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Abstract

Let S, be the symmetric group on the sét= {1, 2, ..., n}. A subsetS of &, is intersecting if
for any two permutationg andh in S, g(x) = h(x) for somex € X (that isg andh agree on x).
Deza and Frankl (J. Combin. Theory Ser. A 22 (1977) 352) proved ti8atifS, is intersecting then
S| < (n— D!. This bound is met by takin@to be a coset of a stabiliser of a point. We show that
these are the only largest intersecting sets of permutations.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The following theorem is proved by Deza and Frankl4h [
Theorem 1. Let Sbheanintersecting set of permutationsof {1, ..., n}. Then || < (n—1)!.
Our main results the fdlowing:

Theorem 2. Let n > 2and S C S, be an intersecting set of permutations such that
|S| = (n— 1)!. Then Sisa coset of a stabiliser of one point.

Suppose that the seb satisfying the conditions imTheorem 2does not contain the
identity element d. Then takng a permutatiog € S, S = g~ 1S= {g~*h : h € S} now
containsl d and again satisfies the conditionsliheorem 2Herce, assumindd € S, itis
enough to show tha is a stabiliser of one point.

For eachg € S,, we say tlat a pointx is fixed by g if g(x) = x. The set Fixg) =
{x € X : g(x) = x} is thefixed point set of g. Moreover if S is a sibset ofS,, then
Fix(S) = {Fix(g) : g € S} is a family of subsets oX.

Letx € X, g € . We define thdixing of the pointx via g to be the permutation
Ox € S suchthat
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(i) if g(x) = x, thengx = g,
(i) if g(x) # x, then

X if y=Xx,
oY) =390 ify=g7tx),
ay) ify#xy#gix.

Inductively we definegy, .. x, to be the fking of xq via Oxy,....xq_1+ WE also ay that a
set of permutation$S is closed under the fixing operation if the following holds:

for eachx € X and geSogxeS

Using GAP [6], it is not difficult to establish our theorem ifi < 5. So we may
assume thah > 6. We now give the outline of our proof: we first show that a set of
permutationsS which satisfies the conditions iiheorem 2is closed under the fixing
operation Theorem §. Thisimplies that FiXS) is an intersecting family of subsets (that
is Fix(g) N Fix(h) # @ for anyg, h € 9): this is the statement dfheorem 10With these
assumptions, we finally show th&must be a stabiliser of one point Bection 5

2. Preéliminary results

A graph isvertex-transitive if any vertex can be mappedtb any other by a graph
automorphism. A subgraph of a graph is calledligue if any two of its vertices are
adjacent. Acocliqueis a subgraph in which no two vertices are adjacent.

Theorem 3. Let I" bea vertex transitive graph on n vertices. Supposethat T isa subset of
the vertex set, and that the largest clique contained in T has size | T|/m. Then any clique
Sin I" satisfies | S| < n/m. Equality impliesthat [SNT| = |T|/m.

Proof. Count pairs(v, g) with v € S, g € Aut(I") andg(v) € T. For eachw € T there
are|Aut(")|/n choices ofg with g(v) = w; so thenumber of pairs i$S| - |Aut(I")|/n-|T]|.
On the other had, for any graph automorphisg we have|g(S) N T| < |T|/m (since
g(S) NT is aclique inT); so the number of pairs is at mdst|/m - |Aut(I")|. Thus

[S - [AUt(D)|/n- [T < |TI/m- |Aut(I)],
SO
S| <n/m.

If equality holds theng(S) N T| = |T|/mfor all g € Aut(I"). Takingg = 1d gives the
resut. O

If T isa mclique, then the largest clique it contains has size 1, so the hypothesis holds
with m = |T|. This gives tle folowing:
Corollary 4. Let C beacligueand A a cocliquein a vertex-transitive graph on n vertices.
Then |C| - |A] < n. Equality impliesthat [C N A] = 1.

Theorem 5. Let S be an intersecting set of permutations of {1,2,...,n}. Then |§ <
(n—1)!. If equality holds, then S contains exactly one row of each Latin square of order n.
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Proof. Form a gaph on the vertex se&%, by joining g andh if g@i) = h() for some
pointi. It is dear that left multiplication by elements &; is a graph autmorphism; so
the graph is vertexransitive. LetL be the set of rows of a Latin square. Theis a clique
andL is a coclique withL| = n. So,by Corollary 4, |S| < n!/n = (n — 1)!, and equality
implies|SNL|=1. O

We need another definition before stating the next result.dlet a permutaon in S,.
We define

D) ={weS : wi)#giVi=1...,n}

Proposition 6. Let n > 2k. Then, for any g1, g2, ..., Ok € S, we have D(g1) N D(g2) N
--ND(g) # 9.

Proof. A permuationh € S, belongs toD(g1) N D(g2) N--- N D(gk) if andonly if it is
a system of gtinct representatives for the s, ..., Ay, where

A = {x : x# g1(i) andx # go(i) and.. .. andx # gk(i)}.

Clearly|Aij| > n —k.

We must check the conditions of Philip Hall's Marriage Theorem. Be8) = ;5 A
for J C {1,...,n}. We must how that|A(J)| > |J| for all J. Clearly this holds if
|J| < n—k, o wecan suppose thad| > n—k + 1.

Takex € {1,...,n}. Thenx ¢ A(J) if and only if, for all j € J, thereexids
i €{1,...,k} suchthatx = gj(j). But there & at mosk pairs(i, j) with x = gi(j),
since giveri, the value ofj is determined | = g(l(x)). SincelJ| >n—k+1>k+1,
this cannot hold for allj € J. ThusA(J) ={1,...,n}and|A(J)|=n>|J|. O

Remark. If the pemutdionsg;, ..., gk are pairwise non-intersecting then the condition
n > 2k can be weakened to> k+1. Hence an¥k x n Latin rectangle (set of pairwise non-
intersecting permutations) can be extended to a Latin square: this is the result of Marshall

Hall (Theorem J. Let gy, ..., gk be the rows of a Latin square of orderextended to fix
thepointsk + 1, ..., n. Any pamutaion in D(g;) N --- N D(gk) must have symbols from
thesetkk+ 1,...,nin positons 1 ...,k; soifn < 2k — 1, then no such permutation can
exid.

Theorem 7 (Hall 1945). Every k x n Latin rectangle can be extended to somen x n Latin
sguare.

3. Closure under fixing operation

Letg e SyandA C X. If g(A) = A, then he permutatiolg restricted to A, denoted by
gl A, is a bijedion from Ato itself, and so it is an element in Sy#). However, h gereral,
gl a, being a lijection between A|-subsets ofX, is apartial permutation.

Theorem 8. Let S C S, be an intersecting set of permutations such that 1d € S and
|S| = (n — 1)! wheren > 6. Then Sis closed under the fixing operation.



884

P.J. Cameron, C.Y. Ku / European Journal of Combinatorics 24 (2003) 881-890

Id T U Y
g Y Gy x
Id | U |
g | Ay |
h | by |
h Y by T
9z T Qy Yy

Fig. 1.

Proof. Assume thatS is not closed under the fixing operation. Then there exists some
X € X andg € Ssuchthatg(x) # x andgyx ¢ S. Now letg = ayay...ax...ay...a,
whereay # X, ay = X. S0

X — a]_ e a)(f]_ayax+l e ayflaxay+l e an

We considerthe following cases:

(i) ax =y.

(ii)

Let X\{x, y} = A. Thenld = Id|a andg = g|a = gx|a are elements in Sy(h).
By Proposition 6thereexigsh € D(l1d) N D(g) sincen — 2 > 4. Now construct a
permutatiorh on X as follows:

hi) ifieA,
hi)=1y if i = x,
X ifi =y.

Thengy andh form a 2x n Latin rectangle. Byrheorem 7there ejsts an x n Latin
sguare containingx andh. But observe that for any rowin this Latin square other
thangx andh, we must have € D(gx) N D(h) and hence € D(g), that isr andg
agree on no points iX. Sor ¢ Ssinceg € SandSis intersecting. Moreover and

I d also agree on no points i by construction and thus ¢ Ssinceld € SandS

is intersecting. Furthagy ¢ Sby assumption. Hence no rows in this Latin square lie
in S(seeFig. 1). But this contradictyheorem 5

ax =z#Y. o

Let A = X\{x, z}. Sold = Id|a is the identity in SynmiA). Now defire another
permutatiorg on A as follows:

_o_ gy iy,
9() = {g(z) ifi =vy.
But [Al = n -2 > 4, and ® by Proposition § there eists a permutation
he D(d)ND(@) € Sym(A). We now @nstruct a permutatiom, on X as follows:
h(i) ifieA,
he(i)=12z ifi =x,
X ifi =z
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Id T U Y z
g z Ay T a,
Id | U Y |
g | Ay a, |
h | by by |
Py z by by T
h z by T by
9z z Ay < ay
Fig. 2.

We further construct a permutatidmnon X as follows:

h (i) ifi #£vy,z
h(i)=1h.2=x ifi=y,
h.(y) ifi =z

We claim thatgy andh form a 2x n Latin rectangle. It is readily checked thgt and
h do not agree on all the points M except perhaps od. But h(z) = h.(y) = h(y)
andh e D(g) and thereford(z) # T(y) = 9(z2) = gx(2). This proveshe claim. By
Theorem 7there eists an x n Latin square containingy andh.

Now observe that any row in this Latin square, other thagy andh, does not agree
with g at any point inX. Moreovergy ¢ Sby assumption. So we are left to checkiE S.
By our construction, ith and I d were to agree o somepointi, theni # x, y, z. But
this would imply thath and1d must agree on some point. But this is a contradiction since
h e D(Id) (seeFig. 2. Henceh ¢ S. But this shows that no rows in this Latin square lie
in S, contradictingTheorem 5

Hence he theorem is proved.(d

4. Fixed point setsintersect

Lemma9. Let g, h € S, besuchthat g(x) = h(x) and g(y) # h(y). Then gx(y) # h(y).

Proof. If g(y) = x thengx(y) = g(x) = h(x) # h(y). If g(y) # x thengx(y) = g(y) #
h(y). O

Theorem 10. Let S C §, be an intersecting set of permutationswhich is closed under the
fixing operation. Then Fix(S) is an intersecting family.

Proof. We claim that ifg, h € S, are such thag(x) = h(x) andg(y) # h(y) then
0x(Y) # h(y) andgy € S. This follows immediately fromLemma 9and from the fact that
Sis closed under the fixing operation.

Assume that FikS) is not intersecting. Then there agg # h € S suchthat
Fix(g) N Fix(hy = ¢. Let B = {x € X : g(X) = h(x)}. SinceS is intersecting,
B = {x1, ..., Xk} for some positie integerk.

Letw = gx,...x. By the firstparagraphw(y) # h(y) for everyy € X\B, andw € S If
w(X;j) were gual toh(x;) for somei, we would havex; = w(x;j) = h(xj) = g(x;j), where
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the last equality follows fronx; € B. But then Fixg) N Fix(h) # @, a @ntradiction.
Hencew(Xx) # h(x) for everyx € X. However, this is &ontradiction withw,h € S. O

5. Proof of Theorem 2

We reed the following well-known results in extremal set thediy [

Proposition 11 (LYM Inequality). Let A be an antichain of subsets of an n-set X. Then
> 1A — [AD! < nl.
Ac A

Proposition 12 (Erdés—Ko—Radoj]). If {A1, Az, ..., Am} is an intersecting family of
k-subsets of an n-set X suchthat k < n/2, then

m < n-1
—\k-1)"
Lemma 13. If A isan antichain of subsets of an n-set X suchthat |A| > k for all A € A,
then

> (= AN < ny/kKL.
Ac A
Proof.
S-1an = Y 2 Ay <y
I < o < nl/k!,
Ac A AcA

by applying the LYM inequality. [

We now give sme observations:

LetY € X andG = Sym(X) = S,. We defineGy) to be the set of all permutations
g € S suchthatg(y) = y forall y € Y. Clearly Gxy, is the stabiliser of the point and
Gyl = (n—|YD!. Now if g is a permutation irs with the fixed point set Fi¢gg) = F,
theng € G(r). Herce we deduce that

ISi< Y IGel= Y, (M—IFD.
FeFix(s) FeFix(s)

But we can do better. Observe that4 € B for someA, B € Fix(S), thenGg) <
G(A).
Hence taking

F ={F € Fix(S) : F is aminimal element in the posgkix(S), <)},
we now have

EEDNGEN
FeF
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Proof of Theorem 2. Assumingld € S, we want to Bow thatSis a stabiliser of a point.
We firstnote that the theorem is true for< 5. This can be proved by hand or by computer
using GAP [6]. (We are looking for cliques in the graph usedTiheorem 5 which can
be found using the clique finder in th@AP share pckageGRAPE.) Letn > 6. By
Theorems &nd10, we can now assume that Ki®) is intersecting. LefF be the subset of
Fix(S) as defined above. Thefi now is an intersecting antichain of subsets<oénd it is
not empty.

Obviously@ ¢ F sinceF is intersecting. Moreoverote that if a permutatiog fixes
more tham — 2 points, then it must be the identity, and géix(g)| 2 n— 1forallg € S
in particular,|F| #n—1forall F € F. Also X ¢ F sinceF is an antichain. Hence we
have 1< |[F| <n—2forall F € F.

Suppose that FigS) contains an element of size 1, s@y}. Then by he inersection
property of FiXS), all pemutations inS fix the pointx. Since|S| = (n — 1)!, Snow must
bethe stabiliser ok. So wecan assume thdEix(g)| > 2 for allg € Sand hence¢F| > 2
forall F € F.

We then must hav€\g .- F = 0, for otherwise, by the definition ofF, (g pixs)

F # ¢, andhence all permutations i fix a canmon point and the result follows.

Having made the above simplifications, our aim is to derive a contradiction by showing

that|§ < (n — 1)!. We achieve this by considering the following cases:

Case | |F| > 3forall F € F, that isF has no element of size 2. In this case, we have

ISl< Y (n—IF!
FeF
= > (—[F)+ > (—]|F]!
FeF FeF
3<|F|=[n/2] [FI=[n/2]+1
[n/2] !
< n—k!+————,
= 2 adn -l e
by Lemma 13 anda is the nunber of elements itF having size.
Then
[n/2]
n—1 n!
S k! —,
S=2 <k—1>(n * a2 oy

k=3
by the Erab5—Ko—Rado Theorem. So

[n/2] n!
==Y Gt

4 n!
S(n—l)!'g‘f‘m’ 1)

sinceY 3 gk < € — 2 < ¢ whereeis the ratural exponent.
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Hence it is enough to show that8ir; < (1! But this is true forn > 8. For
n =6, 7, itis readily checked fromljj that|S| < (n — 1)!.

We oonclude that ifF has no element of size 2, thé8 < (n — 1)! foralln > 6.

Casdll. F contains an element of size 2.
LetFo={FeF :|F|l=2}.
Subcase (i)ﬂ,:ef2 F=0.

Without loss of generality, we can assume thét, 2}, {1, 3}, {2, 3}} € F» by the
intersection property. Lef e F\{{1, 2}, {1, 3}, {2, 3}}. SinceF N {2, 3} # @, we have
either 2e F or 3 € F. So this imflies that 1¢ F for otherwise{1,2} C For{1,3} C F
contradicts the antichain property 6t Butnow F N {1, 2} # # andF N{1, 3} # @ implies
that{2, 3} € F contradicting thatF is an antichain. Henc& = F», |F2| = 3, and we
deducethatS| < ) r.r(n—|FD! = ZFefz(n— IFD!=3(n—2)! < (n—1)!forn > 6.

Subcase (i) gex, F # 9.

Without loss of generality, we can assume that= {{1,i} | 2 < i < c} for some
ce{23, ...,n}.
Now let

D=(FeFA\F:1¢F), E={FeF\F:1leFl.

If g is a permutation with its fixed point set K containingF for someF € D, then
Fix(g) contains{2, 3, ..., c} sinceF is intersecting. S@ € G(2.3,....c})-

Assume for a while that = n. ThenD is empty br otherwise{2,3,...,n} € F for
any F € D would impy that |[F| > n — 2 which is a ontradiction. HenceF = 7> U £
and so allF in 7 must contain 1, that if,)c. = F # #. But this is a contrdiction. So
c<n-1.

If F e &, then{l,x,y} C F forsomex,y ¢ {2,3,...,c} sinceF is an antichain.
Hence here are at mos(f‘gc) choices for the unordered pdix, y}. If g is a permutation
with its fixed point set Fikg) containingF for someF < &, theng € G 1 x,y)).- We now
deduce that

1Sl < Y (= [FD!+[G(23....cp|
FeF,

T Z IGnuB)l
BE(X\(L%,,,,C))

<@Cc-DM—2'+(M—c+1!+ (n;C>(n—3)!.
Assuming 3< ¢ < n— 2, we haveS| < f(c) wheref(c) = c(n — 2)! + (",)(n — 3)!.

But 5¢ < n — 2 implies that

n—-on-c-1)
2

<h=-2)(n—c—-1),
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sincen —c— 1> 0. So

<n;c>(n_3)! <(=2!(n—c—1),
f(c)<(n-=21!,
and hencéS| < (n— 1)! forn > 6.
If c=n—1,then
1Sl< Y (= [FD!'+1G(23..n-1pl = (N =2(N =21+ 2 < (n— D),
FeF,

foralln > 6.
We can now assume that= 2, thatis, 72> = {{1, 2}} forn > 6. ThenF = F,UB1UB;
where

By ={F e F\F2 : 1€ F}, Bo={F e F\F2 : 2¢ F}.

Observe tha3; N B> = ¥ sinceF is an antichain. Also for each= 1,2, if F € B;,
thenF contains the s, a, b} wherea, b € X\{1, 2}. Herce

ISl< D> (—=IFD!'+ Y IGqrabyl

FeF, {a,b}e(x\{lg*““c’)

' 2. 1Guan)l
{a,b}e(x\(lg.,,,,q)

§(n—2)!+2-<n;2>-(n—3)!
<=2 -2)! < (-1

We oonclude that ifF has an element of size 2, the8 < (n — 1)! for n > 6. Hence
the result follows. O

6. Open problems

Problem 1. What is the cardinality of the largest intersecting subsegofvhich is not
contained in a coset of the stabiliser of a point, and what is the structure of such a set of
maximum cardinality?

Consider the following set of permutations (for- 4):
S ={ge S :91) =109()=iforsome > 2} U {t},

wheret is the transposition interchanging 1 and 2. TI®ns clearly intersecting and is
not contained in a coset of the stabilizer of a point. MoreoS8eis a maximal intersecting
set. It satisfies

ISI=n-D!'—din—-1) —din-2)+1~ 1L—eHn -1,

whered(m) is the nunber of derangements %y,
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We mnjecture that, fon > 6, an intersecting subset not contained in a coset of a point
stabiliser has size at mogt — 1)! — d(n — 1) — d(n — 2) + 1, and that a set meeting this
bound has the forrgS*h for someg, h € S,. Conputation usingsAP [6] shows tlat this
is true forn = 6.

A weaker conjecture is that there exists 0 such hat any itersecting seb C S, with
|S| > (1 —c)(n—1)!is contained in a coset of the stabiliser of a point.

Problem 2. Givent > 1, is there a numbeng(t) such that, if n > ng(t), then a
t-intersecting subset df, has cardinality at mostn — t)!, and thata set neeting the
bound is a coset of the stabilisertopoints P, 3]? (A setS of permutations is said to be
t-intersecting ifi{x : g(x) = h(x)}| >t foranyg,h e S)

Deza and Frankl4] showed that the boun¢h — t)! holds if there exists a sharply
t-transitive set d permutdions of {1, ..., n}. (This is an immediate ensequence of
Corollary 4.) This holds, for example, if = 2 andn is a prime power. Even in this special
case, however, our argument for identifyimgt meeting the bound fails, because there is
no analogue of Hall's theorem for sharpghransitivesets witht > 1.
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