

Also available on **SCIENCE** DIRECT® www.sciencedirect.com

European Journal of Combinatorics

European Journal of Combinatorics 24 (2003) 881-890

www.elsevier.com/locate/ejc

Intersecting families of permutations

Peter J. Cameron, C.Y. Ku

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London El 4NS, UK

Received 4 April 2003; received in revised form 30 May 2003; accepted 30 May 2003

Abstract

Let S_n be the symmetric group on the set $X = \{1, 2, ..., n\}$. A subset S of S_n is *intersecting* if for any two permutations g and h in S, g(x) = h(x) for some $x \in X$ (that is g and h agree on x). Deza and Frankl (J. Combin. Theory Ser. A 22 (1977) 352) proved that if $S \subseteq S_n$ is intersecting then $|S| \le (n-1)!$. This bound is met by taking S to be a coset of a stabiliser of a point. We show that these are the only largest intersecting sets of permutations.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The following theorem is proved by Deza and Frankl in [4]:

Theorem 1. Let S be an intersecting set of permutations of $\{1, \ldots, n\}$. Then $|S| \leq (n-1)!$.

Our main result is the following:

Theorem 2. Let $n \ge 2$ and $S \subseteq S_n$ be an intersecting set of permutations such that |S| = (n-1)!. Then S is a coset of a stabiliser of one point.

Suppose that the set *S* satisfying the conditions in Theorem 2 does not contain the identity element *Id*. Then taking a permutation $g \in S$, $S' = g^{-1}S = \{g^{-1}h : h \in S\}$ now contains *Id* and again satisfies the conditions in Theorem 2. Hence, assuming $Id \in S$, it is enough to show that *S* is a stabiliser of one point.

For each $g \in S_n$, we say that a point x is *fixed* by g if g(x) = x. The set $Fix(g) = \{x \in X : g(x) = x\}$ is the *fixed point set* of g. Moreover if S is a subset of S_n , then $Fix(S) = \{Fix(g) : g \in S\}$ is a family of subsets of X.

Let $x \in X$, $g \in S_n$. We define the *fixing* of the point x via g to be the permutation $g_x \in S_n$ such that

0195-6698/03/\$ - see front matter © 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0195-6698(03)00078-7

(i) if g(x) = x, then $g_x = g$, (ii) if $g(x) \neq x$ then

(ii) if $g(x) \neq x$, then

$$g_x(y) = \begin{cases} x & \text{if } y = x, \\ g(x) & \text{if } y = g^{-1}(x), \\ g(y) & \text{if } y \neq x, y \neq g^{-1}(x) \end{cases}$$

Inductively we define $g_{x_1,...,x_q}$ to be the fixing of x_q via $g_{x_1,...,x_{q-1}}$. We also say that a set of permutations *S* is *closed under the fixing operation* if the following holds:

for each $x \in X$ and $g \in S, g_x \in S$.

Using GAP [6], it is not difficult to establish our theorem if $n \leq 5$. So we may assume that $n \geq 6$. We now give the outline of our proof: we first show that a set of permutations *S* which satisfies the conditions in Theorem 2 is closed under the fixing operation (Theorem 8). This implies that Fix(*S*) is an intersecting family of subsets (that is Fix(g) \cap Fix(h) $\neq \emptyset$ for any $g, h \in S$): this is the statement of Theorem 10. With these assumptions, we finally show that *S* must be a stabiliser of one point in Section 5.

2. Preliminary results

A graph is *vertex-transitive* if any vertex can be mapped into any other by a graph automorphism. A subgraph of a graph is called a *clique* if any two of its vertices are adjacent. A *coclique* is a subgraph in which no two vertices are adjacent.

Theorem 3. Let Γ be a vertex transitive graph on n vertices. Suppose that T is a subset of the vertex set, and that the largest clique contained in T has size |T|/m. Then any clique S in Γ satisfies $|S| \leq n/m$. Equality implies that $|S \cap T| = |T|/m$.

Proof. Count pairs (v, g) with $v \in S$, $g \in \operatorname{Aut}(\Gamma)$ and $g(v) \in T$. For each $w \in T$ there are $|\operatorname{Aut}(\Gamma)|/n$ choices of g with g(v) = w; so the number of pairs is $|S| \cdot |\operatorname{Aut}(\Gamma)|/n \cdot |T|$. On the other hand, for any graph automorphism g, we have $|g(S) \cap T| \leq |T|/m$ (since $g(S) \cap T$ is a clique in T); so the number of pairs is at most $|T|/m \cdot |\operatorname{Aut}(\Gamma)|$. Thus

 $|S| \cdot |\operatorname{Aut}(\Gamma)|/n \cdot |T| \le |T|/m \cdot |\operatorname{Aut}(\Gamma)|,$

so

$$|S| \leq n/m$$
.

If equality holds then $|g(S) \cap T| = |T|/m$ for all $g \in Aut(\Gamma)$. Taking g = Id gives the result. \Box

If T is a coclique, then the largest clique it contains has size 1, so the hypothesis holds with m = |T|. This gives the following:

Corollary 4. Let *C* be a clique and *A* a coclique in a vertex-transitive graph on *n* vertices. Then $|C| \cdot |A| \le n$. Equality implies that $|C \cap A| = 1$.

Theorem 5. Let *S* be an intersecting set of permutations of $\{1, 2, ..., n\}$. Then $|S| \le (n-1)!$. If equality holds, then *S* contains exactly one row of each Latin square of order *n*.

882

Proof. Form a graph on the vertex set S_n by joining g and h if g(i) = h(i) for some point i. It is clear that left multiplication by elements of S_n is a graph automorphism; so the graph is vertex-transitive. Let L be the set of rows of a Latin square. Then S is a clique and L is a coclique with |L| = n. So, by Corollary 4, $|S| \le n!/n = (n - 1)!$, and equality implies $|S \cap L| = 1$. \Box

We need another definition before stating the next result. Let g be a permutation in S_n . We define

$$D(g) = \{ w \in S_n : w(i) \neq g(i) \ \forall i = 1, ..., n \}.$$

Proposition 6. Let $n \ge 2k$. Then, for any $g_1, g_2, \ldots, g_k \in S_n$, we have $D(g_1) \cap D(g_2) \cap \cdots \cap D(g_k) \ne \emptyset$.

Proof. A permutation $h \in S_n$ belongs to $D(g_1) \cap D(g_2) \cap \cdots \cap D(g_k)$ if and only if it is a system of distinct representatives for the sets A_1, \ldots, A_n , where

$$A_i = \{x : x \neq g_1(i) \text{ and } x \neq g_2(i) \text{ and } \dots \text{ and } x \neq g_k(i)\}.$$

Clearly $|A_i| \ge n - k$.

We must check the conditions of Philip Hall's Marriage Theorem. Let $A(J) = \bigcup_{j \in J} A_j$ for $J \subseteq \{1, ..., n\}$. We must show that $|A(J)| \ge |J|$ for all J. Clearly this holds if $|J| \le n - k$, so we can suppose that $|J| \ge n - k + 1$.

Take $x \in \{1, ..., n\}$. Then $x \notin A(J)$ if and only if, for all $j \in J$, there exists $i \in \{1, ..., k\}$ such that $x = g_i(j)$. But there are at most k pairs (i, j) with $x = g_i(j)$, since given i, the value of j is determined $(j = g_i^{-1}(x))$. Since $|J| \ge n - k + 1 \ge k + 1$, this cannot hold for all $j \in J$. Thus $A(J) = \{1, ..., n\}$ and $|A(J)| = n \ge |J|$. \Box

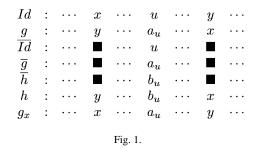
Remark. If the permutations g_1, \ldots, g_k are pairwise non-intersecting then the condition $n \ge 2k$ can be weakened to $n \ge k+1$. Hence any $k \times n$ Latin rectangle (set of pairwise non-intersecting permutations) can be extended to a Latin square: this is the result of Marshall Hall (Theorem 7). Let g_1, \ldots, g_k be the rows of a Latin square of order k, extended to fix the points $k + 1, \ldots, n$. Any permutation in $D(g_1) \cap \cdots \cap D(g_k)$ must have symbols from the set $k + 1, \ldots, n$ in positions $1, \ldots, k$; so if $n \le 2k - 1$, then no such permutation can exist.

Theorem 7 (Hall 1945). *Every* $k \times n$ *Latin rectangle can be extended to some* $n \times n$ *Latin square.*

3. Closure under fixing operation

Let $g \in S_n$ and $A \subseteq X$. If g(A) = A, then the permutation g restricted to A, denoted by $g|_A$, is a bijection from A to itself, and so it is an element in Sym(A). However, in general, $g|_A$, being a bijection between |A|-subsets of X, is a partial permutation.

Theorem 8. Let $S \subseteq S_n$ be an intersecting set of permutations such that $Id \in S$ and |S| = (n-1)! where $n \ge 6$. Then S is closed under the fixing operation.



Proof. Assume that *S* is not closed under the fixing operation. Then there exists some $x \in X$ and $g \in S$ such that $g(x) \neq x$ and $g_x \notin S$. Now let $g = a_1a_2...a_x...a_y...a_n$ where $a_x \neq x$, $a_y = x$. So

 $g_x = a_1 \dots a_{x-1} a_y a_{x+1} \dots a_{y-1} a_x a_{y+1} \dots a_n.$

We consider the following cases:

(i) $a_x = y$.

Let $X \setminus \{x, y\} = A$. Then $\overline{Id} = Id|_A$ and $\overline{g} = g|_A = g_x|_A$ are elements in Sym(*A*). By Proposition 6, there exists $\overline{h} \in D(\overline{Id}) \cap D(\overline{g})$ since $n - 2 \ge 4$. Now construct a permutation *h* on *X* as follows:

$$h(i) = \begin{cases} \overline{h}(i) & \text{if } i \in A, \\ y & \text{if } i = x, \\ x & \text{if } i = y. \end{cases}$$

Then g_x and h form a $2 \times n$ Latin rectangle. By Theorem 7, there exists a $n \times n$ Latin square containing g_x and h. But observe that for any row r in this Latin square other than g_x and h, we must have $r \in D(g_x) \cap D(h)$ and hence $r \in D(g)$, that is r and g agree on no points in X. So $r \notin S$ since $g \in S$ and S is intersecting. Moreover h and Id also agree on no points in X by construction and thus $h \notin S$ since $Id \in S$ and S is intersecting. Further $g_x \notin S$ by assumption. Hence no rows in this Latin square lie in S (see Fig. 1). But this contradicts Theorem 5.

(ii) $a_x = z \neq y$.

Let $A = X \setminus \{x, z\}$. So $\overline{Id} = Id|_A$ is the identity in Sym(A). Now define another permutation \overline{g} on A as follows:

$$\overline{g}(i) = \begin{cases} g(i) & \text{if } i \neq y, \\ g(z) & \text{if } i = y. \end{cases}$$

But $|A| = n - 2 \ge 4$, and so by Proposition 6, there exists a permutation $\overline{h} \in D(\overline{Id}) \cap D(\overline{g}) \subseteq \text{Sym}(A)$. We now construct a permutation h_* on X as follows:

$$h_*(i) = \begin{cases} \overline{h}(i) & \text{if } i \in A \\ z & \text{if } i = x \\ x & \text{if } i = z. \end{cases}$$

Id	:	• • •	x	•••	u	• • •	y	• • •	z	• • •
g	:	• • •	z	•••	a_u	• • •	x	• • •	a_z	• • •
\overline{Id}	:	•••		•••	u	• • •	y	• • •		•••
\overline{g}	:	•••		•••	a_u	• • •	a_z	• • •		• • •
\overline{h}	:	• • •		•••	b_u	• • •	b_y	• • •		•••
h_*	:	• • •	z	•••	b_u	• • •	b_y	• • •	x	• • •
h	:	•••	z	•••	b_u	•••	\dot{x}	• • •	b_y	• • •
g_x	:	• • •	x	•••	a_u	• • •	z	•••	a_z	• • •
Fig. 2.										

We further construct a permutation *h* on *X* as follows:

$$h(i) = \begin{cases} h_*(i) & \text{if } i \neq y, z, \\ h_*(z) = x & \text{if } i = y, \\ h_*(y) & \text{if } i = z. \end{cases}$$

We claim that g_x and h form a $2 \times n$ Latin rectangle. It is readily checked that g_x and h do not agree on all the points in X except perhaps on z. But $h(z) = h_*(y) = \overline{h}(y)$ and $\overline{h} \in D(\overline{g})$ and therefore $h(z) \neq \overline{g}(y) = g(z) = g_x(z)$. This proves the claim. By Theorem 7, there exists a $n \times n$ Latin square containing g_x and h.

Now observe that any row r in this Latin square, other than g_x and h, does not agree with g at any point in X. Moreover $g_x \notin S$ by assumption. So we are left to check if $h \in S$. By our construction, if h and Id were to agree on some point i, then $i \neq x, y, z$. But this would imply that \overline{h} and \overline{Id} must agree on some point. But this is a contradiction since $\overline{h} \in D(\overline{Id})$ (see Fig. 2). Hence $h \notin S$. But this shows that no rows in this Latin square lie in S, contradicting Theorem 5.

Hence the theorem is proved. \Box

4. Fixed point sets intersect

Lemma 9. Let $g, h \in S_n$ be such that g(x) = h(x) and $g(y) \neq h(y)$. Then $g_x(y) \neq h(y)$. **Proof.** If g(y) = x then $g_x(y) = g(x) = h(x) \neq h(y)$. If $g(y) \neq x$ then $g_x(y) = g(y) \neq h(y)$. \Box

Theorem 10. Let $S \subseteq S_n$ be an intersecting set of permutations which is closed under the fixing operation. Then Fix(S) is an intersecting family.

Proof. We claim that if $g, h \in S_n$ are such that g(x) = h(x) and $g(y) \neq h(y)$ then $g_x(y) \neq h(y)$ and $g_x \in S$. This follows immediately from Lemma 9 and from the fact that *S* is closed under the fixing operation.

Assume that Fix(S) is not intersecting. Then there are $g \neq h \in S$ such that $Fix(g) \cap Fix(h) = \emptyset$. Let $B = \{x \in X : g(x) = h(x)\}$. Since S is intersecting, $B = \{x_1, \ldots, x_k\}$ for some positive integer k.

Let $w = g_{x_1...x_k}$. By the first paragraph, $w(y) \neq h(y)$ for every $y \in X \setminus B$, and $w \in S$. If $w(x_i)$ were equal to $h(x_i)$ for some *i*, we would have $x_i = w(x_i) = h(x_i) = g(x_i)$, where

the last equality follows from $x_i \in B$. But then $Fix(g) \cap Fix(h) \neq \emptyset$, a contradiction. Hence $w(x) \neq h(x)$ for every $x \in X$. However, this is a contradiction with $w, h \in S$. \Box

5. Proof of Theorem 2

We need the following well-known results in extremal set theory [1]:

Proposition 11 (LYM Inequality). Let A be an antichain of subsets of an n-set X. Then

$$\sum_{A \in \mathcal{A}} |A|!(n-|A|)! \le n!.$$

Proposition 12 (Erdős–Ko–Rado [5]). If $\{A_1, A_2, ..., A_m\}$ is an intersecting family of *k*-subsets of an *n*-set X such that $k \le n/2$, then

$$m \le \binom{n-1}{k-1}.$$

Lemma 13. If A is an antichain of subsets of an n-set X such that $|A| \ge k$ for all $A \in A$, then

$$\sum_{A \in \mathcal{A}} (n - |A|)! \le n!/k!.$$

Proof.

$$\sum_{A \in \mathcal{A}} (n - |A|)! \le \sum_{A \in \mathcal{A}} \frac{|A|!}{k!} (n - |A|)! \le n!/k!,$$

by applying the LYM inequality. \Box

We now give some observations:

Let $Y \subseteq X$ and $G = \text{Sym}(X) = S_n$. We define $G_{(Y)}$ to be the set of all permutations $g \in S_n$ such that g(y) = y for all $y \in Y$. Clearly $G_{(\{x\})}$ is the stabiliser of the point x and $|G_{(Y)}| = (n - |Y|)!$. Now if g is a permutation in S with the fixed point set Fix(g) = F, then $g \in G_{(F)}$. Hence we deduce that

$$|S| \le \sum_{F \in \operatorname{Fix}(S)} |G_{(F)}| = \sum_{F \in \operatorname{Fix}(S)} (n - |F|)!.$$

But we can do better. Observe that if $A \subseteq B$ for some $A, B \in Fix(S)$, then $G_{(B)} \subseteq G_{(A)}$.

Hence taking

 $\mathcal{F} = \{F \in Fix(S) : F \text{ is a minimal element in the poset } (Fix(S), \subseteq)\},\$

we now have

$$|S| \le \sum_{F \in \mathcal{F}} (n - |F|)!.$$

886

Proof of Theorem 2. Assuming $Id \in S$, we want to show that *S* is a stabiliser of a point. We first note that the theorem is true for $n \le 5$. This can be proved by hand or by computer using GAP [6]. (We are looking for cliques in the graph used in Theorem 5, which can be found using the clique finder in the GAP share package GRAPE.) Let $n \ge 6$. By Theorems 8 and 10, we can now assume that Fix(S) is intersecting. Let \mathcal{F} be the subset of Fix(S) as defined above. Then \mathcal{F} now is an intersecting antichain of subsets of *X* and it is not empty.

Obviously $\emptyset \notin \mathcal{F}$ since \mathcal{F} is intersecting. Moreover note that if a permutation g fixes more than n-2 points, then it must be the identity, and so $|\operatorname{Fix}(g)| \neq n-1$ for all $g \in S$, in particular, $|F| \neq n-1$ for all $F \in \mathcal{F}$. Also $X \notin \mathcal{F}$ since \mathcal{F} is an antichain. Hence we have $1 \leq |F| \leq n-2$ for all $F \in \mathcal{F}$.

Suppose that Fix(*S*) contains an element of size 1, say $\{x\}$. Then by the intersection property of Fix(*S*), all permutations in *S* fix the point *x*. Since |S| = (n - 1)!, *S* now must be the stabiliser of *x*. So we can assume that $|Fix(g)| \ge 2$ for all $g \in S$ and hence $|F| \ge 2$ for all $F \in \mathcal{F}$.

We then must have $\bigcap_{F \in \mathcal{F}} F = \emptyset$, for otherwise, by the definition of \mathcal{F} , $\bigcap_{F \in Fix(S)} F \neq \emptyset$, and hence all permutations in *S* fix a common point and the result follows.

Having made the above simplifications, our aim is to derive a contradiction by showing that |S| < (n - 1)!. We achieve this by considering the following cases:

Case I. $|F| \ge 3$ for all $F \in \mathcal{F}$, that is \mathcal{F} has no element of size 2. In this case, we have

$$\begin{split} |S| &\leq \sum_{F \in \mathcal{F}} (n - |F|)! \\ &= \sum_{\substack{F \in \mathcal{F} \\ 3 \leq |F| \leq [n/2]}} (n - |F|)! + \sum_{\substack{F \in \mathcal{F} \\ |F| \geq [n/2]+1}} (n - |F|)! \\ &\leq \sum_{k=3}^{[n/2]} a_k (n - k)! + \frac{n!}{([n/2] + 1)!}, \end{split}$$

by Lemma 13, and a_k is the number of elements in \mathcal{F} having size k. Then

$$|S| \le \sum_{k=3}^{\lfloor n/2 \rfloor} {\binom{n-1}{k-1}} (n-k)! + \frac{n!}{(\lfloor n/2 \rfloor+1)!},$$

by the Erdős-Ko-Rado Theorem. So

$$|S| \le (n-1)! \sum_{k=3}^{\lfloor n/2 \rfloor} \frac{1}{(k-1)!} + \frac{n!}{(\lfloor n/2 \rfloor + 1)!} \le (n-1)! \cdot \frac{4}{5} + \frac{n!}{(\lfloor n/2 \rfloor + 1)!},$$
(1)

since $\sum_{k=3}^{\lfloor n/2 \rfloor} \frac{1}{(k-1)!} < e - 2 < \frac{4}{5}$ where *e* is the natural exponent.

Hence it is enough to show that $\frac{n!}{([n/2]+1)!} < \frac{(n-1)!}{5}$. But this is true for $n \ge 8$. For n = 6, 7, it is readily checked from (1) that |S| < (n-1)!.

We conclude that if \mathcal{F} has no element of size 2, then |S| < (n-1)! for all $n \ge 6$.

Case II. \mathcal{F} contains an element of size 2.

Let $\mathcal{F}_2 = \{F \in \mathcal{F} : |F| = 2\}.$

Subcase (i). $\bigcap_{F \in \mathcal{F}_2} F = \emptyset$.

Without loss of generality, we can assume that $\{\{1, 2\}, \{1, 3\}, \{2, 3\}\} \subseteq \mathcal{F}_2$ by the intersection property. Let $F \in \mathcal{F} \setminus \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$. Since $F \cap \{2, 3\} \neq \emptyset$, we have either $2 \in F$ or $3 \in F$. So this implies that $1 \notin F$ for otherwise $\{1, 2\} \subseteq F$ or $\{1, 3\} \subseteq F$ contradicts the antichain property of \mathcal{F} . But now $F \cap \{1, 2\} \neq \emptyset$ and $F \cap \{1, 3\} \neq \emptyset$ implies that $\{2, 3\} \subseteq F$ contradicting that \mathcal{F} is an antichain. Hence $\mathcal{F} = \mathcal{F}_2$, $|\mathcal{F}_2| = 3$, and we deduce that $|S| \leq \sum_{F \in \mathcal{F}} (n - |F|)! = \sum_{F \in \mathcal{F}_2} (n - |F|)! = 3(n - 2)! < (n - 1)!$ for $n \geq 6$.

Subcase (ii). $\bigcap_{F \in \mathcal{F}_2} F \neq \emptyset$.

Without loss of generality, we can assume that $\mathcal{F}_2 = \{\{1, i\} \mid 2 \le i \le c\}$ for some $c \in \{2, 3, ..., n\}$.

Now let

$$\mathcal{D} = \{ F \in \mathcal{F} \setminus \mathcal{F}_2 : 1 \notin F \}, \qquad \mathcal{E} = \{ F \in \mathcal{F} \setminus \mathcal{F}_2 : 1 \in F \}.$$

If g is a permutation with its fixed point set Fix(g) containing F for some $F \in \mathcal{D}$, then Fix(g) contains $\{2, 3, ..., c\}$ since \mathcal{F} is intersecting. So $g \in G_{\{2, 3, ..., c\}}$.

Assume for a while that c = n. Then \mathcal{D} is empty for otherwise $\{2, 3, \ldots, n\} \subseteq F$ for any $F \in \mathcal{D}$ would imply that |F| > n - 2 which is a contradiction. Hence $\mathcal{F} = \mathcal{F}_2 \cup \mathcal{E}$ and so all F in \mathcal{F} must contain 1, that is, $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$. But this is a contradiction. So $c \leq n - 1$.

If $F \in \mathcal{E}$, then $\{1, x, y\} \subseteq F$ for some $x, y \notin \{2, 3, \dots, c\}$ since \mathcal{F} is an antichain. Hence there are at most $\binom{n-c}{2}$ choices for the unordered pair $\{x, y\}$. If g is a permutation with its fixed point set $\operatorname{Fix}(g)$ containing F for some $F \in \mathcal{E}$, then $g \in G_{(\{1,x,y\})}$. We now deduce that

$$\begin{split} |S| &\leq \sum_{F \in \mathcal{F}_2} (n - |F|)! + |G_{(\{2,3,\dots,c\})}| \\ &+ \sum_{B \in \binom{X \setminus \{1,2,\dots,c\}}{2}} |G_{(\{1\} \cup B)}| \\ &\leq (c-1)(n-2)! + (n-c+1)! + \binom{n-c}{2}(n-3)!. \end{split}$$

Assuming $3 \le c \le n-2$, we have $|S| \le f(c)$ where $f(c) = c(n-2)! + {n-c \choose 2}(n-3)!$. But $\frac{n-c}{2} < n-2$ implies that

$$\frac{(n-c)(n-c-1)}{2} < (n-2)(n-c-1),$$

888

since n - c - 1 > 0. So

$$\binom{n-c}{2}(n-3)! < (n-2)!(n-c-1),$$

 $f(c) < (n-1)!,$

and hence |S| < (n-1)! for $n \ge 6$.

If
$$c = n - 1$$
, then

$$|S| \le \sum_{F \in \mathcal{F}_2} (n - |F|)! + |G_{(\{2,3,\dots,n-1\})}| = (n - 2)(n - 2)! + 2 < (n - 1)!,$$

for all $n \ge 6$.

We can now assume that c = 2, that is, $\mathcal{F}_2 = \{\{1, 2\}\}$ for $n \ge 6$. Then $\mathcal{F} = \mathcal{F}_2 \cup \mathcal{B}_1 \cup \mathcal{B}_2$ where

$$\mathcal{B}_1 = \{ F \in \mathcal{F} \setminus \mathcal{F}_2 : 1 \in F \}, \qquad \mathcal{B}_2 = \{ F \in \mathcal{F} \setminus \mathcal{F}_2 : 2 \in F \}.$$

Observe that $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$ since \mathcal{F} is an antichain. Also for each i = 1, 2, if $F \in \mathcal{B}_i$, then *F* contains the set $\{i, a, b\}$ where $a, b \in X \setminus \{1, 2\}$. Hence

$$\begin{split} |S| &\leq \sum_{F \in \mathcal{F}_2} (n - |F|)! + \sum_{\{a,b\} \in \binom{X \setminus \{1,2,\dots,c\}}{2}} |G_{(\{1,a,b\})}| \\ &+ \sum_{\{a,b\} \in \binom{X \setminus \{1,2,\dots,c\}}{2}} |G_{(\{2,a,b\})}| \\ &\leq (n-2)! + 2 \cdot \binom{n-2}{2} \cdot (n-3)! \\ &\leq (n-2)(n-2)! < (n-1)!. \end{split}$$

We conclude that if \mathcal{F} has an element of size 2, then |S| < (n-1)! for $n \ge 6$. Hence the result follows. \Box

6. Open problems

Problem 1. What is the cardinality of the largest intersecting subset of S_n which is not contained in a coset of the stabiliser of a point, and what is the structure of such a set of maximum cardinality?

Consider the following set of permutations (for $n \ge 4$):

$$S^* = \{g \in S_n : g(1) = 1, g(i) = i \text{ for some } i > 2\} \cup \{t\},\$$

where t is the transposition interchanging 1 and 2. Then S^* is clearly intersecting and is not contained in a coset of the stabilizer of a point. Moreover, S^* is a maximal intersecting set. It satisfies

 $|S^*| = (n-1)! - d(n-1) - d(n-2) + 1 \sim (1 - e^{-1})(n-1)!,$

where d(m) is the number of derangements in S_m .

We conjecture that, for $n \ge 6$, an intersecting subset not contained in a coset of a point stabiliser has size at most (n - 1)! - d(n - 1) - d(n - 2) + 1, and that a set meeting this bound has the form gS^*h for some $g, h \in S_n$. Computation using GAP [6] shows that this is true for n = 6.

A weaker conjecture is that there exists c > 0 such that any intersecting set $S \subseteq S_n$ with $|S| \ge (1 - c)(n - 1)!$ is contained in a coset of the stabiliser of a point.

Problem 2. Given $t \ge 1$, is there a number $n_0(t)$ such that, if $n \ge n_0(t)$, then a *t*-intersecting subset of S_n has cardinality at most (n - t)!, and that a set meeting the bound is a coset of the stabiliser of *t* points [2, 3]? (A set *S* of permutations is said to be *t*-intersecting if $|\{x : g(x) = h(x)\}| \ge t$ for any $g, h \in S$.)

Deza and Frankl [4] showed that the bound (n - t)! holds if there exists a sharply *t*-transitive set of permutations of $\{1, ..., n\}$. (This is an immediate consequence of Corollary 4.) This holds, for example, if t = 2 and n is a prime power. Even in this special case, however, our argument for identifying a set meeting the bound fails, because there is no analogue of Hall's theorem for sharply *t*-transitive sets with t > 1.

Acknowledgement

We would like to thank the referee for his remarks which have improved the presentation of the paper.

References

- [1] I. Anderson, Combinatorics of Finite Sets. Clarendon Press, Oxford, 1987.
- [2] P.J. Cameron, Metric and geometric properties of sets of permutations, in: M-M. Deza, P. Frankl, I.G. Rosenberg (Eds.), Algebraic, Extremal and Metric Combinatorics 1986. Cambridge University Press, 1986, pp. 39–53.
- [3] P.J. Cameron, Permutations, in: Paul Erdős and his Mathematics. vol. II, Bolyai Society Mathematical Studies, Budapest, 2002, pp. 205–239.
- [4] M. Deza, P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A (22) (1977) 352–360.
- [5] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. 2 (12) (1961) 313–320.
- [6] The GAP Group (2002). GAP—Groups, Algorithms, and Programming, Aachen, St Andrews. Available from: http://www-gap.dcs.st-and.ac.uk/~gap.