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1. INTRODUCTION

Let D be the unit disk in the complex plane and dA be the normalized
area measure on D. For :>&1 and p>0 the Bergman space A p

: consists
of all analytic functions f defined on D such that

& f & p
A

p
:
=|

D

| f (z)| p dA: (z)<�.

Here dA: (z)=(:+1)(1&|z| 2): dA(z) has total mass 1 on D. The space D p
:

consists of all analytic functions g defined on D such that

&g& p
p, :=| g(0)| p+&g$& p

A
p
:
<�.

If p<:+1, it is standard that D p
: =A p

:& p with equivalence of norms.
It is also trivial that the Hardy space H2 can be identified with D2

1 with
equivalence of norms. The space D p

: is called a Dirichlet space if p�:+1.
Particularly, D2

0 is the classical Dirichlet space.
A nonnegative measure + on D is called a Carleson measure for D p

: if
there is a constant C>0 such that

|
D

| g(z)| p d+(z)�C &g& p
p, : , \g # D p

: . (1.1)

In this paper we obtain the following characterization of Carleson
measures for the Dirichlet spaces.
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Theorem 1. Suppose :>&1 and p�:+1. A nonnegative measure + on
D is a Carleson measure for D p

: if and only if there is a constant C>0 such
that

(a) for p>:+2

+(D)�C;

(b) for min(1, :+1)< p�:+2

+(T(O))�C cap(O; B p
1&(:+1)�p), for any open set O/�D;

(c) for :+1� p�1

+(T(I ))�C |I |:+2& p, for any arc I/�D;

(d) for 1< p=:+1�2

+(T(I ))�C |I |, for any arc I/�D.

It can be shown (see later) that if p>:+2 then D p
: /H�, the space of

bounded analytic functions on D. Therefore the interesting ranges for ( p, :)
are :+1� p�:+2 and :>&1. Part (b) of Theorem 1 involves capacity
for Besov space (defined later). A capacitary strong type estimate on �D
(the boundary of D) is established in our approach. We conjecture that the
result in part (d) of Theorem 1 is also true for the missed case p=:+1>2.
As an application, we obtain necessary and sufficient conditions, in
Section 4, for multipliers of the Dirichlet spaces.

Carleson measures play an important role in harmonic analysis and
operator theory in holomorphic function spaces. For example, it is well-
known that if f is harmonic on D then the measure |{f |2 dA1 is a Carleson
measure for H2 (=D2

1) if and only if f (ei%) # BMO; and the Hankel
operator with analytic symbol f is bounded on D2

: (0�:�1) if and only
if the measure | f $| 2 dA: is a Carleson measure for D2

: (see [RW] and
[W1, W2] for 0�:<1). Carleson measures have been characterized by
Carleson in [C] for the Hardy spaces; Luecking in [L] for the Bergman
spaces; Stegenga in [S] for the Dirichlet space D2

: with 0�:<1 (Kerman
and Sawyer in [KS] obtained also a different characterization); and
Maz� ya and Shaposhnikova in [MS, p. 179] for D1

: with &1<:<0.
We will see later that in general the Dirichlet space should be viewed as

an analytic Besov space, though Stegenga in [S] viewed D2
: as an analytic

Sobolev space in order to employ the capacitary strong type estimate for
Sobolev space established first by Adams in [A]. It worth mentioning also
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that strong type estimates for more general Sobolev-type spaces have been
studied by Hansson in [H], and a characterization of Carleson measures
for harmonic function spaces on Rn+1

+ of certain Sobolev-type spaces has
been obtained by Nagel, Rudin and Shapiro in [NRS] (see also a different
approach on D in [KS]). However the methods in these papers cannot be
used effectively to deal with Carleson measures for Dirichlet spaces (excepts
for p=2, and in this case Besov-type and Sobolev-type are essentially
same!). Different treatments appear in our approach for different ranges of
p. This reflects another different but interesting feature of Dirichlet spaces
compared to Sobolev-type spaces.

Throughout this paper the letter C denotes a positive constant that may
change from one step to the next. For two positive functions a and b, we
say a dominates by b, denoted by a=O(b), if there is a constant C>0 such
that a�Cb; and we say a and b are equivalent, denoted by a �� b, if both
a=O(b) and b=O(a) hold.

2. BESOV SPACES AND A CAPACITARY STRONG
TYPE ESTIMATE

For p>0 and 0<_<1, the Besov space B p
_ consists of all real functions

f in L p (�D) such that

& f & p
B

p
_
=& f & p

L p(�D)+|
2?

0
|

2?

0

| f (ei(%+t))& f (ei%)| p

|1&eit| 1+ p_

d% dt
4?2 <�. (2.1)

Let . be a nondecreasing function in C �
0 (R) which satisfies

.(t)={0,
1,

if t�1�2;
if t�1.

Consider the smooth truncation [Fj]�
&� :

Fj ( f )=2 j. \ | f |
2 j + , j=0, \1, \2, ... .

D. R. Adams first used this smooth truncation in [A] to prove a strong
type estimate for Sobolev space on Rn (see also [S]). The key properties
of this smooth truncation are:

0�Fj ( f )�2 j, [Fj ( f )>0]/[ | f |>2 j&1]
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and if 2 j&1�| f |<2 j, then

Fk ( f )={2k,
0,

for k< j;
for k> j.

Lemma 2.1. For 0<_<1 and p>0, the smooth truncation [Fj]�
&�

maps B p
_ to itself and there is a constant C>0 such that

:
�

j=&�

&Fj ( f )& p
B

p
_
�C & f & p

B
p
_

holds for all f # B p
_ .

Proof. For any set E/�D, denote by |E| the Lebesgue measure of E
on �D. It is easy to check that &Fj ( f )& p

L p(�D)�2 jp |[ | f |>2 j&1]|. There-
fore we have

:
�

j=&�

&Fj ( f )& p
Lp(�D) � :

�

j=&�

2 jp |[ | f |>2 j&1] |

�C |
�

0
|[ | f |>t]| dt p

=C & f & p
L p(�D) .

By Definition (2.1), it suffices to show that for any t, s # R

:
�

l=&�

|F l ( f (eit))&F l ( f (e is))| p�C | f (eit)& f (eis)| p.

Without loss of generality, assume j�k,

2 j&1�| f (eit)|<2 j and 2k&1�| f (eis)|<2k.

If j=k, by the mean value theorem, there is a ! # (0, 1) such that

:
�

l=&�

|F l ( f (eit))&F l ( f (eis))| p=|F j ( f (eit))&Fj ( f (eis))| p

=|.$(!)| p | | f (eit)|&| f (eis)| | p

�C | f (eit)& f (eis)| p.
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If j�k+1, there are !, ' # (0, 1) such that

:
�

l=&�

|Fl ( f (eit))&Fl ( f (eis))| p

=|2k&Fk ( f (eis))| p+|F j ( f (eit))| p

=2kp |.(1)&.(2&k | f (eis)| )| p+2 jp |.(2& j | f (eit)| )&.(1�2)| p

=|.$(!)| p (2k&| f (eis)| ) p+|.$(')| p ( | f (eit)|&2 j&1) p

�C( | f (eit)|&| f (eis)| ) p

�C | f (eit)& f (eis)| p.

The proof is complete. K

For any open set O/�D, the B p
_ -capacity of O is defined by

capB
p
_
(O)=cap(O; B p

_)=inf[& f & p
B

p
_
: f �1 on O].

Theorem 2.2. For 0<_<1 and p>0 there is a constant C>0 such that
the following strong type estimate

|
�

0
capB

p
_
([ | f |>t]) dt p�C & f & p

B
p
_

holds for all f # B p
_ .

Proof. It is standard that

|
�

0
capB

p
_
([ | f |>t]) dt p �� :

�

k=&�

2kp capB
p
_
([ | f |>2k]).

Since 2&kFk ( f )�1 on the set [ | f |>2k], and hence

capB
p
_
([ | f |>2k])�2&kp &Fk ( f )& p

B
p
_
,

we have therefore

:
�

k=&�

2kp capB
p
_
([ | f |>2k])� :

�

k=&�

&Fk ( f )& p
B

p
_
�C & f & p

B
p
_
.

This last inequality follows from Lemma 2.1. K
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Assume p�1. Given f # L p (�D), the harmonic extension of f onto D,
denoted also by f, is

f (z)=
1

2? |
�D

1&|z|2

|eit&z|2 f (e it) dt, \z # D.

It is standard that

lim
r � 1&

f (re i%)= f (e i%), a.e. on �D.

Without causing any confusion, we identify a function in L p (�D) with its
harmonic extension on D.

For p�1, we view B p
_ as a space of harmonic functions f on D with

boundary function f (ei%) satisfying (2.1). The following standard relation
(see, for example, [St. p. 151]) is a ``harmonic'' way to understand the
norm of B p

_ .

& f & p
B

p
_

�� & f & p
Lp(�D)+|

D

|{f (z)| p (1&|z|2) p& p_&1 dA(z). (2.3)

Here {=(���x, ���y) is the gradiant operator.
Let 1(ei%) be the convex hull of the disk [ |z|<1�2] and the point ei%.

Given a function f defined in D, the nontangential maximal function of f
is the function on �D defined by

N( f )(ei%)= sup
z # 1(ei%)

| f (z)|.

Lemma 2.3. For 0<_<1 and p>1, the nontangential maximal operator
N is bounded on B p

_ . More precisely, there is a constant C>0 such that

&N( f )&B
p
_
�C & f &B

p
_

holds for all f # B p
_ .

Proof. It is well-known that &N( f )&Lq(�D)�C & f &Lq(�D) if q>1 and f
is a harmonic function on D. Let Rt be the operator of rotation by eit, i.e.
Rt f (z)= f (eitz). It is easy to check that Rt commutes with the nontangen-
tial maximal operator. Therefore we have Rt N( f )=N(Rt f ). It is easy to
verify that for any f, g defined on D we have |N( f )&N(g)|�N( | f &g| ),
hence

|Rt N( f )&N( f )|=|N(Rt f )&N( f )|�|N( |Rt f & f | )|.
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Note that for a harmonic f on D with boundary function in
Lq (�D)(q�1), the boundary function of Rt f is

lim
r � 1&

Rt f (rei%)= f (ei(%+t))=Rt f (ei%).

Therefore &Rt N( f )&N( f )&Lq(�D)�C &Rt f & f &Lq(�D) , if q>1.
Finally for f # B p

_ , we have

&N( f )& p
B

p
_
=&N( f )& p

Lp(�D)+|
2?

0

&Rt N( f )&N( f )& p
Lp(�D)

|1&eit| 1+ p_

dt
2?

�C & f & p
Lp(�D)+C |

2?

0

&Rt f & f & p
Lp(�D)

|1&e it|1+ p_

dt
2?

�C & f & p
B

p
_
.

The proof is complete. K

Lemma 2.4. Suppose p�1 and 0<_<1. There is a constant C>0 such
that for any harmonic f on D the following estimate holds:

& f & f (0)& p
L p(�D)�C |

D

|{f (z)| p (1&|z| 2) p& p_&1 dA(z).

Proof. Without loss of generality we assume f (ei%) exists (or consider
instead f (rei%) and then let r � 1&). We start with the trivial estimates

| f (ei%)& f (0)|= } |
1

0

�f (r2ei%)
�r

dr }�2 |
1

0
|{f (r2ei%)| r dr. (2.4)

If p=1, then 1�(1&|z|2) p& p_&1 and hence

& f & f (0)&L1(�D) �2 |
D

|{f ( |z| z)| (1&|z|2) p& p_&1 dA(z)

�2 |
D

|{f (z)| (1&|z|2) p& p_&1 dA(z).

This last inequality holds because |{f | is subharmonic on D, and for any
subharmonic function F on D and 0�r1<r2<1 the following estimate
holds:

|
2?

0
F(r1e i%) d%�|

2?

0
F(r2ei%) d%.
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If p>1, applying Ho� lder's inequality to the last integral in estimate (2.4),
we have

| f (ei%)& f (0)| p�2 p |
1

0
|{f (r2ei%)| p (1&r2) p& p_1 r dr

_\|
1

0
(1&r2) p_�( p&1)&1 r dr+

p&1

�C |
1

0
|{f (r2ei%)| p (1&r2) p& p_&1 r dr.

Since |{f | p is subharmonic on D, the above estimate yields the desired
result. K

As a consequence of Lemma 2.4, we have for p�1

& f & p
B

p
_

�� | f (0)| p+|
D

|{f (z)| p (1&|z|2) p& p_&1 dA(z). (2.5)

We can view the Besov space B p
_ (for p�1) as the real version of the

Dirichlet space.

3. CARLESON MEASURES

Theorem 1(a) is a consequence of the fact that D p
: /H� if p>:+2,

which is proved in the proof of Theorem 4.2. We prove the other parts of
Theorem 1 separately.

Assume :>&1. For any a # D the following estimate is standard:

(1&|a|2):+2&*, if *>:+2;

|
D

(1&|z| 2):

|1&a� z|* dA(z) �� { log
2

1&|a|2 , if *=:+2; (3.1)

1, if *<:+2.

Lemma 3.1. Suppose :>&1 and p>0. Let I be an arc on �D and
0<|I |<1. If the nonnegative measure + is a Carleson measure for D p

: then

1, if p>:+2;

+(T(I ))=O {\log
2
|I |+

1& p

, if p=:+2;

|I |:+2& p, if p<:+2.
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Proof. The first estimate is trivial, because g#1 is a function in D p
: .

Let ei% be the center point of the arc I, a=(1&|I | )1�2 ei% and *=
2&2(:+2)�p. Consider the test function

gI (z)={log
2

1&a� z
, if *=0;

(1&a� z)*, if *<0.

By estimate (3.1), we have

&gI& p
p, :

�� {log
2
|I |

, if *=0;

|I |*p�2, if *<0.

It is easy to verify that

inf
z # T(I )

| gI (z)| �� | gI (a)|={ log
2
|I |

, if *=0;

|I |*, if *<0.

We have therefore

+(T(I ))�C | gI (a)| &p |
D

| ga(z)| p d+(z)�C | gI (a)| &p &ga& p
p, : .

This is enough. K

Denote the tent of an open set O/�D in D by

T(O)=[z # D : [ei%: |ei%&z�|z| |<1&|z|]/O].

Lemma 3.2. Let + be a nonnegative measure on D. Then for any +
measurable function f on D and any t>0

+([z # D : | f (z)|>t])�+(T([ei% # �D : N( f )(ei%)>t])).

Lemma 3.2 was proved implicitly in [S] (see also [W3]).

Proof of Theorem 1(b). The approach in the following, which fails to
cover parts (c) and (d) of Theorem 1, is similar to the approach in [S]
(there the case p=2 is proved).
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Assume _=1&(:+1)�p. Clearly 0<_<1 is equivalent to p>:+1. For
any harmonic function f on D it is standard that there is a conjugate
harmonic function f� on D such that g= f+if� is analytic on D. By
Cauchy�Riemann equations, we have

|{f (z)|=|{f� (z)|=| g$(z)|.

These, together with (2.5), imply that for p�1

B p
_=[Re(g): g # D p

: ], and &Re(g)&B
p
_

�� &g&p, : .

Therefore estimate (1.1) is equivalent to

|
D

| f (z)| p d+(z)�C & f & p
B

p
_
, \f # B p

_ . (3.2)

We prove the ``only if '' part first. By definition, there is a function f # B p
_

such that f �1 on the set O and & f & p
B

p
_
�2cap(O; B p

_). We can assume
further that f �0 on �D, because it is easy to show (similar to the proof
of Lemma 2.3) that &| f |&B

p
_
�& f &B

p
_
. Let O=�j Oj , where [O j] are

disjoint arcs on �D. For any z # T(Oj), we have

f (z)=
1

2? |
�D

1&|z|2

|eit&z|2 f (eit) dt

�
1

2? |
Oj

1&|z|2

|eit&z|2 f (eit) dt

�
1

2? |
|eit&1|<1&|z|

1&|z|2

|eit&|z| | 2 dt

�
1

4?
.

Therefore by the fact that T(O)=�j T(Oj), we have

+(T(O))�(4?) p |
D

| f (z)| p d+(z)�C & f & p
B

p
_
�C cap(O; B p

_).

To prove the ``iff '' part, we note that by Lemma 3.2 and the assumption
we have

+([z # D: | f (z)|>t])�+(T([N( f )>t]))�C capB
p
_
([N( f )>t]).
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Hence the desired result follows from the estimate

|
D

| f (z)| p d+(z)=|
�

0
+([z # D : | f (z)|>t]) dt p

�C |
�

0
capB

p
_
([N( f )>t]) dt p,

and Theorem 2.2 and Lemma 2.3. K

Let ;>&1 and q>0. One can show that there is a constant C>0 such
that

|h(z)|�C(1&|z|2)&(;+2)�q &h&A
q
;
, \z # D, (3.3)

for all analytic functions h on D. In fact, let D(z) be the disk centered at
z with radius (1&|z|2)�4. Then the area of D(z) is (?�16)(1&|z|2)2 and
(1&|w|2) �� (1&|z|2) for w # D(z). Applying the mean value inequality to
the subharmonic function |h| p on the disk D(z), we have

|h(z)|q�
16

?(1&|z| 2)2 |
D(z)

|h(w)|q dA(w)

�C(1&|z|2)&2&; |
D(z)

|h(w)|q dA; (w)

�C(1&|z|2)&2&; &h&q
A

q
;
.

As a consequence of estimate (3.3), we have

|
D

|h(z)| 2 (1&|z|2)2(;+2)�q dA(z)

�C \|D

|h(z)|q (1&|z| 2); dA(z)+
2�q

. (3.4)

Given {>0, the following reproducing formula for A2
{ is standard:

h(z)=|
D

h(w)
(1&w� z){+2 dA{ (w), \z # D, \h # A2

{ . (3.5)

Theorem 3.3. Suppose :>&1 and :+1�p�1. A nonnegative
measure + on D is a Carleson measure for D p

: if and only if

|
D

d+(w)
|1&w� z| 2=O((1&|z|2):& p). (3.6)
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Remark. Theorem 1(c) is a consequence of Theorem 3.3, because condi-
tion (3.6) is equivalent to the estimate

+(T(I ))�C |I |:+2& p, for any arc I/�D.

In fact this result is standard for :+2& p=1 (for a proof see, for example,
[G, p. 239]). For :+2& p<1 the proof is similar.

Proof of Theorem 3.3. For a # D, consider the test function

ga(z)=
1

(1&a� z)2�p .

It is easy to check by estimate (3.1) that &ga& p
p, :

�� (1&|a|2):& p. Hence the
``only if '' part follows.

Let g # D p
: and {=2(:+2)�p. By (3.4) we have g$ # A p

: /A2
{ . Hence by

(3.5)

g$(z)=|
D

g$(w)
(1&w� z){+2 dA{ (w), \z # D.

Therefore g(z) can be reproduced from g$ by

g(z)= g(0)+|
D

(1&|w|2){

w� (1&w� z){+1 g$(w) dA(w), \z # D. (3.7)

Let ;=2:+2p+2. For fixed z # D the function g$(w)�(1&z� w){+1 is
clearly in A p

: /A p
; . Using estimate (3.3), we have

} g$(w)
(1&z� w){+1 }�C(1&|w|2)&(;+2)�p

_\|D } g$(`)
(1&z� `){+1 }

p

(1&|`| 2); dA(`)+
1�p

.

Since p�1, we write | g$(w)�(1&z� w){+1|= | g$(w)�(1&z� w){+1| p=| g$(w)�
(1&z� w){+1|1& p. Using the above estimate for the second factor, with the
fact that {&(;+2)(1& p)�p=;, we have

} g$(w)
(1&z� w){+1 } (1&|w|2){

�C } g$(w)
(1&z� w){+1 }

p

(1&|w| 2);

_\|D } g$(`)
(1&z� `){+1 }

p

(1&|`|2); dA(`)+
(1& p)�p

.
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Hence by formula (3.7) and the trivial estimate (1&|w|2)�|1&w� z|�C, we
obtain

| g(z)| p�| g(0)| p+C |
D } g$(w)

(1&w� z){+1 }
p

(1&|w|2); dA(w)

�| g(0)| p+C |
D

| g$(w)| p

|1&w� z|2 (1&|w|2) p dA(w).

Finally by Fubini's theorem and the assumption we have

|
D

| g(z)| p d+(z)

�| g(0)| p +(D)+C |
D \|D

(1&|w|2) p

|1&w� z|2 d+(z)+ | g$(w)| p dA(w)

�| g(0)| p +(D)+C |
D

| g$(w)| p (1&|w|2): dA(w)

�C &g& p
p, : .

This proof is complete. K

Proof of Theorem 1(d). The ``only if '' part is a consequence of
Lemma 3.1.

Denote by H p (Hardy space) the space of all analytic functions f on D
with f (ei%) # L p (�D). To prove the ``iff '' part, we first note that, as in the
proof of Lemma 2.4 for p=1, one can show that D1

0 /H1. It is known
that D2

1=H2. Therefore by interpolation theory, we have for 1� p�2

D p
p&1 /H p and &g&H p�C &g&p, p&1 . (3.8)

We recall that the condition +(T(I ))�C |I | for any are I/�D is equiv-
alent to the condition that the measure + is a Carleson measure for H p

with p�1. Therefore for 1< p�2 and g # D2
p&1 , we have by (3.8)

|
D

| g(z)| p d+(z)�C &g& p
H p�C &g& p

p, p&1 .

The proof is complete. K
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4. MULTIPLIERS

An analytic function f defined on D is a multiplier for D p
: if fD p

: /D p
: ,

i.e. fg # D p
: , for all g # D p

: . It is standard that, by the closed-graph theorem,
f is a multiplier for D p

: if and only if there is a constant C>0 such that

& fg&p, :�C &g&p, : , \g # D p
: .

Multipliers for Bergman spaces or Hardy spaces are just functions in H�.
However, the story of multipliers for Dirichlet spaces is different. Multi-
pliers for D2

: (0�:) and D1
: (&1<:<0) have been characterized in [S]

and [MS], respectively. There are other, incomplete, characterizations for
multipliers of the Dirichlet spaces. An interesting one is due to Verbitskii
in [V] (see also [MS, p. 182]), who found a necessary and sufficient con-
dition for an inner function to be a multiplier for D p

: with :>&1 and
min(1, :+1)< p<:+2. Conditions on multipliers from one Dirichlet
space to another are studied in [WY].

In this section we show that fD p
: /D p

: is equivalent to f # H� and
f $A p

: /D p
: . This later condition is equivalent to the condition that the

measure | f $| p dA: is a Carleson measure for D p
: . Therefore we can apply

Theorem 1.

Lemma 4.1. Suppose :>&1, p>0 and f is analytic on D. Then
fD p

: /D p
: if and only if f # H� and f $A p

: /D p
: .

Proof. The ``if '' part is trivial, because for any g # D p
: , fg # D p

: is equiv-
alent to fg$+ f $g # A p

: , but by assumption & fg$&A
p
:
�& f &H� &g$&A

p
:
. To

prove the ``only if '' part, it suffices to show f # H�.
For fixed a # D and m>&:+(:+2)�p, consider the test function

ga(z)=(1&|a| 2)m+:&(:+2)�p z&a
(1&a� z)m+: .

It is easy to verify (by (3.3)) that ga # D p
: and there is a constant C>0

such that

&ga&p, :�C, for any a # D.

Since f is a multiplier, we have ( fga)$ (z) # A p
: . Clearly

( fga)$ (a)= f $(a) ga(a)+ f (a) g$a(a)=(1&|a| 2)&(:+2)�p f (a).
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Applying the mean value inequality to the subharmonic function |( fga)$| p

on D(a), the disk centered at a with radius (1&|a|2)�4, we have

(1&|a|2)&(:+2) | f (a)| p=|( fga)$ (a)| p

�
16

?(1&|a|2)2 |
D(a)

|( fga)$ (z)| p dA(z)

�C(1&|a|2)&:&2 |
D(a)

|( fga)$ (z)| p dA: (z)

�C(1&|a|2)&(:+2) &ga& p
p, : .

This implies | f (a)|�C, for all a # D. Therefore f # H�. K

Theorem 4.2. Suppose :>&1, p>0 and f is analytic on D.

(a) For p>:+2, fD p
: /D p

: if and only if f # D p
: ;

(b) For p�:+2, fD p
: /D p

: if and only if f # H� and the measure
| f $| p dA: is a Carleson measure for D p

: .

Proof. Part (b) is a consequence of Lemma 4.1. For part (a), the ``only
if '' part is trivial. To prove the ``if '' part, we show first that D p

: /H�.
Given g # D p

: , we have g$ # A p
: . Note that p>:+2>1. The reproducing

formula of A p
: gives

g$(z)=|
D

g$(w)
(1&w� z):+2 dA: (w), \z # D.

Therefore g(z) can be recovered from g$ by

g(z)= g(0)+
1

:+1 |
D

g$(w)
w� (1&w� z):+1 dA: (w), \z # D.

Applying Ho� lder's inequality to the above integral, we get

| g(z)|�| g(0)|+C \|D

| g$(w)| p

|w|
dA: (w)+

1�p

_\|D

dA: (w)
|w| |1&w� z| p(:+1)�( p&1)+

( p&1)�p

�C &g&p, : .

This last inequality is obtained by using the last estimate of (3.3).
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Now for any g # D p
: , we have

& fg&p, : �| f (0) g(0)|+& f $g+ fg$&A
p
:

�| f (0) g(0)|+&g&H� & f $&A
p
:
+& f &H� &g$&A

p
:

�C & f &p, : &g&p, : .

The proof is complete. K
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