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In this paper, based on the principles of gauge/gravity duality and considering the so called hydrodynamic 
limit we compute various charge transport properties for a class of strongly coupled non-relativistic
CFTs corresponding to z = 2 fixed point whose dual gravitational counter part could be realized as the 
consistent truncation of certain non-relativistic Dp branes in the non-extremal limit. From our analysis 
we note that unlike the case for the AdS black branes, the charge diffusion constant in the non-relativistic
background scales differently with the temperature. This shows a possible violation of the universal 
bound on the charge conductivity to susceptibility ratio in the context of non-relativistic holography.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Overview and motivation

For the past several years, the quantum critical theories with anisotropic scaling namely,

t → λzt, x → λx (1)

have received renewed attention due to their remarkable connection with the holographic principle [1]. The anisotropic scaling of the 
above type (1) could in principle be realized in various condensed matter applications, for example in the so called cold atom systems 
which are the perfect experimental realizations of fermions at unitarity. These are the systems where it is indeed difficult to carry 
out perturbative calculations and therefore difficult to solve them analytically. Non-relativistic CFTs (with the scale invariance of the 
above type (1)) corresponding to the z = 2 fixed point exhibit the so called Schrödinger symmetry whose isometry group consists of the 
generators corresponding to time translation (H), spatial rotations (Mij ), spatial translations (Pi ), Galilean boosts (Ki ), special conformal 
transformation (C ), dilatation (D) and the number operator (N).

It was realized for the first time in [2,3] that the Schrödinger isometry group in D + 1 dimensions (which is basically the symmetry 
group corresponding to fermions at unitarity for D = 2) could in principle be realized holographically as a dual of D + 3 dimensional 
geometry where the additional dimension was required in order to understand the Galilean boosts, special conformal transformation and 
the mass operator. Saying it in other way, the additional two directions could be thought of as the light cone directions where one of the 
light cone coordinates plays the role of time and the other direction turns out to be a null circle with certain periodicity that could be 
related to the particle number of the dual non-relativistic CFT at strong coupling. The holographic model that was originally proposed in 
[2,3] had been found to describe the large N limit of the so called non-relativistic CFTs at zero temperature as well as at zero chemical 
potential (μ). These solutions had been found to have their natural embedding into type IIB string theory and were generated from the 
extremal D3 branes by applying so called Null Melvin Twist [4]. Later on this construction has been further extended for systems with 
finite temperature as well as chemical potential with a number of possible applications in different directions [4–35]. The underlying 
principle behind these holographic constructions rests on the fact that there must be some original string theory description which in the 
low energy limit produces some effective gravitational description whose isometry group in stead of being the usual Poincare group is the 
Schrödinger group which is eventually the symmetry group of fermions at unitarity.

In the context of AdS/CFT duality it is the celebrated fact that the hydrodynamic description of large N CFTs could be best described in 
terms of a dual gravitational theory embedded in an Anti-de Sitter (AdS) space in the presence of black holes where using the so called 
holographic principles one can in fact calculate the various transport coefficients of the fluid at strong coupling. Surprisingly it has been 
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observed that for a large class of CFTs (that admit dual gravitational description embedded into an AdS space) these transport coefficients 
could be uniquely fixed in terms of thermodynamics and in particular it has been observed that for D ≥ 2 + 1 the so called Einstein’s 
relation namely the ratio between the DC electrical conductivity (σDC ) and charge susceptibility (χ ) is universal [36–41],

D = σDC

χ
= 1

4π T

D

D − 2
. (2)

The above universality (2) could be thought of as an artefact of the universal connection between the hydrodynamic transport coefficients 
(that describes the physics at large distances) to that with the central charges (that describes the physics at short distances) for a large 
class of CFTs in more than two dimensions.

Keeping the spirit of these analyses and considering the so called hydrodynamic limit the purpose of the present article is to explore the 
above universality bound for finite temperature non-relativistic (large N) CFTs corresponding to z = 2 fixed point whose dual gravitational 
counterpart in the non-extremal limit could be realized as a consistent truncation of non-relativistic Dp branes that may or may not 
preserve the hyperscaling.

In our analysis we consider the hyperscaling preserving non-extremal Reissner–Nordström–Schrödinger black branes [42,43] (RNSch5) 
in (4 + 1) dimensions and compute the above ratio (2) over that background. In order to address this issue, what one essentially needs to 
compute is the retarded Minkowski correlators for RNSch5 black branes following the standard prescription of [38,39]. This in fact enables 
us to extract the DC conductivity for such systems and to check the Einstein’s relation for the first time in the context of non-relativistic
branes.1

To summarize the key findings of our analysis, we note that the diffusion constant (D = σDC /χ ) for non-extremal RNSch5 black branes 
eventually shows a different scaling with the temperature namely,

D ∼ T −3. (3)

A few comments are to be made at this stage regarding the above result in (3). First of all, one should take a note on the fact that like 
the η/s ratio, the σDC /χ ratio (for a certain class of non-relativistic CFTs in the large ’t Hooft coupling limit) also does not depend on 
the powers of N which is in spirit is quite similar to what is observed for the pure AdS black branes. On the other hand, this result is 
dramatically different from that of the usual bound as mentioned in (2). This observation therefore clearly confirms the non-universality
of the ratio (2) in the context of non-relativistic branes. Such a deviation from the universality is the consequence of the fact that in the 
non-relativistic limit there is no upper bound for the speed of light (υ → ∞) and therefore the above bound (2) is expected to be violated 
in the non-universality scenario [36].

The organization of the paper is the following: In Section 2, we briefly discuss the basic holographic set up in order to describe the 
dual non-universality hyperscaling preserving CFTs corresponding to z = 2 fixed point. In Section 3, following the prescription of [38,39]
we compute the charge diffusion coefficient (D) for hyperscaling preserving CFTs at strong coupling. Finally, we conclude in Section 4.

2. The model

Before we actually start our analysis, it is always good to have a brief overview of the background over which the analysis is performed. 
The goal of the present discussion is therefore to provide a very formal introduction to the holographic set up in the bulk namely the 
hyperscaling preserving charged Schrödinger black brane [43], that essentially corresponds to some equilibrium configuration of the dual 
non-universality CFT in the non-extremal limit i.e; at finite temperature (T ) and charge density (�).

In our analysis we mostly follow the prescription of [38,39], where we introduce an additional U (1) field strength two form2 F(2)

namely,

SM = − 1

4g2
SG

∫
d5x

√−gFabFab (4)

which we treat perturbatively over the fixed background of the five dimensional Reissner–Nordström–Schrödinger black brane (RNSch5) 
solution that could be formally expressed in the Einstein frame as3 [43],

ds2
5 = K1/3L2

u2

[
− f

K
dτ 2 − f β2L4

u2K
(dτ + dy)2 + dy2

K
+ du2

f
+ dx2 + dz2

]

f (u) = 1 − (1 +Q2)

(
u

uH

)4

+Q2
(

u

uH

)6

, K(u) = 1 + β2L4u2

u4
H

[
1 +Q2

(
1 −

(
u

uH

)2
)]

A = �dτ , � = μ

[
1 −

(
u

uH

)2
]

, Q = 2μuH

3
. (5)

1 In the context of Lifshitz black branes the DC conductivity as well as the Einstein’s relation has been studied in [44,45].
2 This additional Maxwell field F(2) could be treated as the source of some real electromagnetic field over the RNSch5 background. This in fact is in the same line as that of 

the earlier analysis [46,47] where apart from having the auxiliary gauge fields (that is generated during Kaluza–Klein reduction) one can have some additional field strength 
two form that does not affect the geometry of the space time (unlike the auxiliary gauge fields) but on the other hand could produce some real physical phenomenon.

3 These solutions (5) in principle could be obtained by following a number of systematic steps. Roughly the procedure is the following: To start with one needs to first 
uplift the five dimensional RNAdS5 black brane to its ten dimensional type IIB supergravity version and then in the next step Kaluza Klein reduce it back to five dimensions 
again followed by a Null Melvin Twist.
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Note that the above metric (5) has been expressed in the so called Poincare chart with u as the radial coordinate in that chart such 
that the horizon is placed at u = uH and the asymptotic boundary is located at u = 0. Moreover here A is the massless gauge field that 
was originally present in the dimensionally reduced version of the gauge super gravity in five dimensions and μ is the corresponding 
chemical potential.4 The entity Q is the U (1) charge and β is the dimension full parameter ([β] = 1

L ) characterizing the null Melvin twist 
to the original type IIB supergravity theory in ten dimensions and which is also associated with the particle number in the dual theory.

Following the prescription of [42], the Hawking temperature corresponding to the RNSch5 black brane turns out to be,

T =
[

1

2π
√

guu
∂u

√
Gττ

]
u=uH

≡ |2 −Q2|
2πuH

, Gττ = − L2 f

u2K2/3
. (6)

The interesting observation that one should make at this stage is that the Hawking temperature of the black brane does not contain 
the parameter β explicitly and therefore it does not get affected during the entire Melvinization procedure. In other words this is the 
same Hawking temperature as that of the pre-Melvinized solution [48]. This is the consequence of the fact that the Killing generator of 
the horizon essentially remains the same both before and after the twist which therefore preserves the horizon structure [4,42]. Finally, 
one should also notice from (6) that the temperature (T ) has received an inverse dimension of length namely, [T ] = L−1. With the above 
set up in hand, our next task would be to calculate the various charge transport coefficients corresponding to the above non-extremal
RNSch5 black brane solution (5).

3. Diffusion constant

Hydrodynamics could be thought of as an effective description of an interacting QFT at long wavelength and/or low frequency limit. In 
the framework of AdS/CFT duality it is the celebrated fact that the IR behavior of an interacting finite temperature QFT could in principle 
be described in terms of a dual gravitational theory in the bulk that contains certain black brane at some finite Hawking temperature (T ). 
Considering the fluctuations of the U (1) gauge fields over the fixed background of the black brane one could in fact study the diffusive 
modes that satisfy certain dispersion relation like ω = −iDq2. Here D is called the charge diffusion coefficient that confirms the diffusion 
of conserved U (1) charges in a hydrodynamic flow [37].

The aim of this part of the analysis is to explicitly calculate the charge diffusion coefficient (D = σDC /χ ) for the non-extremal RNSch5
black brane solution given above in (5). In order to compute the diffusion coefficient (D) we need to know the following two entities 
independently namely the charge susceptibility (χ ) and the DC conductivity (σDC ). In the following we shall first discuss the charge 
susceptibility (χ ) in the context of non-universality branes (5) and then in the subsequent section we shall discuss an approach based on 
the Kubo’s formula in order to compute the DC conductivity (σDC ).

3.1. Charge susceptibility

In order to compute the charge susceptibility (χ ) one first needs to solve the temporal part of the Maxwell’s equation over the 
background (5) and study the asymptotic behavior of the solution near the boundary of the RNSch5 space time. The temporal part of the 
Maxwell’s equation could be formally expressed as,

A′′
τ (u) + 	(u)A′

τ (u) = 0 (7)

where the function 	(u) could be explicitly written as,

	(u) = β2L4u6
H

(−2Q2u6 − 2
(
Q2 + 1

)
u4u2

H + 9u6
H

) − 3u2u12
H +N (u)

3u
(
β2L4

(
Q2u6 − (

Q2 + 1
)

u4u2
H + u6

H

) − u2u6
H

) (
β2L4u2

(
Q2

(
u2

H − u2
) + u2

H

) + u6
H

)
N (u) = −β4L8u2

(
5Q4u8 − 6Q2

(
Q2 + 1

)
u6u2

H +
(
Q2 + 1

)2
u4u4

H − 13Q2u2u6
H + 11

(
Q2 + 1

)
u8

H

)
. (8)

The immediate next step would be to solve (7) in order to extract the boundary behavior of the gauge field. Although the exact solution 
of (7) turns out to be too complicated to achieve, still one can manage to solve it for small values of u. This is perfectly logical in the 
sense that for our purpose it is indeed sufficient to know the near horizon (u ∼ uH ) as well as the boundary behavior (u ∼ 0) of the 
solutions in the bulk. In the following we note down the exact solution of the above Eq. (7) near the boundary namely,

Aτ (u) = C2 + C1 �(u)

�(u) =
3β2L4u4

H

(
u2

(
β4L8

(
Q2 + 1

) + 3u4
H

) − 3β2L4u4
H

)
exp

(
u2

(
β4 L8

(
Q2+1

)+3u4
H

)
3β2 L4u4

H

)

2
(
β4L8

(
Q2 + 1

) + 3u4
H

)2
. (9)

Note that here C1 and C2 are two arbitrary (dimensionful) coefficients that could be related to the chemical potential (μ) as well as 
the charge density (�) of the boundary theory in the limit u → 0. Using (9) it is now in fact quite straightforward to compute the charge 
density for the boundary theory which turns out to be [36],

4 Apart from these fields there also exist a massive gauge field (AM ) and a non-trivial dilaton (φ) that appear during the process of the Null Melvin Twist to the original 
type IIB supergravity theory in ten dimensions [42].
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� = δS(O S)
M

δAτ
|u→0 = C1L5β2

g2
SG

. (10)

On the other hand the chemical potential turns out to be,5

μ = Aτ (0) = C2 − 9β4C1L8u8
H

2
(
β4L8

(
Q2 + 1

) + 3u4
H

)2
. (11)

Finally, using (10) and (11) the charge susceptibility (χ ) finally turns out to be,

χ = �/μ = 2L5β2C1
(
β4L8

(
Q2 + 1

) + 3u4
H

)2

g2
SG(2C2

(
β4L8

(
Q2 + 1

) + 3u4
H

)2 − 9C1u8
Hβ4L8)

. (12)

Two points are to be noted at this stage. Firstly, one should take a note on the fact that unlike the temperature (T ) the charge 
susceptibility (χ ) has been found to be explicitly dependent on the entire Melvinization scheme and secondly, setting Q = 0 in (12) one 
should be able to register the value of the charge susceptibility corresponding to the uncharged Schrödinger black brane. Finally, from the 
dimensional arguments one should be able note that the susceptibility (χ ) has the inverse square dimension of length namely,6 [χ ] = L−2, 
which therefore suggests the fact that it goes with the temperature as χ ∼ T 2.

3.2. DC conductivity

In order to compute the DC conductivity (σDC (ω = 0)) we shall use the so called Kubo’s formula which states that in the hydrodynamic 
limit the DC conductivity could be estimated by knowing the retarded two point (current–current) correlation function namely,7

σDC = −e2 lim
ω→0

1

ω
Im GR

xx(ω,q = 0) (13)

where GR
xx(ω, q = 0) is the retarded two point correlator,

GR
xx(ω,q = 0) = −i

∫
dτ dx eiωτ �(t) 〈[ J x(x), J x(0)]〉. (14)

In the present paper we shall compute the retarded Minkowski correlator by following the standard prescription of [38,39]. In order to 
proceed further we consider the following Fourier decomposition of the gauge field namely,

Aa(u, τ ) =
∫

dω√
2π

e−iωτ fa(ω)(u)φ
(a)
0 (ω); (a = τ , x) (15)

where we have chosen the spatial momentum along a particular direction (say x) equal to zero. Moreover here φ(a)
0 (ω) corresponds to the 

boundary value of the bulk gauge field and could in principle be determined by the boundary condition namely,

Aa(0, τ ) = L

∫
dω√
2π

e−iωτφ
(a)
0 (ω) (16)

where we have used the fact that the value of the function fa(ω)(u) at the boundary is simply fa(ω)(u)|u=0 = L. Finally, substituting (15)
into (4) we obtain,

SM = Sτ + Sx (17)

where Sτ and Sx could be individually expressed as,

Sτ = − V

2g2
SG

∫
du

∫
dω dω′ δ(ω + ω′) a(u) f ′

τ (ω) f ′
τ (ω′)φ

(τ )
0 (ω)φ

(τ )
0 (ω′)

Sx = − V

2g2
SG

∫
du

∫
dω dω′ δ(ω + ω′)

[
b(u) f ′

x(ω) f ′
x(ω′) − c(u)ωω′ fx(ω) fx(ω′)

]
φ

(x)
0 (ω)φ

(x)
0 (ω′)

a(u) = √−g guu gττ ; b(u) = √−g guu gxx; c(u) = √−g gxx gττ (18)

where V (= ∫
d3x) is the three spatial volume.

5 Note that as it is quite evident from (5) that the chemical potential (μ) has the dimension of energy ([μ] = L−1) therefore both the coefficients C1 and C2 must also 
have dimensions namely, [C1] = L−5 and [C2] = L−1. This also suggests the fact that the coupling of the Maxwell action (4) has the dimension of length namely, [g2

SG ] = L. 
This is in fact perfectly consistent with the fact that in general in D + 1 dimensions the gauge coupling constant has the dimension of LD−3 [36].

6 This dimensionality of χ could be easily checked using the dimensional arguments. Since [μ] = L−1 (see (5)), therefore from (11) it is trivial to see that [C2] = L−1 and 
[C1] = L−5. Also [g2

SG ] = L and [β] = L−1. Substituting all these facts into (12) one obtains the above dimensionality for the susceptibility (χ ).
7 Note that the notion of electrical conductivity in the framework of AdS/CFT duality is a bit shuttle in the sense that the gauge fields do not actually have any dynamics at 

the boundary. Therefore by the notion of conductivity what we essentially mean is that the boundary theory is weakly gauged with certain small gauge coupling parameter e
and there also exists a gauge covariant derivative of the form Dμ = ∂μ − ie Aμ . All these facts essentially suggest that the corresponding global U (1) current at the boundary 
should also be replaced as Jμ → e Jμ [36].
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In the subsequent analysis we shall focus on the part Sx as we are interested in computing the current–current correlator of the form 
∼ 〈 J x(x) J x(0)〉. The equation of motion corresponding to fx(ω) turns out to be,

f ′′
x(ω) + b′(u)

b(u)
f ′

x(ω) − ω2 c(u)

b(u)
fx(ω) = 0. (19)

Substituting (19) into (18) the onshell action corresponding to Sx turns out to be,

S(os)
x =

∫
dω φ

(x)
0 (−ω)F(u,ω)φ

(x)
0 (ω) (20)

where the function F(u, ω) could be formally expressed as,

F(u,ω) = − V

2g2
SG

b(u) fx(−ω) f ′
x(ω) (21)

which is precisely the desired two point correlation when evaluated at the boundary (u = 0) [38,39]. The natural next step for us would 
be to solve (19) in order to obtain the precise expression for the function F(u, ω) at the boundary of the RNSch5 space time. In order to 
solve (19), based on the incoming wave boundary condition [39] we consider the following ansatz namely,

fx(ω) =
(

1 − u

uH

)α

gω(u) (22)

where gω(u) is some function that is regular at horizon (u = 1). Our next task would be to find an exact expression for the coefficient 
α consistent with the incoming wave boundary condition. Substituting (22) into (19) and considering the near horizon (u ∼ uH ) limit we 
arrive at the following quadratic equation for α namely,

α2 + ω2u2
H

4(2 −Q2)2
= 0. (23)

From the above Eq. (23) one can immediately read off α such that the ansatz (22) is consistent with the incoming wave boundary 
condition namely,8

α = − iω

4π T
. (24)

As a next step we substitute (22) into (19) which finally yields,

g′′
ω +

[
iω

2πuH T (1 − u/uH )
+ b′

b

]
g′
ω + iω

4πuH T (1 − u/uH )

[
b′

b
+ 1

uH (1 − u/uH )

]
gω

− ω2

16

[
1

π2u2
H T 2(1 − u/uH )2

+ 16c

b

]
gω = 0. (25)

The next natural step would be to solve (25) perturbatively in the frequency ω. To do that we consider the following perturbative 
expansion of the function gω(u) namely,

gω(u) = g(0)
ω + i(ω/T )g(1)

ω +O((ω/T )2) (26)

where we have implicitly assumed that ω/T � 1 which essentially corresponds to the so called hydrodynamic limit. Also remember that 
we are interested to obtain a solution upto leading order in the frequency (ω). Substituting (26) into (25) and collecting terms upto leading 
order in ω we finally arrive at the following set of equations namely,

g′′ (1)
ω + 1

2πuH (1 − u/uH )
g′ (0)
ω + b′

b
g′ (1)
ω + 1

4πuH (1 − u/uH )

[
b′

b
+ 1

uH (1 − u/uH )

]
g(0)
ω = 0

g′′ (0)
ω + b′

b
g′ (0)
ω = 0. (27)

As the above set of Eqs. (27) turn out to be too complicated to be solved exactly in the coordinate (u) therefore like in the previous 
case we note down the corresponding solutions near the boundary of the RNSch5 space time,

g(1)
ω = C3

(
−uuH

2
− u2

H

4

)
e
− 2u

uH − C6u

4πuH
+ C4, g(0)

ω = C5u2

2
+ C6. (28)

A few comments are to be made at this stage regarding the above solution in (28). First of all, note that since the function gω is 
dimensionful namely, [gω] = L therefore the arbitrary coefficients (Ci (i = 3, 4, 5, 6)) must also have dimensions namely, [C3] = [C5] =
L−1 and [C4] = [C6] = L. Moreover all of these coefficients are not independent, some of them are rather constrained by the condition, 
fa(ω)(u)|u=0 = L.

8 Note that in order for α to be dimensionless ω should be assigned with the inverse dimension of length namely, [ω] = L−1.
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Substituting (28) into (21) the DC conductivity finally turns out to be,9

σDC = L

8πu2
H g2

SG T

[
πu4

HC3C5 − 4πu2
H (C4C5 − C3C6) + C2

6

]
. (29)

It is now in fact a quite trivial exercise to figure out that the DC conductivity (from the dimensional arguments) scales with the 
temperature as σDC ∼ T −1. This fact is consistent with the earlier observations in [11] and which is essentially the gravity reflection of 
the fact that we are working with a scale invariant theory at z = 2 fixed point. At this point it is also customary to mention that taking the 
limit Q → 0 in the above expression (29) one should be able to recover the DC conductivity corresponding to the uncharged Schrödinger 
black brane. Finally, using (12) and (29) the diffusion constant corresponding to RNSch5 black brane turns out to be,

D = σDC /χ = e2�(2C2
(
β4L8

(
Q2 + 1

) + 3u4
H

)2 − 9C1u8
Hβ4L8)

8πu2
H L4β2C1T

(
β4L8

(
Q2 + 1

) + 3u4
H

)2

� = πu4
HC3C5 − 4πu2

H (C4C5 − C3C6) + C2
6 . (30)

Eq. (30) essentially encodes one of the major findings of this paper namely the charge diffusion constant for non-universality hyperscal-
ing preserving CFTs in the large N limit where the field theory is essentially at strong coupling. This result although differs non-trivially
from the pure AdS case, is remarkably simple in the sense that it is independent of the ’t Hooft coupling like one finds in the pure AdS 
case [36].

Let us now try to extract the physics out of (30). To start with we note that since all the coefficients Ci are dimensionful therefore 
from the above expression (30) it is in fact quite easy to note that the charge diffusion coefficient (D) has the cubic dimension of length10

namely, [D] = L3. The take home message from the above analysis is that unlike the pure AdS [36] the charge diffusion coefficient (30)
for the RNSch5 black branes scales quite non-trivially with the temperature namely, D ∼ T −3. This is indeed an interesting observation in 
the sense that for non-universality branes the σDC /χ ratio is more suppressed at large values of the temperature compared to that of the 
pure AdS case [36,37,39]. The above observation therefore confirms the non-universality of the σDC /χ ratio for non-universality branes 
preserving the hyperscaling and also distinctly categorize them from that of the pure AdS black branes as long as the charge transport 
phenomena is concerned.

4. Summary and final remarks

In this section we summarize the key findings of our analysis along with mentioning some of its interesting future extensions. The focus 
of the entire analysis was to explore the (non-)universality of the σDC /χ ratio in context of non-universality holography. In our analysis, 
based on the prescription of [38,39] we have computed the retarded two point correlator for z = 2 non-universality CFT at strong coupling 
whose dual gravitational counterpart consists of hyperscaling preserving charged Schrödinger black branes [43] in (4 +1) dimensions. From 
our analysis we note that, unlike the pure AdS case [36], the diffusion coefficient (D) for charged Schrödinger black branes [43] scales 
quite non-trivially with the temperature namely, D ∼ T −3. This essentially suggests a possible violation of the universality of σDC /χ ratio 
for non-universality CFTs at strong coupling and could be considered as the gravity reflection of the fact that we are basically working 
with a z = 2 scale invariant theory at finite temperature.

One crucial fact about our analysis is that in the present analysis we have restricted ourselves at the two derivative level in the 
action (4). As a natural consequence of this fact the two point correlation function between the U (1) operators that we have computed 
essentially stands for the two point correlation within the framework of a non-universality CFT in the large N limit. As a part of the 
future investigations one might go beyond the two derivative order and try to see the effects of adding 1/N corrections on the two point 
correlation function of the non-universality CFT. Note that in the language of gauge/gravity duality the effect of adding 1/N corrections 
on the dual CFT side could be incorporated in the form of higher derivative corrections in the bulk theory. Therefore in order to explore 
such non-trivial effects in the framework of non-universality holography one might replace the usual Maxwell action (4) by the its Weyl 
corrected form and this could be considered as an extension of the earlier analysis [49] to non-universality branes.
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