We agree with the authors in reference to the quality (yield and purity) of extracted RNA from the cortical tissue of pieces B. Thus, in our experience storing tissues in RNA later represents an optimal mean to preserve RNA from degradation, but does not warrant microdissection of the biopsy.

DORELLA DEL PRETE, MONICA CEOL, GIOVANNI GAMBARO, ANGELA D’ANGELO, and FRANCA ANGLANI
Padova, Italy

Correspondence to Dorella Del Prete, Division of Nephrology, University of Padua, Padova, Italy.
E-mail: dorella.delprete@unipd.it

REFERENCES

Can error in GFR formulas explain their poor performance in transplant patients?

To the Editor: In a recent paper by Mariat et al [1], the performance of several glomerular filtration rate (GFR) equations was assessed against inulin clearance in renal transplant patients. One of the GFR estimate equations used was the Nankivell formula, which was printed as the following:

\[
\text{GFR (mL/minute)} = 6.7/\text{serum creatinine} + 0.25 \times \frac{\text{weight} - 0.5 \times \text{urea} - 0.01 \times \text{height}^2}{100} + 35 \text{for woman).}
\]

However, on review of Dr. Nankivell’s original article [2], the original formula derived was:

\[
\text{GFR (mL/minute)} = 6.7/\text{creatinine (mmol/L)} + \text{BW(kg)/4} - \text{urea(mmol/L)/2} - 100/\text{height(m)}^2 + 35 \text{ (25 for woman).}
\]

If this was not a printing error and this formula was applied to the data, this may account for the relative decreased accuracy of the Nankivell formula when compared with the other GFR calculation equations.

In addition, the Levey formula (Mariat et al [1]) was printed as:

\[
\text{GFR (mL/minute)} = 170 \times \text{serum creatinine}^{-0.999} \times \text{age}^{-0.1} \times 0.762 \text{ (if woman) } \times 1.180 \text{ (if patient is black)}
\]