locally
finite as a module over the Steenrod algebra for each prime p. A theorem of Lannes and Schwartz
[7] allows us to apply [9; Theorem 5.4] to infer the results stated above]. So to prove H, is an
isomorphism, it suffices to prove H is an isomorphism.
Now H} is certainly not induced by a map S* — E*(QS*), but

adj(H"): [Sty, QS*] - [So), QE*(QS*)],

the adjoint of H', factors as
[Sio, Q5415 [S%), QST] L[S, QEX(QS*)].

Here « is induced by a left homotopy inverse QS*—QS’ of Q(Hopf map from S to $%) -
a is the adjoint of the James-Hopf invariant y,: [S{), S*1 — [S{o), "] [2; Definition 3.107; see also
[5; Example 4.2] - and f is induced by Q(inclusion of the bottom S” into E?(QS%)). It is now clear
that o, f are both isomorphisms of groups, each of which is isomorphic to R, viewed as a vector
space over () of uncountable dimension.

Next we show that the map

[Sto), E*(QSH]-[S{), E2(QX)] (2.6)

induced by (2.4) (in the case B = S*) is a monomorphism. For this purpose, consider the com-
mutative diagram

[SS, EX(QSH] ——————— [S§, EXQX)]

I

[Se, 871,

where 1, B, are induced by the inclusions of the bottom S7 into E*(QS%), E*(QX) respectively.
Note that f8; is precisely the adjoint of 3, defined above, hence is an isomorphism. To prove that
(2.6) is a monomorphism, it therefore suffices to prove that 5, is a monomorphism. We will achieve
this by finding a retraction from E*(QX) to S”.
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Consider adj(i): S* — QX. We claim that this map admits a left homotopy inverse, that is there is
a retraction QX — S3. If X were homotopy equivalent to $* v £2K, then QX would be homotopy
equivalent to Q(S*v X?K) and the latter retracts to QS* (obvious), which in turn retracts to
S3 (using the H-structure on S3). Of course, QX may not be homotopy equivalent to Q(S* v X*K),
but since ¢ is phantom, the n-skeleton (QX), of QX is homotopy equivalent to the n-skeleton of
Q(S* v 2?K) for every n. Thus, for each n > 3, there is a retraction (QX), — S*. Moreover, since the
higher homotopy groups of S* are finite, the number of (homotopy classes of) such retractions is
finite. A classical argument (compare with [11; Lemma 2] then allows us to conclude the existence
of a retraction QX — S°.

Observe now that a retraction QX — S induces a retraction E*(QX) = QX* QX — $3x5° = §7,
as desired.

We have now verified (iii) and the proof of the Theorem is complete. [

Deduction of Example 1 from the Theorem: Let X be as in the Theorem. Choosing a particular cell
decomposition of K, set

X; = S*v,, cone(XK)),
where K; is the i-skeleton of K and ¢; = ¢|K;. Of course, @; is inessential for all i, so that

X; ~ S*v 22K,
and
cat(X; = 1.

On the other hand,

X = hocolm(X; - X, - X35> )
satisfies

cat(X) =2
by the Theorem.

Deduction of Example 2 from the Theorem: We again take X as in the Theorem but we must choose
¢ more carefully than before. Namely, we choose an essential ¢ so that for each prime p, the composite

K 5 5% > St

is inessential, where S*—S¢, is a p-localization map. According to [4; Theorem 2.2], there are
uncountably many phantom maps of this type in the situation at hand. [Such phantom maps have
been designated as special phantom maps in [11; Section 5] and as clones of the constant map by
McGibbon and Mgller; see e.g. [8; Section 6].] We take Y = S* v X2K.

Clearly,

cat(Y) = 1 = cat(Y,) for all p.
By the way we have chosen ¢, X, ~ Y|, for all p, hence
cat(X ) =1 for all p.

As cat(X) = 2 by the Theorem, we have succeeded in producing the desired example.
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Finally, we return to the Eckmann-Hilton duals of our examples. Focusing specifically on
Example 2, we consider an essential, special phantom map

V:K(Z,2)— QS°
and set
Z = homotopy fiber of .

Z seems to be a reasonable candidate for a dual of the space X of Example 2. As ¢ is not
a suspension class, { is not a loop class; as ¢ is inessential, Qi is inessential; as the i-skeleta of
X, Y are homotopy equivalent for all i, the ith Postnikov approximations of Z, Q*S° x K(Z, 2) are
homotopy equivalent for all i; and as X, Y are p-equivalent for all p, Z, Q*S° x K(Z, 2) are
p-equivalent for all p.

Conjecture. Although 7 and Q?S®x K(Z,2) are in the same genus, Z admits no H-structure;
equivalently, cocat(Z) > 1.

Dualizing the proof of the Theorem in order to verify this conjecture is another matter
altogether ...
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