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A b s t r a c t - - A  common problem in the social and agricultural sciences is to find clusters in experi- 
mental data; the standard attack is a deterministic search terminating in a locally optimal clustering. 
We propose here a genetic algorithm (GA) for performing cluster analysis. GAs have been used 
profitably in a variety of contexts in which it is either impractical or impossible to directly solve for 
a globally optimal solution to complex numerical problems. In the present case, our GA clustering 
technique attempted to maximize a variance-ratio (VR) based goodness-of-fit criterion defined in 
terms of external cluster isolation and internal cluster homogeneity. Although our GA-based clus- 
tering algorithm cannot guarantee to recover the cluster solution that exhibits the global maximum 
of this fitness function, it does explicitly work toward this goal (in marked contrast to existing clus- 
tering algorithms, especially hierarchical agglomerative ones such as Ward's method). Using both 
constrained and unconstrained simulated datasets, Monte Carlo results showed that in some condi- 
tions the genetic clustering algorithm did indeed surpass the performance of conventional clustering 
techniques (Ward's and K-means) in terms of an internal (VR) criterion. Suggestions for future 
refinement and study are offered. (~) 1999 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - C l u s t e r  analysis, Data clustering, Genetic algorithm, Global optimization, Variance- 
ratio maximization. 

1. I N T R O D U C T I O N  

There  is cer ta inly  no shor tage of  either clustering algorithms, (e.g., [1]) or  stat ist ics t h a t  a t t emp t  
to  quant i fy  the  qual i ty  or  goodness-of-fit  of  obta ined  cluster solutions, (e.g., [2]). However, 

remarkably  little consensus exists wi th  respect  to  the  quest ion of which clustering algori thm 

performs the  best  under  given circumstances,  or, for t ha t  mat ter ,  which goodness-of-fit  criterion 

should be used to  answer this question. Consequently,  we find continued research interest in bo th  

the  development  and evaluat ion of  new clustering algorithms, (e.g., [3,4]), as well as in evaluat ing 

the per formance  of  the  various cluster algori thms and fit indices, (e.g., [5,6]). 

In  m a n y  si tuat ions it remains conceptual ly  desirable to  define the  "best" cluster  assignment 

as being the  one t h a t  achieves a globally opt imal  value for internal cluster cohesion and external  
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cluster isolation, for example, when one has reason to believe that the true latent cluster member- 
ship pattern is one that demonstrates independent-cluster structure. Unfortunately, although the 
goals of within-cluster cohesion and external cluster isolation have long been viewed as desirable 
ones, the computational algorithms used by most existing clustering techniques tend not to be 
ones that seek a globally optimal solution with regard to these properties. This is especially the 
case for the hierarchical agglomerative algorithms, (e.g., [7]) that lock clustered entities into the 
cluster (or descendents of that cluster) into which they were initially assigned. Thus, although 
at any given step of the hierarchy the clusters may be formed to produce the best possible isola- 
tion and cohesion possible in view of the existing cluster memberships, this will not necessarily 
produce an assignment that achieves the best possible cluster separation and cohesion for the 
given number of clusters. As a practical matter, the extremely large number of possible cluster 
assignments that exists for even moderate-sized problems, (e.g., with 50 entities to be clustered, 
there are the Stirling number of the second kind { 6: } ~ 1032 possible five-cluster assignments 

and { ~ ) ~ 1043 possible ten-cluster assignments; with 100 entities, there are { a00}6 ~ 1067 
100 1093 five-cluster assignments and { 10 } ~ ten-cluster assignments) makes it highly impractical 

to attempt a brute-force search of all possible assignments to find the one that maximizes cluster 
isolation and cohesion. 

To address this problem, we developed a clustering algorithm that explicitly seeks to optimize 
a fit criterion defined in terms of within-cluster cohesion and between-cluster isolation. The 
algorithm appraised in this study, COWCLUS, uses what is termed a genetic algorithmic approach 
in an attempt to recover cluster structure under diverse dataset conditions. Genetic algorithms 
(GAs) can be differentiated from hill-climbing, deterministic algorithms such as Ward's [7] in 
that they 

(a) employ probabilistic search procedures, (e.g., use random number generation), 
(b) search from a population of points, not a single point, and 
(c) use evolutionary principles, such as selection, mating, and mutation. 

Genetic algorithms have been successfully employed in a wide array of scenarios, including 
composite material design [8-11], aircraft design [12,13] computer multitasking [14], noise sup- 
pression [15], and even in generation of models of consumer choice [16]; for general references, 
see [17-20]. GAs, relative to hill-climbing methods, have performed particularly well under noisy 
dataset conditions, (e.g., [19,21-23]). 

Past efforts to apply the genetic approach to classification problems include attempts to 

(a) find good ordered representations (permutations) of objects [17,24], 
(b) divide N numbers into K groups as to minimize differences among group sums [17], 
(c) color the U.S. map so that no two bordering states are the same color [17], 
(d) solve a set partitioning problem related to airline flight crew scheduling [25], and 
(e) improve upon Wong and Lane's [26] K th nearest neighbors classification algorithm [27]; 

for a general discussion, see [28]. 

COWCLUS, alternatively, is a general-purpose, independent-cluster-seeking algorithm. An 
independent-cluster-seeking algorithm is one in which each object may belong to only one cluster. 
Though COWCLUS can be modified to maximize almost any objective function, its current 
implementation attempts to maximize the Calinski and Harabasz [29] Variance Ratio Criterion 
(VRC), a measure often associated with determining the correct number of clusters in a dataset. 
VRC is defined as: 

VRC = trace B / ( k  - 1) 
trace W / ( n  - k) '  (1) 

where n and k are the total number of objects and the number of clusters in the partition, 
respectively; the B and W terms are the between-cluster and the pooled within-cluster sums of 
squares (covariance) matrices. 
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VRC was chosen to be the objective function due to its high intuitive appeal as to what 
constitutes 'true" cluster structure. In general, researchers have posited the existence of clusters 
as distinct groups, possessing the qualities of internal cohesion and external isolation, (e.g., 
[30-33]). VRC appears to reflect such a description, more so than the objective function of most 
hierarchical clustering algorithms (among them, Ward's): 

dk(ij) = aidki + otjdkj + l~dij + A [dki - dkj[ . (2) 

In this formula dk(ij) represents the revised distance value between cluster k and the newly formed 
group (ij) which was formed by merging clusters i and j .  The parameter values ai ,  Otj, ~, and A 
determine the particular HCA routine [34,35]. For Ward's technique, ai = (nk + ni) / (nk + nij), 
aj  = (nk + nj ) / (nk  + nij), ~ = --nk/(nk + no),  and A = 0, where n refers to the number of 
objects in a cluster. 

VRC was picked also due to its excellent performance against other internal criteria. In a study 
by Milligan [2], a very similar measure, McClain and Rao's [36] W/B statistic, fared extremely 
well in comparison with 29 other internal criteria. VRC also may be the most effective criterion 
for purposes of cluster number determination [37,38]. Moreover, VRC shares an isomorphism 
with the F statistic, the linchpin of most inferential analyses in current behavioral research. Just 
as the F statistic gauges the size of differences between groups in the context of an ANOVA, 
VRC measures the degree of isolation between clusters. 

2. D E S I G N  OF C O W C L U S  

Most of the clustering techniques used today are considered hill-climbing techniques, in that 
they obtain their solutions by passing through the data in the steepest permissible direction 
locally, as defined by an objective function value. Ward's algorithm, for example, begins with the 
computation of a distance matrix between the n ( n -  1)/2 pairs of objects, each object representing 
a cluster. Based on the objective function in equation (2), clusters are then successively merged 
until only one cluster remains. Alternatively, COWCLUS searches through the data by 

(a) testing a population of cluster assignments (a.k.a. partitions, referred to as members), 
(b) retaining the best members, 
(c) combining or mating the surviving members in order to form novel members, and 
(d) mutating or altering a small percentage of members in order to ensure diversity in the 

population (see Figure 1). 

Parallel search is inherent throughout each COWCLUS run--the search path is not determined 
by the calculation of a single best value. An advantage of this strategy lies in its potential to 
work around local optima [19]. 

Perhaps the most ostensible difference between COWCLUS and other clustering methods is 
that COWCLUS searches through pregenerated assignments rather than building assignments 
up from inter-object distances. The initial population of COWCLUS members is generated from 
random cluster assignments (partitions). By using the results of previous analyses as a template, 
the potential search space is constrained to aid a guided search through the space of possible 
partitions. In this sense COWCLUS is a genetic/hill-climbing hybrid: first a nondeterministic 
genetic algorithm is used to find many good partitions, then deterministic hill-climbing methods 
are used to improve (if possible) these partitions producing the final best partition. This appli- 
cation of deterministic hill climbing to members of a population is known as local improvement; 
it is not done at each iteration because the cost would be prohibitive. 

After a predefined number of generations and the application of local improvement to the last 
generation, the member possessing the highest VRC is chosen as the COWCLUS solution. The 
number of generations is set by the user, and is based upon the number of objects to be clustered, 
the speed of the computing system, and several other context-specific considerations. A precise 
description of COWCLUS follows. 
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INITIAL POPULATION 
Members (partitions) are generated at random, ensuring distinct members with 

every cluster represented. 

S~J.~.CTION PHASE 

VRC is calculated for each member. Pairs of members are selected for mating 
with probabilities proportional to their VRC rating. 

MATING PHASE 

Genes of the selected pairs are randomly exchanged (crossover), producing 
new members that replace the parent members in the next generation. 

MUTATION PHASE 

With probability .01 each centroid element of each new solution is randomly altered. 

No 

Apply local improvement to each member of final population, then 

choose member with best VRC. 

Figure 1. Outline of the COWCLUS algorithm. 

3. G E N E T I C  A L G O R I T H M  

In general, a genetic algorithm (GA) works with a population of b individuals, each representing 
in this case an assignment of n points to k clusters. The population of individuals (cluster 
assignments) goes though a selection process for breeding, whereby assignments with a higher 

merit  function, the Variance Ratio Criterion (VRC) here, have a higher probabil i ty of being 
selected for breeding. Breeding is performed in such a manner tha t  the child assignments maintain 
some likeness to the parent assignments. The next generation of assignments is comprised of 
b children created during the breeding process. Thus, the population size remains constant 
throughout  the generations. The  process continues for many  generations, and terminates after a 
fixed number  of generations, Mthough there are many  other reasonable stopping criteria which 
may be applied. The  assignment with the best merit  function (VRC) value in the end, after local 
improvement,  is used. The details of breeding for a GA are described next. 

The intent of the GA is to select the pm~ition of n points into k clusters tha t  maximizes the 
VRC, the measure of cluster quality. Any parti t ion of the n distinct points into k clusters is called 
a candidate. To s tar t  the algorithm, an initial population of b candidates is created by randomly 
creating b cluster assignments, ensuring tha t  the assignments are distinct and tha t  each cluster 
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is represented in an assignment. A candidate is represented by a sequence of n integers, each 

between i and k, where the jth component (called a gene) of the sequence indicates to which 

cluster the jth point is assigned. Each cluster must have at least one point assigned, so each 

integer between 1 and k must appear at least once in the genetic sequence. 

The candidates are selected as parents for breeding based on the fitness VRC. Candidates with 

a higher fitness will be selected more often than candidates with lower fitness. The rank fitness 

is defined as b + 1 - r, where r is the rank of the candidate in the population in terms of the 

value of the VRC. The probability of selection as a parent is proportional to the rank fitness, so 

that the probability of the r th ranked assignment being selected as a parent is 

(b + 1 - r) 
Pr = b(b+ 1)/2" 

The selection process for parenting is completed by generating a uniformly distributed random 
number x between zero and one, and selecting the rthranked assignment satisfying Pr ~ x < Pr+l, 
where 

r - - 1  

Pr = ~-'~P,- 
i----1 

(A crude variant of this selection scheme is to simply consider each candidate in turn, starting 
with the highest ranked, generate a random number x between zero and one, and select the r th 
ranked candidate as a parent if x _< 1 - r/b,  continuing to cycle through the candidates until two 
parents have been selected. Since the mechanics of selection are not significant for the overall 
performance of a genetic algorithm, COWCLUS uses the cruder scheme.) After two parents 
have been selected the breeding process begins. A random integer j between one and n - 1 (the 
number of genes -1)  is generated. The child is constructed from the first j genes of the first 
parent and the last n - j  genes from the second parent. This process is called the crossover rule in 
GA parlance. (Technically this is known as one-point crossover. Two-point crossover exchanges 
a subsequence in the middle of the genetic sequence, and uniform crossover takes each gene of 
the child with probability .5 from the corresponding gene in each of the parents. COWCLUS 
uses uniform crossover in the early generations and two-point crossover in later generations.) 
Once the child is generated it goes through a mutation process. Each gene has a small chance 
(probability .01) of mutating, decided by generating a random number. If a gene is selected for 
mutation, the gene is replaced with a gene coming randomly from the set of allowable values 
for that gene. Finally the child is checked for validity each cluster must be represented in the 
genetic sequence--and uniqueness, and destroyed if it is invalid or a duplicate. 

A variant of this algorithm, known as an "elitist" strategy, is that after b-1 children are created, 
the parent generation is replaced, retaining the best parent for the next generation. After some 
stopping criterion (say, a fixed number of generations) has been satisfied, as a practical matter, 
local improvement (any deterministic, local hill-climbing method such as K-means) is applied 
to the best few individuals in this final generation, and the candidate with the highest VRC is 
used. There is no mathematical guarantee that the output of the genetic algorithm is truly a 
global optimum for the VRC; the justification for the GA approach is that it typically beats 
deterministic or random search methods. 

4. M E T H O D  

To evaluate the performance of COWCLUS, the Monte Carlo approach was chosen in accor- 
dance with the conventions established and maintained in previous clustering technique valida- 
tion studies, (e.g., [39,40]). First, artificial datasets with known cluster structure were generated. 
Next, the constructed datasets were analyzed using the following clustering algorithms: COW- 
CLUS, Ward's, convergent K-meaus with Ward's centroids as starting vectors (K-means[W]; 
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see [1]), and convergent K-means with random starts (K-means[R]; see [1]). Finally, the per- 
formance of each method was assessed by examining both the degree to which each method 
recovered the known structure (an external criterion), as well as using an internal criterion that 
was sensitive to the degree of internal cohesion and external isolation of the clusters (VCR). 
Although the information produced using the external criterion arguably provides the "bottom 
line". 

To assess the performance of the new COWCLUS algorithm across a wide range of possible 
cluster structures, two kinds of datasets were analyzed: 

(a) error-free datasets, exhibiting considerable separation among clusters, and 
(b) unconstrained datasets with varying levels of noise, manifesting considerable cluster over- 

lap. 

The procedure of dataset generation generally followed the conventions of previous Monte Carlo 
clustering studies, (e.g., [39-41]). 

4.1. Cons t r a ined  Da ta se t s  

Multivariate mixtures where generated with an algorithm similar to that described in Milligan 
[32,33] and frequently employed in past constrained-dataset studies, (e.g., [32,33,39,42,43]). The 
clusters were well-separated, truncated multivariate normal mixtures (sets of distinct hyperel- 
lipsoids), embedded in a ten dimensional space. The dimensions were uncorrelated. The 324 
datasets reflected a factorial arrangement of 

(a) number of clusters (3, 6, or 9), 
(b) sample size (50, 150, or 500 objects), and 
(c) evenness of cluster size (objects spread evenly across clusters, 10% of the objects in one 

cluster, 60% of the objects in one cluster). 

There were 12 datasets in each of the 27 cells. No noise was added to the data to ensure a low 
potential for cluster overlap. 

4.2. Uncons t r a ined  Da ta se t s  

These datasets conformed to those generated in previous studies employing unconstrained 
datasets, (e.g., [40,41]). The clusters overlapped, in that the ten variable means for each cluster 
were chosen randomly from a uniform distribution ranging from 20 to 40, with standard deviations 
chosen from a uniform distribution ranging from 5 to 10. Additionally, the correlation structure 
among variables of each cluster was specified in the manner of Blashfield [44] and Scheibler and 
Schneider [40]. The eigenstructures of the correlation matrices were such that the number of 
eigenvalues > 1.0 was determined by randomly selecting an integer from a uniform distribution 
from 1 to 5. The correlation matrix with this eigenstructure was then randomly selected from 
the population of such matrices using the algorithm given by Lin and Bender (see [45] for more 
details). 

As with the constrained data, there were 324 datasets and the factorial design included 

(a) number of clusters, 
(b) sample size, and 
(c) cluster size evenness. 

A three-level noise factor was also included: in the first condition no noise was present. In 
Condition 2, 25% of the data values were replaced with uniform random noise (ranging from 20 
to 40). In Condition 3, 50% of the values were replaced with random noise. 

The factorial design was, therefore: 3 (number of clusters) x 3 (sample size) x 3 (cluster size 
evenness) x 3 (noise). To equal the total number of constrained datasets generated, four datasets 
were generated for each of the 81 cells of the unconstrained design. The numbers of constrained 
and unconstrained datasets were balanced so the genetic algorithm comparisons between the two 
would be fair. 
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4.3. Per formance  Criteria 

The internal criterion employed was the aforementioned Calinski and Harabasz [29] Variance 
Ratio Criterion. With  regard to COWCLUS, each of the 648 datasets was allowed approximately 
25 minutes of dedicated processing t ime on an IBM RS/6000 model 355 workstation. 

CONSTRAINED DATA. For each method, the VRC was recorded. The Wins statistic described 
below was not recorded due to the high number (~100%) of ties. 

UNCONSTRAINED DATA: WINS. The number of times each method achieved the highest criterion 
value for a given dataset was recorded. Ties (instances where two or more methods yielded values 
within 0.1 percent) were excluded. 

5.  R E S U L T S  

The constrained column in Table 1 illustrates how well COWCLUS, Ward's, and K-means(W) 
perform under ideal conditions. Each of these methods achieved perfect recovery in almost every 
instance where the dataset reflected high cluster separation and contiguity. Only K-means(R) 
shows relatively poor performance. A Duncan's Multiple Range Test (MRT) reveals significant 
differences (p < .05) between the performance of K-means(R) and each of the other methods. 

The results from the unconstrained dataset clustering (Table 1) require considerable scrutiny. 
The VRC results reflect an area of superiority that COWCLUS solutions enjoy over Ward's 
solutions. Specifically, the MRT shows 

(a) no significant differences among COWCLUS, K-means(W),  and K-means(R),  and 
(b) significantly worse performance for Ward's method. 

The last column of Table 1 reports tallies of the Wins statistic for unconstrained data. For the 
VRC Wins data, no inferential analysis was necessary, because COWCLUS won 97.53% of the 
trials, and Ward's and K-means won zero trials. Most striking is the almost perfect consistency 
with which COWCLUS yielded superior VRC values. The wins results offer considerable evidence 
as to the superiority of COWCLUS performance in this study. 

Table 1. Constrained (clearly separated) and unconstrained (overlapping) mixtures: 
mean clustering performance as a function of clustering method. 

Variance Ratio Criterion 
Method 

Constrained Unconstrained Wins 

COWCLUS 1042.4653 31.2484 316 (~100%)t 
Ward's 1042.4268 25.8296* 0 (0%) 
K-means(W) 1042.4623 29.7802 0 (0%) 
K-means(R) 284.7385 27.6351 1 (0%) 

Total (N) 324 324 317~t 

* p < .05 Duncan's MRT, t P < .001, $ ties have not been included. 

6 .  D I S C U S S I O N  

6.1. Is  Ye t  A n o t h e r  C l u s t e r i n g  A l g o r i t h m  N e e d e d ?  

A great many clustering algorithms are now available, and one could be forgiven for asking 
whether the field of cluster analysis really needs yet another addition to these existing methods. 
In response, we would note tha t  although the field currently suffers from no shortage of clustering 
methods, many (if not most) suffer from potentially serious limitations and criticisms, perhaps 
one of the most significant being that  they do not effectively seek a globally optimal solution 
with respect to a conceptually meaningful clustering criterion, (e.g., maximized internal cohesion 
and cluster separation). Although COWCLUS or other GA-based methods cannot guarantee to 
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find the global maximum of VRC or similar criteria, such techniques do possess the important 
advantage of at least trying to seek this objective at a solution-wide level of analysis. Older 
algorithms especially those based on stepwise, agglomerative algorithms such as Ward's--cannot 
make a similar claim. Indeed, only in exceptionally clear-cut cases (typically involving simulated 
data with little or no noise) would we expect them to identify a solution that is globally optimal 
in this sense. 

As a practical matter, we must stress that the performance of the COWCLUS procedure was 
consistently superior to K-means and Ward's with regard to the results from the unconstrained 
datasets, and essentially on a par with K-means(W) and Ward's for the "easier" constrained 
datasets. It is tempting to make the argument that the unconstrained datasets are more "realis- 
tic" in their makeup (in the sense of being more like what would be seen in nonsimulated data), 
and the fact that COWCLUS was consistently superior to the two traditional methods. 

6.2. Fu tu re  Direc t ions  for the  Gene t i c /Hi l l -C l imbing  H y b r i d  

While issues concerning Monte Carlo validation are being examined, the work on COWCLUS 
design should continue. For example, the COWCLUS hill-climbing seeds should be derived from 
a wider variety of methods (density search, complete linkage, and others). In theory, greater 
diversity of starting assignments should enhance COWCLUS' ability to work around local optima. 

The parameters for COWCLUS also deserve research attention. In the current exploratory 
study, the effects of the following were not investigated fully: 

(a) number of generations, 
(b) types of mating used to form new members, 
(c) ways of scaling objective function values when deciding which members survive into the 

next generation, and 
(d) population size. 

Perhaps most important is whether VRC serves as the best objective function (genetic al- 
gorithm merit function) for COWCLUS clustering. As mentioned earlier, almost any kind of 
objective function can be employed, and other internal criteria should be evaluated for their 
efficacy or robustness in this role. 

Finally, while this study dealt with independent-cluster-seeking algorithms, COWCLUS can 
be modified to yield overlapping clusters. In many, if not most, applied contexts, cluster overlap 
may be present and if so, should be represented in any cluster assignment. It remains to be seen 
whether a genetic/hill-climbing routine can yield superior assignments for these cases. 

6.3. Conc lus ions  

The genetic algorithm approach in COWCLUS holds promise for cluster analysis research and 
application. With regard to the Rand evaluation, COWCLUS appeared to perform as well or 
better than any of the other methods. When considering the VRC evaluation, COWCLUS consis- 
tently produced significantly better assignments than Ward's technique, one of the most popular 
clustering methods. To the extent that researchers value the production of cluster assignments 
that demonstrate external isolation and internal consistency (and hence, high VRC), they may 
prefer the COWCLUS algorithm over the Ward's and K-means algorithms. 

Still in an early stage of development, COWCLUS is likely to perform better as various aspects 
of its operation are refined and the speed of computers increases. Increasing the length (with a 
given initial population) and number (with different random initial populations) of computer runs 
improves the quality of the genetic algorithm assignments, while the quality of the Ward's and 
K-means assignments cannot be improved by investing more computing resources. An extremely 
significant advantage of COWCLUS and genetic algorithms in general is that they can fully 
utilize parallel (even massively parallel) computers---child creation via crossover and the merit 
computation for individuals is completely independent and can be done in parallel, even with 
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distributed machines over a network. An alternative coarse grained approach is to have each 
processor in a parallel computer run COWCLUS with a different initial population. None of 

the known deterministic clustering algorithms can significantly benefit from parallel computing 
hardware, the de facto architecture for all current supercomputers. 
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