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Abstract

The width of a subset C of the vertices of a distance-regular graph is the maximum distance

which occurs between elements of C: Dually, the dual width of a subset in a cometric

association scheme is the index of the ‘‘last’’ eigenspace in the Q-polynomial ordering to which

the characteristic vector of C is not orthogonal. Elementary bounds are derived on these two

new parameters. We show that any subset of minimal width is a completely regular code and

that any subset of minimal dual width induces a cometric association scheme in the original.

A variety of examples and applications are considered.
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1. Introduction

Let ðX ;AÞ denote a symmetric association scheme with d classes. Thus
A ¼ fA0;y;Adg is the set of associate matrices and X is the vertex set. (For
details, see the standard Refs. [1,3,6].) With v ¼ jX j; let

E0 ¼
1

v
J;E1;y;Ed

� �
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denote the basis of primitive idempotents for the Bose–Mesner algebra A of the
scheme. For 0pipd; let vi denote the (constant) row sum of Ai and let mi denote
the rank of Ei:We will make use of the following equation, due to Roos (for a proof,
see [6, Theorem 12.6.1]):

Lemma 1 (Roos [10, Eq. (2.8)]). For any vectors x; yARv; we have

Xd

i¼0

x?Aiy

vvi

Ai ¼
Xd

j¼0

x?Ejy

mj

Ej: ð1Þ

Let CDX be a subset of the vertices of our association scheme and consider
the case where both x and y are equal to the characteristic vector, w; of C: Then we
have

MC :¼
Xd

i¼0

w?Aiw
vvi

Ai ¼
Xd

j¼0

w?Ejw
mj

Ej: ð2Þ

Since each Ai has non-negative entries, the left-hand side of (2) shows that MC is a
non-negative matrix. On the other hand, each Ej is positive semidefinite so the right-

hand side of (2) shows that MC is also positive semidefinite.
Let C be a subset of the vertices of a distance-regular graph G: The width of C is

the maximum distance (in G) which occurs between any two elements of C: The point
of departure for the present investigation is the following observation. If, in Eq. (2),
w is taken to be the characteristic vector of a subset C having width w; then the
matrix MC can be expressed as a polynomial of degree exactly w in the adjacency
matrix A of G: This polynomial has at most w roots, so we find s�Xd � w where s� is
the dual degree (defined below). In the case of equality, we find that C must be a
completely regular code in G:
A similar bound is obtained using (2) for a subset C of a cometric association

scheme. Namely, if w� is the largest integer j for which Ejwa0; then the degree s of C

is bounded below by d � w�: In the case of equality, we show that C must induce a
cometric association scheme inside the original.
We contrast these bounds to the well-known bounds of Delsarte on the minimum

distance d of a code in a metric scheme and on the strength t of a design in a cometric
scheme, namely

dp2s� þ 1; t þ 1p2s þ 1;

with the additional information that any code with dX2s� � 1 must be completely
regular and any design with tX2s � 2 must induce a cometric association scheme
inside the original.
As applications related to these parameters, we are able to rule out certain

antipodal covering graphs and we obtain new information about regular near
polygons. We finish with a discussion of examples, including fundamental
substructures in some important distance-regular graphs with classical parameters.
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In fact, subsets which achieve our bounds are surprisingly common in the classical
distance-regular graphs. As such sets arise within intrinsic structures such as regular
semilattices, we identify these particular configurations as playing a potential role in
classification theorems.

2. Width

Consider a non-empty set CDX with characteristic vector w: Let ðX ; \AÞ be a
symmetric association scheme with d classes. The degree s of C is the number of non-
identity relations which occur between members of C:

s ¼ jfia0 : w?Aiwa0gj:

The dual degree s� of C is given by

s� ¼ jfja0 : w?Ejwa0gj:

The dual degree has combinatorial significance: let the outer distribution matrix

B of C be the jX j 
 ðd þ 1Þ matrix where the entry Bxi is the number of elements

of C in relation i to the point x; so that Bxi ¼ e?x Aiw; where ex is the

characteristic vector of fxg: Then B has rank s� þ 1 (cf. [3, Lemma 2.5.1(iv), (v)
and Theorem 11.1.1 (i)]).
Now assume that ðX ;AÞ is an association scheme that is metric with respect to the

ordering A0;A1;y;Ad : Thus A1 is the adjacency matrix of some distance-regular
graph G and Ai is the distance-i relation for this graph. Let the width w of a non-
empty subset C of X be the maximum distance between two vertices in C:

w ¼ maxfi : w?Aiwa0g:

Theorem 1. Let ðX ;AÞ be a metric d-class association scheme, and let C be a non-

empty subset of X having width w and dual degree s�: Then wXd � s�: If equality

holds, then C is completely regular.

Proof. Clearly, the rank of B is not less than the number of distinct values taken by
dðx;CÞ; and hence s� þ 1Xd � w þ 1: (This is a special case of the result that s� is an
upper bound for the covering radius, cf. [3, Theorem 11.1.1(ii)].)
Now assume that equality holds. We have to show that Bxi does not depend on x

but only on its distance l ¼ dðx;CÞ to C: Choose two points y; zAC with dðy; zÞ ¼ w;
and choose points ziAX with dðy; ziÞ ¼ w þ dðz; ziÞ ¼ w þ i ð0pipd � wÞ: Then the
rows of B indexed by the zi are linearly independent and since d � w þ 1 ¼ s� þ 1 ¼
rk B; they span the row space of B; so that the row indexed by x is a linear
combination of these. But no zi with iol can be involved, since Bxi vanishes for iol:
And no zi with i4l can be involved, since Bxj vanishes for j4l þ w while Bzij

vanishes for j4i þ w but is nonzero for j ¼ i þ w: Since the rows of B have constant
row sum jCj we see that the row of B indexed by x equals the row of B indexed by zl ;
as desired. &
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Since Ej is symmetric and idempotent we have w?Ejw ¼ jjEjwjj2 so that the

vanishing of w?Ejw is equivalent to that of Ejw: In case of equality in the theorem

above we have some additional information about the j for which this happens.

Proposition 1. Suppose ðX ;AÞ is a metric association scheme where A1 has eigenvalues

y04y14?4yd : Suppose C is a non-empty subset of X with width w and dual degree

s�; where w ¼ d � s�: Let J ¼ fj : Ejw ¼ 0g: If w is even, then J can be partitioned into

pairs of the form fj; j þ 1g: If w is odd, then dAJ and J\fdg can be partitioned in

this way.

Proof. Consider the matrix MC of (2). It is a linear combination of A0;y;Aw and
hence MC ¼ gðA1Þ for some polynomial g of degree w: Since A1 ¼

P
yjEj and the Ej

are mutually orthogonal idempotents, we find MC ¼
P

gðyjÞEj: Comparing

coefficients with (2) we see that mjgðyjÞ ¼ w?Ejw so that gðyjÞ vanishes for precisely
w values of j: Since g has degree w there cannot be other zeros, and since gðyiÞX0
for all i (because MC is positive semidefinite), the zeros must be distributed as
described. &

3. An algebraic proof of Theorem 1

In this section, we provide a second proof of Theorem 1. The proof yields
additional information concerning the case of equality in our bound.

Proof. The inequality wXd � s� is clear from our earlier discussion. Assume now
that C is a subset of X satisfying w ¼ d � s�: Let w denote the characteristic vector of
C and define

J ¼ fj : Ejw ¼ 0g:

Let xAX with dðx;CÞ ¼ l and consider the vector

b ¼ ½b0;y; bw�;

where bi :¼ Bx;lþi: (Note that Bxi ¼ 0 for iol and for i4l þ w:) Since Bxi is the

x-entry of Aiw; the x-entry of vEjw is
Pd

i¼0 QijBxi: Thus b satisfies the equations

Xw

i¼0
bi ¼ jCj; ð3Þ

Xw

i¼0
Qlþi;jbi ¼ 0 ðjAJÞ: ð4Þ

In order to prove that our code C is completely regular, it suffices to show that the
above system of w þ 1 equations is full rank.
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We set the first equation aside for now and rephrase this question as a question
about submatrices of the second eigenmatrix Q of our metric scheme. If R is the
submatrix of Q obtained by restricting to columns indexed by jAJ; we wish to prove
that any w consecutive rows of R are linearly independent. First, consider the square
submatrix of R consisting of rows indexed 0;y;w � 1: Since the scheme is metric,
this can be factored as TVN where T is an invertible lower triangular matrix, V is a
Vandermonde matrix and N is an invertible diagonal matrix, so this submatrix is
invertible.
For 0plpd � w let Rl denote the submatrix of R obtained by restricting to rows

l; l þ 1;y; l þ w: We prove by induction on l that the last w rows of Rl are linearly
independent.
Suppose that lX0 and that the last w rows of Rl are linearly dependent. Since the

first w rows of Rl are linearly independent (by induction), it follows that there is a
vector y such that Rly has only its first entry different from zero.
Let b be the vector defined above for a vertex x with dðx;CÞ ¼ l: Then bRl ¼ 0

and so

0 ¼ bðRlyÞ;

which implies that the first entry of b; namely Bxl ; is zero. This contradicts our choice
of x with dðx;CÞ ¼ l:
So Rl has rank w for each 0plpd � w: Now either the all-ones vector is a linear

combination of the columns of Rl or system (3)–(4) has full rank. The former
alternative implies that (3)–(4) is an inconsistent system; yet any vertex x at distance l

from C provides a solution b: So we conclude that the system has full rank. Thus the
parameters Bxi are uniquely determined by dðx;CÞ and C is a completely regular
code. &

We require an additional definition before presenting the next corollary. For
CDX with characteristic vector w; the dual degree set of C is given by

fja0 : Ejwa0g:

Corollary 1. Let ðX ;AÞ be a metric d-class association scheme, let JDf1;y; dg; and

let w ¼ jJj: Consider submatrices Ne of the first eigenmatrix P obtained by restricting

to rows indexed by elements of J and columns indexed by e; e þ 1;y; e þ w � 1: If any

Ne is singular, then X contains no set having width w and dual degree set f1;y; dg\J:

In fact, given the dual degree set of a hypothetical set C satisfying w ¼ d � s�; the
above proof shows that we may solve a system of equations to obtain all of the
distinct rows of the outer distribution matrix B of C: Of course the solutions must all
be non-negative integers if such a set is to exist. In this way, we obtain additional
feasibility conditions. Some calculations along these lines are outlined at the end of
the paper.
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4. Dual width

In this section we consider an association scheme ðX ;AÞ which is cometric with
respect to the ordering E0;y;Ed of its primitive idempotents. For a non-empty
subset C of X ; the dual width w� of C is defined by

w� ¼ maxfj : w?Ejwa0g:

Theorem 2. Let ðX ;AÞ be a cometric d-class association scheme, and let C be a non-

empty subset of X having dual width w� and degree s: Then w�
Xd � s: If equality

holds, then C; together with the non-empty restrictions to C of the relations of ðX ;AÞ;
is a cometric s-class association scheme.

Proof. The inequality is derived from (2) as follows. Since Ej can be expressed as a

3-polynomial of degree j in E1; the matrix MC can be expressed as a 3-polynomial

of degree w� in E1: Such a polynomial can have at most w� roots, so wT Aiw ¼ 0 for
at most w� values of i; that is, d � spw�:

For a matrix M with rows and columns indexed by X ; let M denote the submatrix

of M obtained by restricting row and column indices to C: Then A :¼ fM : MAAg
is an ðs þ 1Þ-dimensional vector space of symmetric matrices which contains I and J

and is closed under entry-wise multiplication. Thus, to show that it is the Bose–

Mesner algebra of an association scheme, it suffices to prove that A is closed under
ordinary matrix multiplication (see [3, Theorem 2.6.1]).

Lemma 2. For jk � lj4w� we have EkEl ¼ 0:

Proof. Let D be the diagonal matrix with Dxx ¼ 1 if xAC and Dxx ¼ 0 otherwise.

Using jjMjj2 ¼ tr M?M and tr AB ¼ tr BA and the fact that Ek and El are
symmetric and idempotent, we find

jjEkDEl jj2 ¼ trDEkDEl

¼
X

y;zAC

ðEk3ElÞyz ¼ w?ðEk3ElÞw ¼ 1

v

X
j

q
j
klw

?Ejw:

For jk � lj4w� all terms on the right-hand side vanish, so EkDEl ¼ 0; and

EkEl ¼ EkDEl ¼ 0: &

Let Ej :¼ /E0;y;EjS: Assuming d � s ¼ w�; we show by induction on j that

AEj ¼ EjA ¼ Ej ð0pjpsÞ and that Es ¼ A:

Step 1: The set fE0;y;Ej�1;Ed�sþj ;y;Edg is a basis for A for 0pjps þ 1: In

particular, Es ¼ A:
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Proof. First, consider j ¼ s þ 1: Let i be the smallest index such that Eiþ1 is linearly

dependent on E0;y;Ei: Then /E0;y;EiS is closed under entry-wise multiplication

by E1; hence contains all Ej ; hence equals A; so that i þ 1 ¼ dimA ¼ s þ 1:

Now let j ¼ 0: To prove that fEd�s;y;Edg is a basis, let i be the smallest index

such that Ed�i�1 is linearly dependent on Ed�i;y;Ed : Then /Ed�i;y;EdS is closed

under entry-wise multiplication by E1; hence contains all Ej; hence equals A; so that

i þ 1 ¼ dimA ¼ s þ 1:

Now suppose 1pjps: The sets fE0;y;Ej�1g and fEd�sþj; y;Edg are both

contained in bases, hence they are linearly independent. For the positive definite

inner product ðM;NÞ ¼ tr M?N the two sets are orthogonal by the lemma, so their
union is independent. &

Step 2: (a) The set fE0;y;Ej�1; I ;Ed�sþjþ1;y;Edg is a basis for A for 0pjps:

(b) AEj ¼ EjA ¼ Ej for 0pjps:

Proof. Induct on j: For j ¼ �1 part (b) is true. Assume that part (b) is true for j � 1;

and write I on the basis

fE0;y;Ej�1;Ed�sþj;y;Edg:

If the coefficient of Ed�sþj in this expression is zero, then multiply both sides by Ej :

Using induction and the lemma, we get an expression of Ej in terms of elements of

EjEj�1DEj�1; which is impossible by Step 1 (with j ¼ 0). Thus the coefficient of

Ed�sþj in the expression for I is nonzero, and part (a) follows.

Now consider AEj: Using the basis of A found in part (a) and induction and the

lemma, we find part (b). &

So far we have found that C induces an s-class association scheme. It remains to

show that the scheme is cometric. Each Ej is closed under multiplication and hence

has a basis of mutually orthogonal idempotents. Going from Ej�1 to Ej either all old

minimal idempotents remain minimal, and we get one new minimal idempotent, or
all old minimal idempotents except one remain minimal, while one idempotent that

was minimal in Ej�1 is the sum of two minimal idempotents in Ej : (Proof: write the

old idempotents on the basis of the new minimal idempotents. Then all coefficients
are 0 or 1, and mutually orthogonal idempotents have the 1’s in different places.) In
our case we can rule out the latter possibility: If F ¼ F 0 þ F 00; where F is a minimal

idempotent in Ej�1 and F 0;F 00 are minimal idempotents in Ej; then multiply by

Ed�sþj to find Ed�sþjF
0 ¼ �Ed�sþjF

00; so that

Ed�sþjF
0 ¼ Ed�sþjF

0F 0 ¼ �Ed�sþjF
00F 0 ¼ 0;

and hence Ed�sþjEj ¼ 0; impossible. Thus, the minimal idempotents of Ej�1 remain

minimal in Ej; and we find that A has minimal idempotents F0;y;Fs with
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Ej ¼ /F0;y;FjS for each j: Since the elements of Ej\Ej�1 are 3-polynomials of

degree j in E1 (and hence in F1), the scheme on C is cometric. &

Proposition 2. Suppose ðX ;AÞ is a cometric association scheme with respect to E1

where

E1 ¼
Xd

h¼0
shAh

and s04s14?4sd : Suppose C is a non-empty subset of X with dual width w� and

degree s; where w� ¼ d � s: Let H ¼ fh : w?Ahw ¼ 0g: If w� is even, then H can be

partitioned into pairs of the form fh; h þ 1g: If w� is odd, then dAH and H\fdg can be

partitioned in this way.

Proof. Analogous to the proof of Proposition 1. &

5. The case w þ w� ¼ d

In this section, we consider some subsets which achieve equality in both the bound
of Theorem 1 and the bound of Theorem 2. Throughout this section, ðX ;AÞ denotes
a metric and cometric association scheme and G denotes the graph corresponding to
A1: For a subset C of X ; we have the following inequalities:

spw; s�pw�;

w þ s�Xd; w� þ sXd:

It follows that w þ w�
Xd and if w þ w� ¼ d; then equality is achieved in each of the

four inequalities above as well. (Note that the perfect code in the Hamming graph
Hð4; 3Þ satisfies w þ s� ¼ d ¼ w� þ s; yet w ¼ w� ¼ 3:)

Theorem 3. If CDX satisfies w þ w� ¼ d; then C induces a cometric association

scheme in ðX ;AÞ: If this induced scheme is primitive, it is metric as well.

Proof. The first statement follows immediately from Theorem 2. Let D be the
subgraph of G induced by C: Since the induced scheme is primitive, D is connected.
Since s ¼ w; we see that distance in D is the same as distance in G: In particular,

Ai; 0pipw; is the matrix of the distance-i relation for D: Therefore, D is a distance-
regular. &

Suppose ðX ;AÞ is a metric/cometric translation scheme [3, p. 65] corresponding to
a distance-regular graph G (e.g. a Hamming graph). Suppose further that C is a
subgroup of the abelian group X satisfying w þ w� ¼ d: Then, as in [3, Corollary
11.1.7], the coset graph G=C is distance-regular.
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Theorem 4. If C is an abelian subgroup of a cometric translation distance-regular

graph G satisfying w þ w� ¼ d and the quotient graph G=C is primitive, then it is also

cometric.

Proof. Observe that the dual degree set of C is f1;y;w�g: Each coset of C

represents a single vertex of the quotient scheme. Choose a set of coset
representatives fxhg and let M be the 01-matrix with rows indexed by cosets and
columns indexed by vertices, having a one in position ðC0; xhÞ if xh is the chosen
representative for coset C0: For 0pjpw�; the column of the jth primitive idempotent
of the quotient scheme indexed by C is then uj ¼ ajMEjw for some nonzero scalar aj :

We have

ui3uj ¼
jCj
jX j

Xw�

k¼0
q̃k

i;j uk;

where q̃k
i;j is the Krein parameter of the quotient scheme.

As C is completely regular, the space

/E0w;E1w;y;Ew�wS

is closed under entry-wise multiplication. Since the original association scheme is
cometric, we have

ðEiwÞ3ðEjwÞA/E0w;E1w;y;EiþjwS ð5Þ

using [1, Proposition II.8.3(i)]. This means that q̃k
i;j will vanish if k4i þ j: It remains

only to show that q̃
iþj
i;j 40 whenever i þ jpw�: But this is guaranteed by

primitivity. &

Some of the most important families of association schemes are associated to
regular semilattices (for a definition, see [5]). In such schemes, each object in the
semilattice gives rise to a code in the association scheme which achieves equality in
all of our bounds. For simplicity, we assume that the semilattice has exactly d levels;
i.e., any object has rank r for some 0prpd: The definition of a regular semilattice is
rather cumbersome and the proof of the following theorem involves little more than
this definition, so we omit both.

Theorem 5. Let ðL;$Þ be a regular semilattice [5] with its induced metric/cometric

association scheme on the set X of elements of maximal rank. Let tAL be an object of

rank w�pd: Then the set

C ¼ fxAX : t$xg

has dual width w� and width w ¼ d � w�:

We will say that a code C arising in this way is of semilattice type. This theorem
gives us examples in the Hamming and Johnson graphs as well as their respective
q-analogues, the bilinear forms graphs and Grassmann graphs. In each case, the set
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C induces a metric/cometric scheme belonging to the same family as the original
(with all classical parameters preserved except the diameter).
For the Hamming and Johnson graphs, we may use results of Meyerowitz to

obtain a complete classification of subsets C satisfying w þ w� ¼ d:

Theorem 6 (Meyerowitz [9]). Let C be a completely regular code of strength zero in

the Johnson graph Jðv; dÞ defined on point set O ¼ f1;y; vg: Then there exists a subset

TDO such that either C ¼ fx : xDTg or C ¼ fx : TDxg:

Proof. Suppose that Jðv; dÞ is defined on the collection X of d-element subsets of the
v-set O: Let W be the 01-matrix with columns indexed by O; rows indexed by X ; and
having a one in position ðx; aÞ if aAx: Then the column space of W is V0"V1

[4, p. 47] and hence ðE0 þ E1Þw ¼ Wx for some vector x with entries indexed by O:
For xAX ; we know that the x entry of E1w depends only on h ¼ dðx;CÞ: denote
this value by oh: Moreover, from [7], we have

o04o14o24? :

On the other hand,

oh þ
jCj
v

¼
X
aAx

xa:

Now if we consider adjacent vertices xACi and yACj; say y ¼ x,fag � fbg; then

oi � oj ¼ ðE1wÞx � ðE1wÞy ¼ xa � xb:

So if xAC0; there are only two possible values for xa � xb where aAx; bex: Thus x is
constant on either x or O� x: It quickly follows that x takes on exactly two values
on O; thereby partitioning it into two sets, T and O� T : Then C0 is clearly the set of
vertices x having maximal incidence with T : &

Theorem 7 (Meyerowitz, unpublished). Let C be a completely regular code of

strength zero in the Hamming graph Hðd; qÞ defined over the alphabet Q Then there

exist coordinate indices 1pi1o?oid�wpd and elements a1;y; ad�wAQ such that

C ¼ fx : xi1 ¼ a1;y; xid�w
¼ ad�wg:

Proof (Sketch). The vertex set X is given as Qn where jQj ¼ q: Let W denote the 01-
matrix with rows indexed by X and columns indexed by f1;y; ng 
 Q wherein the
entry in row x column ði; aÞ is one if xi ¼ a: Then it has been shown [5] that the
column space of W is V0"V1 and each vector in V1 can be uniquely expressed
in the form Wx where

P
a xi;a ¼ 0 for each i; 1pipn: Now write E1w ¼ Wx: As in

the previous proof, there exist constants o04o14? such that, for xACh; the x

entry of E1w is equal to oh: Now consider xAC0 and y a neighbour of x in Hðd; qÞ:
Then ðE1wÞx � ðE1wÞy ¼ xi;a � xi;b for some coordinate i and some aab in Q: Since

this difference can take on at most two values, we find that, for fixed i; xi;a takes at

most two values. Testing a variety of adjacent pairs x and y; we eventually find that,
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for a coordinate i; either x is constant on pairs ði; aÞ or there is one exceptional value
aAQ with xi;a4xi;b for baa and the remaining values xi;b all coincide. &

Theorem 8. (1) If ðX ;AÞ is a Hamming scheme Hðd; qÞ and C is a subset of X ¼ Qd

with w þ w� ¼ d; then C is isomorphic to a set of the form

C0 ¼ fxAX : xi ¼ 0 for ipd � wg;

where 0AQ:

(2) If ðX ;AÞ is a Johnson scheme Jðv; dÞ defined on point set O ¼ f1;y; vg and C is

a subset of X with w þ w� ¼ d; then C is isomorphic to one of the two sets

C1 ¼ fxAX : f1;y; d � wgDxg ðvX2dÞ;

C2 ¼ fxAX : xDf1;y; d þ wgg ðv ¼ 2d onlyÞ:

Proof. If C satisfies w þ w� ¼ d; then C must be a completely regular code by
Theorem 1. But s� ¼ w� implies that E1wa0: So in these families with natural Q-
polynomial ordering, C is a completely regular code of strength zero. Applying
Theorems 7 and 6, we obtain our result. &

6. Antipodal covers

Antipodal covers of distance-regular graphs were studied in [2], mainly using
connectedness arguments. Here we find restrictions on covers using the width and
dual degree of codes in the graph.
Delsarte showed that a clique C in a distance-regular graph G has size at most

1� k=yd where k is the valency and yd is the smallest eigenvalue of G: (See
[3, Proposition 1.3.2] or [4, Eq. (3.23)].) A clique attaining this bound is called a
Delsarte clique. It is easy to verify that a Delsarte clique has dual degree d � 1 and a
clique which is not a Delsarte clique has dual degree d: Delsarte cliques are rather
common. For example, all Hamming, Johnson, Grassmann, bilinear forms and dual
polar graphs contain such cliques. Corollary 2 implies that graphs with a Delsarte
clique cannot have an antipodal cover of odd diameter.

Theorem 9. Suppose G is a distance-regular graph of diameter d containing a code C

having width w and dual degree s�: If G has an antipodal cover of diameter D; where

D43w; then wXD � 1� 2s�:

Proof. Let D be an antipodal r-cover of G of diameter D: (Then DAf2d; 2d þ 1g:)
The condition 3woD ensures that we can lift C to a code C0 in D that is isometric to
C: pick xAC and fix x0 arbitrarily in the fibre of x; for each yAC let y0 be the point in
the fibre of y at distance at most w from x0 (unique since 2woD); now if y; zAC and
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dðy; zÞ ¼ i; then dðy0; z0ÞAfi;D � ig and since D � w42w the triangle inequality
implies dðy0; z0Þ ¼ i:
Let G and D have distance-j matrices Aj and Bj; respectively, and let w; w0 be the

characteristic vectors of C and C0:
Consider the matrix MC of (2) and its analog MC0 : Since woD=2; the polynomial

expressing Bj in terms of B1 is the same as the polynomial expressing Aj in terms of

A1 for 0pjpw: From the previous paragraph, we have w0?Bjw0 ¼ w?Ajw: So we find

that if g is the polynomial of degree w for which MC ¼ gðA1Þ; then MC0 ¼ 1
r

gðB1Þ
using the fact that D has r times as many vertices as G:
Let y04y14?4yd be the distinct eigenvalues of G (that is, of A1), and let

t04t14?4tD be those of D (that is, of B1). Then yj ¼ t2j ð0pjpdÞ (see [3, p.

142]). Since MC0 is positive semidefinite, with eigenvalues gðtiÞ ð0pipDÞ not more
than about half of the zeros of g can be among the yj : we find for each zero yj of g

one more in ½t2j�1; t2jþ1� (counting multiplicities of roots) except possibly in case

j ¼ d and D ¼ 2d: Thus, if D ¼ 2d þ 1 then wX2ðd � s�Þ; and if D ¼ 2d then
wX2ðd � s�Þ � 1: &

Note: The hypothesis D43w can be weakened to D42w þ a where
S

1pjpa Gj

induces a connected graph on C: (Here, Gj is the distance-j graph of G:)

Corollary 2. Under the hypotheses of the theorem, if w ¼ d � s� and w40 then w ¼ 1
and D ¼ 2d:

It is not true that the existence of any subset satisfying w ¼ d � s� precludes the
existence of a cover; the following example illustrates the need for additional
conditions of the sort appearing in the above theorem.

Example 1. Let G be the folded 6-cube of diameter d ¼ 3: It has an antipodal cover
of diameter D ¼ 6: G is bipartite. Let C be one of the bipartite classes. Then C has
width w ¼ 2 and dual degree s� ¼ 1:

7. Regular near polygons

A regular near polygon is a distance-regular graph G; of diameter d say, which
contains no induced subgraph isomorphic to K4 � e (i.e., a graph on four vertices
with all pairs adjacent but one) and in which any maximal clique C contains a unique
nearest vertex to any vertex x in G (cf. [3, Section 6.4]). A regular near polygon is
thick if its singular lines have size at least three. If G is thick and c2X2; then a result
of Shult and Yanushka [11] guarantees that any two vertices at distance two in G lie
in a unique common quad (geodetically closed subgraph of diameter two—which is
necessarily the collinearity graph of a generalized quadrangle). We now use the
existence of quads to obtain spectral information about G:
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Theorem 10. Let G be a thick regular near 2d-gon with quads. Then the second

smallest eigenvalue of G satisfies

yd�1Xa1 þ 1� b1

ða1 þ 1Þðc2 � 1Þ:

Equality holds in this bound if and only if every quad in G achieves the bound of

Theorem 1 with equality.

Proof. Let C be the vertex set of a quad in G: The inner distribution of C is

a ¼ ½1; c2ða1 þ 1Þ; ðc2 � 1Þða1 þ 1Þ2; 0;y; 0�:

The condition w?EjwX0 gives

1þ c2ða1 þ 1Þo1 þ ðc2 � 1Þða1 þ 1Þ2o2X0;

where

o1 ¼
yj

k
; o2 ¼

y2j � a1yj � k

kb1
:

So there can be no eigenvalue in the open interval

�k

a1 þ 1
; a1 þ 1� b1

ða1 þ 1Þðc2 � 1Þ

� �
:

Now set k=ða1 þ 1Þ ¼ t þ 1; the number of lines through any point in the geometry.
It is well known that the smallest eigenvalue of G is �ðt þ 1Þ: So the second smallest
eigenvalue must satisfy

yd�1Xa1 þ 1� b1

ða1 þ 1Þðc2 � 1Þ:

It is now easy to check that a quad C in G satisfies w?Edw ¼ 0: So, by Proposition

1, C meets the bound of Theorem 1 if and only if w?Ed�1w ¼ 0; i.e., precisely when
our bound on yd�1 is tight. If this holds for one quad in G; then it holds for all
quads. &

One example where this is the case is the binary Hamming scheme Hðd; 2Þ ðyd�1 ¼
2� dÞ: More interesting perhaps are the quads in the dual polar spaces.

Example 2. If G is (the point graph of) a dual polar space, any two vertices x and y

at distance two in G determine a unique quad, which is also a dual polar space.
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A simple calculation shows that all such quads meet the bound of Theorem 1 and, as
G is cometric with respect to the standard ordering of its eigenvalues, we have
w þ w� ¼ d: So the bound w�

Xd � s is tight as well.

8. Examples

Let us now discuss further examples where equality holds in the bounds we have
given. Since we anticipate that such sets may play a role in the further study of
distance-regular graphs, we tend to be rather inclusive here.
If ðX ;AÞ is a metric association scheme and CDX satisfies w ¼ d � s�;

then we say that C is w-narrow or simply narrow. Similarly, if ðX ;AÞ is
cometric and C satisfies w� ¼ d � s; then we say that C is w�-dual narrow or dual

narrow.
We have already seen examples of narrow and dual narrow subsets in Hamming

and Johnson graphs as well as their q-analogues.

Example 3. If G is a distance-regular graph with valency k and smallest eigenvalue
yd ; then any clique C having cardinality 1� k=yd is 1-narrow (Delsarte clique). For
example, any edge in a bipartite distance-regular graph has this property. Moreover,
if G is cometric with respect to the natural ordering of its eigenvalues, then C is
ðd � 1Þ-dual narrow as well.

Example 4. Let G be a bipartite distance-regular graph of odd diameter and let
CDX be one colour class of vertices of G: Then C is ðd � 1Þ-narrow.

Example 5. Let C3 ¼ f000; 011; 101; 110g be the set of even weight words in Hð3; 2Þ:
Then, for any kX1 and any cX0; C ¼ Ck

3 
 f0; 1gc is a completely regular code in

Hð3k þ c; 2Þ having width w ¼ 2k þ c and dual degree s� ¼ k: The dual width of
such a code is 3k and the degree is k þ c; so these examples meet only one of our
bounds.

Example 6. Let C>
3 ¼ f000; 111g: Then, for kX1 and cX0; ðC>

3 Þk 
 f0gc is a code
in Hð3k þ c; 2Þ having dual width w� ¼ 2k þ c and degree s ¼ k: Clearly, the
association scheme induced by C is isomorphic to Hðk; 2Þ:

Example 7. In the d-cube Hðd; 2Þ; let x be any vertex having odd Hamming weight,

then C ¼ f0; xg has degree one and dual width d � 1: The dual code C> satisfies
w ¼ d � s� with w ¼ d � 1:

Example 8. In the halved 6-cube, one can find both the 4
 4 grid and Shrikhande’s
graph as subgraphs. In both cases, the vertex set C is 2-narrow with dual degree
set f3g:
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Example 9. In the halved 7-cube, the simplex code (dual to the binary Hamming
code) is 2-narrow with dual degree set f3g:

Example 10. The line graph of Petersen’s graph is an antipodal cover of the
complete graph K5 with antipodal fibres of size three. It is possible (in a unique way)
to choose one vertex from each antipodal class to obtain a code C having any two
vertices at distance two. This set has w ¼ 2 and s� ¼ 1:

Example 11. It is known that a linked system of symmetric designs [8] gives rise to an
imprimitive cometric 3-class association scheme. The vertex set X is naturally
partitioned into m sets of objects

X ¼ P1,?,Pm

and in the graph G; given by A1 say, we have the incidence graph of a square 2-design
between any two of these. The graph corresponding to A3 is complete on eachPi and
has no other edges. Under any Q-polynomial ordering, the mapping from X into the
eigenspace V3 is non-injective with the vertices in Pi all mapping to the same point

and the m images so obtained forming a regular simplex in Rm�1:

Suppose CDX has exactly one element from each Pi and that any two elements of
C are adjacent in G: Then C has w� ¼ 2 and s ¼ 1:

Example 12. A cometric association scheme ðX ;AÞ is Q-bipartite [3, p. 241] if its

Krein parameters satisfy qk
ij ¼ 0 whenever i þ j þ k is odd. In such a scheme, each

fibre in the Q-bipartite system of imprimitivity has size two and there are jX j=2 such
fibres. (Proof: E1 has no repeated columns, but E2 does. Since E2 ¼ 1

q2
11

ðE13E1 �
m1E0Þ; the angle between two vectors E1ex and E1ey with x and y in the same fibre is

either zero or p:) Any fibre in a Q-bipartite d-class scheme (d odd) has w� ¼ d � 1
and s ¼ 1: As a special case, if G is a cometric antipodal distance-regular graph of
odd diameter, then any antipodal class in G is ðd � 1Þ-dual narrow.

Examples having small width in the Hamming schemes: For small width, most w-
narrow codes in the Hamming graphs are of semilattice type. Suppose C is a subset
of the vertex set of Hðd; qÞ and satisfies w þ s� ¼ d: If E1wa0; then C is a completely
regular code of strength zero and, applying Theorem 7, C is of semilattice type and
satisfies w þ w� ¼ d:
A 1-narrow code in Hðd; qÞ is a Delsarte clique and these are of semilattice type.

Next assume that C is a 2-narrow code in Hðd; qÞ which is not of semilattice type.
Then E1w ¼ 0: If we write the inner distribution of C as a ¼ ½1;f1;f2; 0;y; 0� and
use Proposition 1, from which E1w ¼ 0 forces E2w ¼ 0; we obtain two equations in
the unknowns f1 and f2 and we find that f1 is negative for all values dX2; qX2
with one exception: d ¼ 3; q ¼ 2: Clearly, the words of even weight in Hð3; 2Þ give
the unique code with these properties.
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By the same token, if C is a 3-narrow subset in Hðd; qÞ; then either C has strength
zero or we have E1w ¼ E2w ¼ Edw ¼ 0: One example is the perfect Hamming code in
Hð4; 3Þ: (Note that all Hamming codes have s� ¼ 1; but this is the only Hamming
code with wod:) Another example is found in Hð4; 2Þ; namely

C ¼ f000; 011; 101; 110g 
 f0; 1g:

If C is any other example with inner distribution a ¼ ½1;f1;f2;f3; 0;y; 0�; then we
may solve for the fi and, knowing f2X0; we obtain

ðd; qÞAfð4; 2Þ; ð4; 3Þ; ð5; 2Þ; ð6; 2Þg:

Our two examples arise from the first two parameter sets while for the last two
parameter sets, we find f1o0:

Examples having small width in the Johnson schemes: Similar considerations allow
us to classify 2-narrow sets in the Johnson graphs Jðv; kÞ: Aside from the examples of
semilattice type, we find two designs, namely a 2-design with ten blocks in Jð6; 3Þ and
the Fano plane in Jð7; 3Þ:
There is only one example of a 3-narrow set in Jðv; kÞ which is not of semilattice

type. This can be constructed as follows. Consider a copy of the affine plane
AGð2; 3Þ: Impose a cyclic ordering on the three lines in each of the four parallel
classes. As blocks of our design C; take all antiflags fPg,c in AGð2; 3Þ having the
property that the lone point P lies on the line following c in the cyclic ordering. With
a bit of work, one may show that this is the only design having width three and dual
degree one in Jð9; 4Þ:
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