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Abstract

It is known that the designs PGn−1(n, q) in some cases have spreads of maximal�-arcs. Here a
�-arc is a non-empty subset of points that meets every hyperplane in 0 or� points. The situation for
designs in general is not so well known. This paper establishes an equivalence between the existence
of a spread of�-arcs in the complement of a Hadamard design and the existence of an affine design
and a symmetric design which is also the complement of a Hadamard design.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An �-arc in a 2-design is a subset of points that meets every block in either 0 or� points.
[7,8].
Rahilly [6] established the equivalenceof the existenceof an affinedesign of class number

4 and a Hadamard 2-design possessing a spread of lines of maximum size 3. By observing
that a line of maximum size 3 in a Hadamard design is a 1-arc in the complementary design,
we are able to extend this result and to state it in the language of maximal arcs in designs.
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2. Basic results and definitions

The general design theory used in this paper can be found in[1,3] or [4].We shall outline
in this section some definitions, notation and results.
A designD = (P,B, I ) consists of a finite point setP, a finite block setB, disjoint

fromP and an incidence relationI ⊆ P × B. Where useful, we shall identify a blockB
with {p ∈ P | pIB}; that is with the subset of points onB. Note that we do not rule out
repeated blocks.
D is a t-(v, k, �) designif |P| = v, each block is on exactlyk points and every subset

of t points is contained in exactly� blocks. The parametersb, r have their usual meanings:
b = |B| andr, the replication number, is the number of blocks on any point. The number
r −� is theorderof a 2-(v, k, �) design.Anyt-design is also ans-design for anys, 1�s� t .
The dual designD∗ of D is obtained by interchanging the roles of points and blocks in

D. The complementD of D is defined byD = (P,B, I ), whereI = P × B − I . If D is a
2-(v, k, �) design thenD is a 2-(v, v − k, b − 2r + �) design with the same order asD.
The intersection of all blocks containing two given distinct points ofD is called the

line joining the two points. It is well-known that a line in a 2-(v, k, �) design has at most
(b − �)/(r − �) = 1+ (v − 1)/k points, with equality if, and only if, each block either
contains the line or meets it in just one point. In the case of equality, the line is said to be
ofmaximum sizeand the line is amaximum line.
A set of non-empty point subsets that partitions the point set of a design is called aspread.
A non-empty subsetSof n points of a designD is called an (�, n)-arc if it meets every

block in at most� points. If |B ∩ S| ∈ {0, �} for every blockB of D, thenS is called an
�-arc.
Note that some authors reserve the term arc for a subset of points in a symmetric 2-design

that meets any block in at most two points.

Proposition 1. An (�, n)-arc A in a2-(v, k, �) design satisfies

n�1+ r(� − 1)/�.

Equality holds if and only ifA is an�-arc.

Proof. See, e.g.[7] or [8].

A block is said to be asecantor passantof an�-arc according as it meets the arc in� or
0 points.
LetD be a 1-(v, k, r) design. ThenD is resolvableif it has aresolutionor parallelismof

its block set into parallel classes, each of which partitions the point set ofD. In this case,
it is easy to see thatD has exactlyr parallel classes and each parallel class hasm = v/k

blocks.We callmtheclass numberofD. Blocks in the same parallel class areparallel. If the
resolution is such that the intersection of any two non-parallel blocks is a constant�, called
the index, thenD is said to beaffine. It is straightforward to show that� = k/m = k2/v.
A well-known theorem of Bose asserts that in a resolvable 2-(v, k, �) designD we have

��(k − 1)/(m − 1), with equality if and only ifD is affine. The parameters ofD in the
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affine case can be expressed entirely in terms of� andmas follows:v = �m2, k = �m, � =
(�m − 1)/(m − 1), r = (�m2 − 1)/(m − 1) andb = rm.
A 2-(v, k, �) designD is symmetricif b = v. It is well-known thatD is symmetric if and

only if its dual designD∗ is also a 2-(v, k, �) design.
AHadamard2-designis a symmetric 2-(v, k, �)designwithv=4�+3andk=2�+1.Such

a design exists if and only if there exists aHadamardmatrix of orderv+1.Acomplementary
Hadamard2-design is the complement of a Hadamard 2-design; so its parameters are of the
form 2-(4� + 3,2� + 2, � + 1). The Hadamard conjecture asserts that a Hadamard matrix
of ordern exists if and only ifn = 2 orn is divisible by 4.
Given a Hadamard 2-(4� + 3,2� + 1, �) designD, introduce a new pointw and adjoin

it to each block ofD. These extended blocks and their complements give an affine 3-
(4� + 4,2� + 2, �) design. Any affine 2-design of class number 2 is in fact a 3-design
obtained in this way from some (not necessarily unique) Hadamard 2-design.
The preceding discussion relating Hadamard matrices to particular classes of symmetric

designs and affine designs of class number 2 is well-known. The idea has roots in a paper
of Bose[2]. However, Rahilly[6] showed that there is a connection between Hadamard
2-designs and affine designs of class number 4.

Proposition 2 (Rahilly [6] ). There exists an affine2-(16�,4�, (4� − 1)/3) design if and
only if there exists a Hadamard2-(16� − 1,8� − 1,4� − 1) design with a spread of lines,
all of maximum size3.

In this paper, we shall extend Rahilly’s result to affine designs of class numberm, where
m�4. To this end we extend the concept of lines of maximum size. One might think that
this means considering, for example, plane spreads but it turns out that considering spreads
of �-arcs in complements of Hadamard 2-designs leads more naturally to a generalization
of Rahilly’s theorem.
Rahilly’s results on line spreads were for symmetric designs.We shall consider the more

general theory of spreads of�-arcs in the wider setting of 2-designs, which need not be
symmetric.

3. Spreads and�-arcs

First in this section, it will be shown that a line in a designDmay be viewed as an�-arc
in the complementary designD.

Lemma 3. Let D be a2-(v, k, �) designk�3.Then a subset of points of D is a maximum
line inD if and only if it is an�-arc in D with� = r/(r − �).

Proof. LetA be an�-arc inD, where� = r/(r − �). By definition,|A| = 1+ r(� − 1)/� =
1+ r/(r − �). Therefore|A|�2 and so any block ofD meetsA in 0 or r/(r − �) points;
hence any block ofD either containsA or meetsA in exactly one point. Each of the blocks
that contains two distinct points ofA must therefore contain all ofA and hence the line
joining the two points. From the previous section, we know that a maximum line ofD has
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exactly 1+ (v−1)/(v−k) points, which is easily shown to equal|A| using the basic design
parameter relations.�

HenceA is a line inD. The converse is straightforward.
If A is an�-arc ofD, thenDA denotes theinduced designdefined on the points ofA,

whose blocks are the secants ofA, with induced incidence. Thus a secantB inducesa block
ofDA whose points are those ofA∩B. ClearlyDA is a 1-(a, �, r) design, where|A|=a and
r is the replication number ofD. The following lemma is essentially in[8] but we include
the proof for completeness.

Lemma 4. Let A be an�-arc in a2-(v, k, �) designD. Then

(a) DA is a2-(a, �, �) design, wherea = |A| = 1+ r(� − 1)/�,
(b) A has exactlyra/� secants andb − ra/� passants,
(c) any point not in A is on exactly�a/� secants andr − �a/� passants,
(d) the passants of A form an(r − �)/�-arc inD∗.

Proof. Condition (a) is straightforward. Moreover, forDA the parameters ‘r’ and ‘b’ are,
respectively, the replication numberr of D and the number of secants ofA. The standard
equation ‘bk = vr ’ then gives (b).
To prove (c) letp be a point not inA andN the number of secants onp. Counting in two

ways the number of flags(q, B), whereB is a secant onp andq ∈ A ∩ B, givesa� = N�.
Finally, (d) follows easily from (c). �

Next, we consider the number of common secants and passants of two disjoint arcs.

Lemma 5. LetAi be an�i-arc and|Ai | = ai for i = 1,2,whereA1 ∩ A2 = ∅. Then the
number of secants common toA1 andA2 is�a1a2/�1�2 and the number of commonpassants
is b − (a1�2 + a2�1 − �a1a2)/�1�2.

Proof. Let x be the number of common secants. Counting in two ways the number of
ordered triples(p1, p2, B), wherepi ∈ Ai andB is a block containingpi (i = 1,2), gives
a1a2� = x�1�2. The rest is straightforward using this result and Lemma 4.�

Remark 6. Rahilly [6] defines a spread of maximum lines to beuniform if the number of
blocks containing any two lines of the spread is constant. He then proves that every spread
ofmaximum lines in a Hadamard 2-design is uniform. However, this is true for all 2-designs
as can easily be deduced from Lemmas 3 and 5.

Themth multipledesign of a design is obtained by repeating each of its blocksm times.
The case when the induced design on an�-arc is a multiple of a symmetric design is

of special interest. LetD be a 2-(v, k, �) design with an�-arc A. ThenDA is a 2-(a, �, �)

design, wherea = 1+ r(� − 1)/� and the replication number ofDA is r, that ofD. Hence
if DA is a multiple of a symmetric design, then it is the(r/�)th multiple of a symmetric
2-(a, �, �′) design denoted by[DA], where�′ = ��/r. In this case we shall say thatA is a
symmetric�-arc.
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A set of�-arcsthat partitions the point set ofDwill be called an�-spread. If all the�-arcs
in the spread are symmetric, it is called asymmetric�-spread.
In view of Lemma 3, everyr/(r − �)-spread inD is a line spread inD in the sense of

Rahilly [6]: that is a partition of the point set by maximum lines. We shall show that in the
case� = r/(r − �), all �-arcs and�-spreads are symmetric.

Lemma 7. Every[r/(r − �)]-arc in a 2-(v, k, �) design is symmetric and is a maximum
line in the complementary design.

Proof. First note that ifx is a point of a maximum line of a 2-(v, k, �) design, the number
of blocks containingx but not the whole line isr − �, the order of the design.
Now supposeA is an�-arc of a 2-(v, k, �) designD, where�=r/(r −�). Then|A|=1+�

andDA is a 2-(�+1, �, �−1) design. By Lemma 3,A is a maximum line inD. Therefore,
given a point ofA, the number of blocks ofD meetingA only at that point is the order of
D, which is the same as the orderr − � = r/� of D. Hence each block ofDA is repeated
r/� times and soA is a symmetric�-arc. �

Theorem. There exists an affine2-(�m2,�m, (�m − 1)/(m − 1)) design and a comple-
mentary Hadamard2-(m − 1, 1

2m, 1
4m) design if and only if there exists a complementary

Hadamard2-(�m2 − 1, 1
2�m2, 1

4�m2) design with a symmetric12m-spread.

Proof. First assume there exists an affine 2-(�m2,�m, (�m − 1)/(m − 1)) design� and a
2-(m − 1, 1

2m, 1
4m) design�.

Choose a pointw of �. Then on the remaining�m2 − 1 points of� define a design�
whose blocks are obtained thus. For each parallel classC of �, identify them − 1 blocks
of C not onw with the points of�. Then the union of the12m blocks of� corresponding to
a block of� is defined to be a block of�.
Hence� has�m2−1 points and�m× 1

2m= 1
2�m2 points on each block. To evaluate the

replication number of�, let x be any of its points. There are ‘r − �’ = �m parallel classes
of C of � such thatx andw are on different blocks fromC.
The block ofC onx, considered as a point of�, is in 1

2m blocks of�. Hencex is on 1
2m

blocks of� induced byC. Therefore, in total,x is on(12m) × (�m) = 1
2�m2 blocks of�.

It follows that� is a symmetric design since ‘r = k’.
Now consider two distinct blocksX andYof �. If they are induced by the same parallel

classC of �, then from the parameters of� it follows thatX andYhave12m blocks ofC in
common and therefore meet in(14m) × (�m) = 1

4�m2 points of�.
Suppose on the other hand, thatX andY are induced by different parallel classes of�.

SinceX andY each consists of12m blocks of� and non-parallel blocks of� meet in�
points, it follows thatX andYmeet in exactly� × (12m)2 = 1

4�m2 points of�.
Hence the dual of� is a symmetric 2-design. Therefore� and its dual�∗ are symmetric

2-designs with parameters 2-(�m2 − 1, 1
2�m, 1

4�m).
Next, we show that�∗ has a symmetric12m spread. LetC be any parallel class of� and

xany point of�. LetXbe the block ofConx. If alsow is onX, then no block of� induced
byC containsx. Otherwise the number of blocks onx induced byC is the number of blocks
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containingX (considered as a point of�) which is therefore the replication number12m of
�. Hence them − 1 blocks of� induced byC form an�-arc in�∗, where� = 1

2m. We
show this arc is symmetric, noting here thatr/� = 1

2�m2/12m = �m.
In the case whenx is on 1

2m blocks of� (induced byC), all the�m points ofXare on the
same12m blocks. This shows that them−1 blocks induced byC form a symmetric12m-arc
in �∗.
Clearly, by varyingC over all parallel classes of�, we obtain a symmetric12m-spread in

�∗.
Conversely, assume the existence of a 2-(�m2 − 1, 1

2�m2, 1
4�m2) designD with a sym-

metric 1
2m-spread�. Let A ∈ �. ThenA is a symmetric12m-arc. Further, by Lemma 4,

|A|=m−1,Ahas�m(m−1) secants and�m−1 passants. SinceA is a symmetric12m-arc
it follows easily thatDA is a symmetric 2-(m − 1, 1

2m, 1
4m) design.

Define a design� as follows. The points of� are those ofD∗ and a new point, labelled
w. The blocks of� are of two types. Type 1 blocks are labelled〈A〉, A ∈ �. Hence there
are(�m2 − 1)/(m − 1) blocks of Type 1.
Type 2 blocks of� are labelled〈A, e〉, whereA ∈ � ande is any block of[DA]. Hence

since|�| = (�m2 − 1)/(m − 1) and each[DA] hasm − 1 blocks, it follows that there are
�m2 − 1 blocks of Type 2. Therefore� has exactlym(�m2 − 1)/(m − 1) blocks.
Finally to complete the definition of�, we define incidence in�.
(i) If A ∈ �, then〈A〉 is incident withw and with all the passants ofA in D: they are

points ofD∗ and therefore of�. By Lemma 4,〈A〉 is on exactly 1+ (�m−1)=�m points.
(ii) Let 〈A, e〉 be aType 2 block as defined above. Each blockeof [DA] is the intersection

with A of any one of�m secants ofA in D, sinceA is symmetric; so that each block ofDA

is repeated ‘r/�’ times. (Herer = 1
2�m2 and� = 1

2m.) These�m secants as points ofD∗
are defined to be incident with〈A, e〉 in �.
Hence� has�m2 points, with�m points on each block. Next, we show� is a 2-design.

Consider two distinct pointsX andYof �. There are two cases.
Case1: Y = w. Then only Type 1 blocks containX andYand the number of such blocks

is the number� of A ∈ � for whichY is a passant inD. Since� partitions the points ofD
andY is a secant to(�m2−1)/(m−1)−� of the 1

2m-arcs in�, then(�m2−1)/(m−1)−
� = (12�m2)/(12m) = �m, whence� = (�m − 1)/(m − 1).
Case2: NeitherX norY isw. Let 	 be the number ofA ∈ � such thatX andYare both

passants ofA in D. Then exactly
 = (�m2 − 1)/(m − 1) − 2� + 	 of the arcsA ∈ � are
such thatX andYare both secants ofA. Furthermore,	 is the number of Type 1 blocks of
� containing bothX andY.
Let � be the number of Type 2 blocks of� containingX andY. We need to evaluate

	 + �. First observe thatX andYare both secants to exactly
 of the arcs in�. That is they
induce the same block in� of the symmetric 2-(m − 1, 1

2m, 1
4m) designs[DA], and induce

different blocks in the
 − � remaining[DA], whereA ∈ � andX, Y are both secants of
A. That is, for� of the arcsA ∈ �, the blocksA ∩ X andA ∩ Y of [DA] are equal, so that
|A ∩ X ∩ Y | = |A ∩ X| = 1

2m; while for 
 − � of the arcs,A ∩ X andA ∩ Y meet in14m
points, so that|A ∩ X ∩ Y | = 1

4m. For the remainingA ∈ �, eitherX orY is a passant, so
thatA ∩ X ∩ Y = �.
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Since from the parameters of the symmetric designDwe have|X∩Y |= 1
4�m2, it follows

that 14�m2 = 1
2m� + 1

4m(
 − �), whence�m = 
 + �. Substituting for
 and� we obtain
	 + � = (�m − 1)/(m − 1) = �.
It follows that� is a 2-(�m2,�m, (�m − 1)/(m − 1)) design. A straightforward check

will verify that � is resolvable: a typical parallel class is given by eachA ∈ � and consists
of the block〈A〉 together with them − 1 blocks〈A, e〉, wheree is any of them − 1 blocks
of [DA]. Hence from Bose’s theorem (see Section 1) it follows that� is affine. �

As a corollary we can readily obtain the proposition due toRahilly[6] stated earlier. Since
a 2-(3,2,1) design always exists, then form=4 the above theorem states that the existence
of an affine 2-(16�,4�, 1

3(4�−1)) design is equivalent to the existence of a complementary
Hadamard 2-(16� − 1,8�,4�) design with a symmetric 2-spread. Now apply Lemma 3.
An interesting case ism=4,�=7.Then the theorem implies that the existence of an affine

2-(112,28,9) design is equivalent to the existence of a Hadamard 2-(111,55,27) design
with a spread of lines, all of size 3. The existence of such an affine design is undecided.
According to Tonchev, it is the smallest undecided affine 2-design: on the other hand, there
exist Hadamard designs on 111 points but it is not knownwhether any of them have spreads.
Examples of spreads of�-arcs are to be found in the designs PGn−1(n, q) of the points

and hyperplanes in PG(n, q). If t + 1 dividesn + 1, then PGn−1(n, q) contains a spread
of t-dimensional subspaces which in the complementary design is a symmetricqt -spread.
See, e.g.[3].
Jungnickel and Tonchev[5] showed that there exist symmetric designs with the param-

eters of, but not isomorphic to PGn−1(n, q), namely GMW designs, possessing spreads of
�-arcs.
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