
International Journal of Solids and Structures 50 (2013) 996–1004

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r
Elasticity of anti-tetrachiral anisotropic lattices

Y.J. Chen a,b, F. Scarpa b,⇑, Y.J. Liu c, J.S. Leng a,⇑
a Centre for Composite Materials and Structures, No. 2 YiKuang Street, Science Park of Harbin Institute of Technology (HIT), P.O. Box 3011, Harbin 150080, China
b Advanced Composites Centre for Innovation and Science, University of Bristol, Bristol BS8 1TR, UK
c Department of Aerospace Science and Mechanics, No. 92 West Dazhi Street, Harbin Institute of Technology (HIT), P.O. Box 301, Harbin, PR China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 June 2012
Received in revised form 26 October 2012
Available online 21 December 2012

Keywords:
Anti-tetrachiral lattices
Anisotropic
Negative Poisson’s ratio
Finite element method (FEM)
Elastic constants
0020-7683/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.ijsolstr.2012.12.004

⇑ Corresponding authors. Tel.: +86 (0) 451 8640232
(J.S. Leng), tel.: +44 (0) 1173315306; fax: +44 (0) 117

E-mail addresses: f.scarpa@bris.ac.uk, f.scarpa@bri
hit.edu.cn (J.S. Leng).
This work describes the theoretical, numerical and experimental in-plane and out-of-plane elastic behav-
ior of a class of anti-tetrachiral lattice structures with in-plane negative Poisson’s ratios and anisotropic
behavior. Closed form analytical solutions related to the uniaxial stiffness, in-plane Poisson’s ratio and
bounds for the transverse shear modulus are derived, and compared against homogenization-based finite
element methods and experimental tests performed on rapid prototyping-made samples. The bench-
marked models are then used to investigate the behaviors of the anisotropic negative Poisson’s ratio
structures against the geometry parameters defining the unit cell. The results show the existence of large
variations in linear elastic constants and degree of anisotropy, which can be achieved by changing the
lattice geometry parameters. The analysis presented in this work provides meaningful guidance to assist
design anti-tetrachiral anisotropic lattices, which could serve as sandwich panel cores in aerospace
applications.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Cellular and lattice structures have attracted the attention of
many researchers around the world for several decades, due to
their significant lightweight and out-of-plane stiffness properties
(Bitzer, 1997). A primary application for cellular solids is their
use as sandwich core materials in a variety of engineering technol-
ogies, such as marine, aerospace and automotive lightweight struc-
tures (Alderson et al., 2010a,b). The conventional hexagonal
honeycomb is a typical example of cellular core configuration, with
unit cells made of ribs with equal length and an internal cell angle
of p=6 (Gibson and Ashby, 1997). Over-expanded centresymmetric
honeycomb configurations with special orthotropic properties can
also be developed when varying the cell wall aspect ratio and
internal cell angle, always with positive values (Bezazi et al.,
2005; Gibson and Ashby, 1997). Hexagonal honeycombs with
convex configuration (i.e. positive internal cell angle) exhibit anti-
clastic or saddle-shape curvatures when subject to out-of-plane
bending (Evans, 1991; Lakes, 1987; Masters and Evans, 1996),
making more problematic the use of classical cores in sandwich
structures with complex geometry (Evans and Alderson, 2000b).
On the opposite, negative Poisson’s ratio (auxetic) solids feature
synclastic curvature behaviors, making possible therefore to
ll rights reserved.
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produce dome-shaped surfaces when bent out-of-plane (Evans
and Alderson, 2000a; Lakes, 1987). Auxetic cellular structures have
also been used to prototype morphing wings (Bettini et al., 2010;
Martin et al., 2008; Spadoni et al., 2006), radomes (Scarpa et al.,
2003), adaptive and deployable structures (Hassan et al., 2008).

An attractive auxetic honeycomb structure is the structural chi-
ral configuration (Prall and Lakes, 1996). Structural chiral honey-
combs are composed by nodes connected by tangent ligaments,
providing an in-plane negative Poisson’s ratio effect due to the
bending-dominated deformation of the connecting ribs to the
rotating nodes. Apart from the synclastic curvatures feature com-
mon to auxetic honeycombs (Evans and Alderson, 2000b), the
chiral honeycombs provide the advantages to partially decouple
the transverse shear and flatwise compressive strengths, which
are enhanced by ligaments and nodes, respectively (Scarpa et al.,
2007; Spadoni et al., 2005). Therefore, the through-thickness
mechanical performance could be improved through the selection
of special geometry parameters related to the nodes and ligaments
(Alderson et al., 2010b; Gaspar et al., 2005; Scarpa et al., 2007).
Chiral honeycombs possess 3, 4 and 6 ligaments (trichiral, tetrachi-
ral and hexachiral). It is also possible to connect the same side of
the ligaments to the adjacent nodes, obtaining therefore anti-trich-
iral, anti-tetrachiral and anti-hexachiral honeycombs, respectively
(Grima, 2000). The chiral honeycomb with a theoretical in-plane
Poisson’s ratio of �1 was first reported by Prall and Lakes (1996),
while a large class of structural chiral topologies has been evalu-
ated analytically by Grima (2000). Alderson et al. (2010a) exam-
ined the in-plane linear elastic properties of chiral honeycomb
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attached with 3, 4 and 6 ligaments. The transverse elastic proper-
ties of these chiral honeycombs were further investigated by Lora-
to et al. (2010). Isotropic anti-tetrachiral configurations show on
average in-plane stiffness one order of magnitude higher compared
to trichiral configurations for the same relative wall thickness ratio,
although the deformation mechanism of the ligament under com-
pression (half-wave) provides an equivalent in-plane compressive
modulus lower than the classical tetrachiral configuration (Alder-
son et al., 2010a). The transverse shear modulus of isotropic
anti-tetrachiral lattices is similar to the one of 3-ligaments config-
urations, and 50% lower on average compared to hexachiral config-
urations (Lorato et al., 2010). However, the normalized flatwise
compression behavior of isotropic anti-tetrachiral configurations
is equivalent to the one of 6-ligaments hexagonal chiral topologies
(Miller et al., 2010). Moreover, the anti-tetrachiral configuration
shows a stable in-plane negative Poisson’s ratio (��1 (Alderson
et al., 2010a)), and it is not subjected to global coupling of uniaxial
compression and in-plane rotation of the specimen when loaded,
making it therefore a structure exhibiting a more uniform defor-
mation behavior under the application of external forces. One
aspect that has not been considered in open literature- to the
best of the Author’s knowledge- is the mechanical behavior of
anisotropic architectures related to chiral structures. Since the
anti-tetrachiral honeycomb exhibits a considerable potential for
engineering application, such as structural health monitoring
(Jenal et al., October 20–22, 2009) and aerospace components
(Miller et al., 2010), it is interesting to study its anisotropic proper-
ties, as well as to show the relation between elastic constants and
its geometry parameters.

In this work, anti-tetrachiral anisotropic lattices have been
manufactured using rapid prototype (RP)-based techniques, and
subjected to in-plane tensile, flatwise compression and 3-point
bending tests. Analytical models to describe the elastic constants
of anisotropic anti-tetrachiral honeycomb configurations have
been developed, and benchmarked against finite element (FE)
homogenization methods and the experimental results. The vali-
dated analytical and numerical models have then used to perform
a parametric analysis about the dependency of the linear elastic
constant vs. the different honeycomb geometry parameters.
2. Anti-tetrachiral geometry and models for the linear elastic
behavior

2.1. Lattice geometry

Fig. 1 shows a representative unit cell of the anti-tetrachiral
anisotropic honeycomb configuration. The parameters Lx; Ly, r,
and t represent the ligament length along the x and y directions,
the radius of the node, and the wall thickness of the ligaments
Fig. 1. Geometry of the anti-tetrachiral anisotropic honeycomb unit cell.
and nodes, respectively. The depth of the cell b is not shown for
clarity. For convenience, four non-dimensional parameters are
defined: ax ¼ Lx=r, ay ¼ Ly=r, b ¼ t=r, c ¼ b=r.

2.2. Analytical formulation

As a first approximation, Prall and Lakes (1996) and Alderson
et al. (2010a) assume that the nodes in structural chiral configura-
tions are perfectly rigid rotating units, and only small deformations
occur within the ligaments. The in-plane Young’s modulus and
Poisson’s ratio can be derived for anti-tetrachiral isotropic honey-
comb making use of conventional beam theory associated to the
deformation mechanism of the ligaments. For the anisotropic (or
special orthotropic) anti-tetrachiral configuration, we consider
one ligament subjected to an axial load causing the attached node
to rotate, and inducing also other adjacent nodes to rotate and lig-
aments to bend (Abramovitch et al., 2010). When the node rotates
by an angle /; the strains along the x (ex) and y (ey) directions can
be expressed as (Fig. 2(a)):

ex ¼
2ðr � t=2Þ/

Lx
ð1Þ

ey ¼
2ðr � t=2Þ/

Ly
ð2Þ

The in-plane Poisson’s ratio mxy can be calculated from its definition
(Evans and Alderson, 2000b):

mxy ¼ �
ey

ex
¼ � Lx

Ly
ð3Þ

The energy approach is used here to obtain the in-plane linear
elastic modulus. It is assumed that the strain energy generated
by a small strain ei along the i direction is equated to the energy
Wlig stored in each of the eight bent ligaments of the representative
unit cell:

1
2

Eie2
i ¼

8
V

Wlig ð4Þ

where Ei and V (V ¼ 4LxLyb) are the elastic modulus in i direction
and volume of the representative unit cell respectively. It is worth
pointing out that the neutral axis of the ligament does not coincide
with the outer surface of the node. From Fig. 1, the effective flexural
length along the x and y directions (Lex and Ley) could be expressed
as:

Lex ¼ Lx � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðr � tÞ2

q
¼ Lx � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rt � t2

p
ð5Þ

Ley ¼ Ly � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðr � tÞ2

q
¼ Ly � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rt � t2

p
ð6Þ
Fig. 2. Anti-tetrachiral anisotropic topology and simplified deformation: (a) the
bending deformation of the lattice structure; (b) geometry definition for 1/4th of
unit cell.
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According to Euler–Bernoulli beam theory, two equal and opposing
moments M acting on each end of the ligament produce a angular
deflection /. The strain energy of the beams can be therefore
expressed as:

Wlig ¼ 2
Z /

0
Md/ ð7Þ

For a ligament with effective flexural length Leff and rectangular
cross-section, the second moment of inertia is:

/ ¼ MLeff

2EcI
; I ¼ bt3

12
ð8Þ

where Ec is the elastic modulus of core material. Substituting Eq. (8)
into Eq. (7), a new expression for Wlig can be obtained:

Wlig ¼
Ecbt3/2

6Leff
ð9Þ

When small strains ex and ey are applied to the representative unit
cell, two new energy expressions can be obtained by substituting
equations (1), (2), and (9) into Eq. (4):

1
2

Exe2
x ¼ 4

Ecbt3L2
xe2

x

24Lexðr � t=2Þ2
þ Ecbt3L2

xe2
x

24Leyðr � t=2Þ2

" #
1

4LxLyb
ð10Þ

1
2

Eye2
y ¼ 4

Ecbt3L2
ye2

y

24Lexðr � t=2Þ2
þ

Ecbt3L2
ye2

y

24Leyðr � t=2Þ2

" #
1

4LxLyb
ð11Þ

where Ex and Ey are the elastic moduli along the x and y directions of
anti-tetrachiral anisotropic lattice. Eqs. (10) and (11) can be re-writ-
ten in terms of non-dimensional geometry parameters as:

Ex ¼
Ecb

3ax

12 1� b
2

� �2ay

1

ax � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b� b2

q þ 1

ay � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b� b2

q
0
B@

1
CA ð12Þ

Ey ¼
Ecb

3ay

12 1� b
2

� �2ax

1

ax � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b� b2

q þ 1

ay � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b� b2

q
0
B@

1
CA ð13Þ

When ligament lengths are equal (i.e. ax ¼ ay ¼ a), we obtains the
expression for the in-plane Young’s modulus related to isotropic
anti-tetrachiral honeycombs (Alderson et al., 2010a):

Ex ¼ Ey ¼
Ecb

3

6 1� b
2

� �2

1

a� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b� b2

q
0
B@

1
CA ð14Þ

Since the cellular structures are assumed to have a uniform wall
thickness and depth for both nodes and ligaments, the elastic mod-
ulus Ez along the z direction can is proportional to the relative
density of the honeycomb structure itself (Gibson and Ashby,
1997):

Ez

Ec
¼ q

qc
ð15Þ

where qc and q are the density of the core material and lattice
structure respectively. By inspection, the relative density of the
representative unit cell can be simplified as the ratio between core
material area (Ac) and unit cell area (Au) (Lorato et al., 2010):

q
qc
¼ Ac

Au
¼ An þ Al � Aj

Au
ð16Þ

where An, Al and Aj are respectively the nodes, ligaments and junc-
tion areas of each unit cell. The junction area is represented by the
overlap region between ligament and node (Fig. 1). The elastic mod-
ulus along the z direction can be therefore expressed as:

Ez ¼
b½ax þ ay þ pð2� bÞ� � 2½/� ð1� bÞ sin /�

axay
Ec ð17Þ

where / ¼ arccosð1� bÞ. Similarly, when the ligament lengths are
equal, one obtains the expression for the anti-tetrachiral isotropic
honeycomb (Lorato et al., 2010):

Ez ¼
b½2aþ pð2� bÞ� � 2½/� ð1� bÞ sin /�

a2 Ec ð18Þ

From a theoretical point of view, the transverse shear modulus
of general honeycomb structures is limited within an upper (Voigt)
and a lower (Reuss) bound. Those bounds can be obtained using the
theorems of minimum potential energy and minimum complemen-
tary energy (Gibson and Ashby, 1997; Kelsey et al., 1958; Lira et al.,
2009; Xu et al., 2001). For isotropic regular hexagonal lattices, the
upper bound does coincide with the lower bound (Olympio and
Gandhi, 2010). Although anti-tetrachiral isotropic honeycombs
are in-plane isotropic, two different bounds for the transverse shear
modulus exist (Lorato et al., 2010). In the present work, the upper
limit of the transverse shear modulus is calculated using the theo-
rem of minimum potential energy, which states that the potential
energy is a minimum for compatible displacements (Olympio and
Gandhi, 2010). Due to the in-plane symmetry of the anti-tetrachiral
anisotropic lattice, a 1/4th unit cell is used for the analytical deriva-
tion (Fig. 2(b)). If a global transverse shear strain cxz is applied to the
quarter unit cell, one obtains the following expression for the
potential energies of the system (Gibson and Ashby, 1997):

1
2

Gxzc2
xzV1=4 6

1
2

Gc

X
i

c2
i V i

� �
ð19Þ

where Gxz and V1=4 (V1=4 ¼ bLxLy) are the transverse shear modulus
of the anti-tetrachiral honeycomb and the volume of the quarter
unit cell respectively. The symbols Gc , ci and Vi stand for the shear
modulus of the core material, the transverse shear strain and
volume components of the quarter unit cell. The shear strain and
energy in each component of the 1/4th cell can be approximated by:

cAB
i ¼ cEF

i ¼ 0; c2
i V i

� �AB ¼ ðc2
i V iÞEF ¼ 0 ð20Þ

cCD
i ¼ cGH

i ¼ cxz; ðc2
i V iÞCD ¼ ðc2

i V iÞGH ¼ Lx

2
c2

xz ð21Þ

ðc2
i V iÞnode ¼

Z 2p

0
rtbc2

xz sin hdh ¼ c2
xzprtb ð22Þ

Substituting Eqs. (18)–(20) into Eq. (17), the upper bound of trans-
verse shear modulus can be expressed in terms of the core shear
modulus Gc and the nondimensional parameters as:

Gxz 6
ðax þ pÞ

axay
bGc ð23Þ

Similarly, the upper bound of transverse shear modulus Gyz can be
written in the following manner:

Gyz 6
ðay þ pÞ

axay
bGc ð24Þ

Equal ligament lengths lead to the isotropic anti-tetrachiral formu-
lation (Lorato et al., 2010):

Gxz ¼ Gyz 6
ðaþ pÞ

a2 bGc ð25Þ

Following Lorato et al. (2010), the lower bound is derived using a
FEM approach with an estimation possible to each when considering
honeycomb configurations with depth ratio c around 20, because
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the transverse shear modulus keeps almost constant for c > 17 for a
given set of wall aspect ratios and relative density values (Lorato
et al., 2010). In this work, the lower bound for the transverse shear
modulus of the anisotropic anti-tetrachiral lattices is identified for
a depth ratio of 21. A non-linear least square (NLLS) fitting over
140 configurations of anti-tetrachiral anisotropic honeycomb pro-
vides the estimation of the actual transverse shear modulus:

G ¼ Glow þ KðGup � GlowÞ ð26Þ

where Gup and Glow are the upper bound and lower bound of trans-
verse shear modulus, respectively. The coefficient K (R2 ¼ 0:9991)
can be written as:

K ¼ 1� 0:136cþ 0:00679c2 � 0:0001237c3 ð0 < c 6 21Þ ð27Þ

Eq. (27) is a higher polynomial order approximation of the depen-
dency of the transverse shear vs. the depth ratio, compared to the
simple inverse proportion existing in isotropic chiral configurations
(Lorato et al., 2010), and centresymmetric hexagonal honeycomb
layouts (Grediac, 1993; Scarpa and Tomlin, 2000).

2.3. FE Homogenization

In order to obtain the in-plane and out-of-plane linear elastic
constants of the honeycomb structures, numerical homogenization
procedures related to periodic continuum media (Odegard, 2004;
Sun and Vaidya, 1996) have been performed using a commercial
FE analysis package (ANSYS, version 11.0, Ansys Inc.). The models
have been developed using 3D structural solid hexahedral ele-
ments SOLID45 with eight nodes and three translational degrees
of freedom (nodal x, y and z directions). The element can also incor-
porate orthotropic core materials properties with the material axis
corresponding to the element coordinate system. Convergence
tests have determined a typical representative FE volume given
by 4� 4 cells and elements with minimum size of t=2 (Fig. 3).

The boundary conditions have been applied following (Odegard,
2004) (Table 1). The symbols ux, uy and uz stand for the applied dis-
placements along the x, y and z directions, respectively. The uni-
form axial strain and shear strain applied to the representative
unit cell are expressed as e0 and c0 respectively. The coordinates
of the element nodes are represented by xi (i ¼ 1;2; and 3), i.e. x,
y and z directions. For example, loading along the x direction is per-
formed with x-displacements (ux) applied to the element nodes on
both right-hand and left-hand surfaces (A and B), which are per-
pendicular to x-coordinate axis. The displacements are propor-
tional to the uniform axial strain e0. The element nodes on both
surfaces are also constrained from displacement along the y and
z directions, while the element nodes on other four areas (C, D, E
and F) are free. Strain along the i ¼ ðx; y and zÞ direction (�ex, �ey

and �ez) are calculated dividing the average displacement along
Fig. 3. Finite element model of
the i direction by the original length of the lattice model. Average
stresses along the i ¼ ðx; y and zÞ direction are calculated using the
following formulation (Sun and Vaidya, 1996):

�rxx ¼
1
V

Z
V
riiðx; y; zÞdV ð28Þ

According to Eq. (28) and the stress–strain relation expressed in
(29), it is possible to calculate the homogenized stress–strain coef-
ficients S11; S21 and S31 for the periodic equivalent continuum med-
ium representing the anti-tetrachiral configurations:

�ex

�ey

�ez

�cyz

�czx

�cxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

2
666666664

3
777777775

�rx

�ry

�rz

�syz

�szx

�sxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð29Þ

�rx ¼ �rxx � mcð�ryy þ �rzzÞ ð�ry ¼ �rz ¼ �syz ¼ �szx ¼ �sxy ¼ 0Þ ð30Þ

S11 ¼ �ex=�rx; S21 ¼ �ey=�rx; S31 ¼ �ez=�rx ð31Þ

where mc is the Poisson’s ratio of the core material. Following a sim-
ilar approach for the other homogenized stress–strain coefficients,
it is possible to obtain the global second-order compliance homog-
enized tensor ½S�. The in-plane and out-of-plane elastic constants of
the honeycomb structures can be calculated from the elements of
the compliance matrix as:

Ex ¼
1

S11
; Ey ¼

1
S22

; mxy ¼ �
S21

S11
ðwith mxyEy ¼ myxExÞ

Ez ¼
1

S33
; Gyz ¼

1
S44

; Gxz ¼
1

S55
ð32Þ

There are nine elastic constants for the orthotropic anti-
tetrachiral honeycomb. Since the terms Ex, Ey, Ez, Gxz, Gyz and mxy

are the primary concern of this current study, only the expressions
of these six elastic constants are given.

3. Manufacturing and experimental testing

Anti-tetrachiral anisotropic honeycomb samples have been
manufactured using a Rapid Prototyping (PR) Fusion Deposition
Molding (FDM) Stratasys machine (Stratasys Inc., USA). The elastic
properties of the core material (ABS plastic) have been determined
from dog-bone specimens according to standard test method
(ASTM D638-08) by some of the authors (Lira et al., 2011). Since
the ABS plastic shows in-plane orthotropic mechanical properties
(Ex ¼ 2016 MPa, mxy ¼ 0:43; Ey ¼ 1530 MPa, myx ¼ 0:41), equivalent
repeating unit cell layout.



Table 1
Boundary conditions for the compliance matrix constants.

Properties Element nodes displacement on surfaces A and B Element nodes displacement on surfaces C and D Element nodes displacement on surfaces E and F

Si1(i=1,2,3) ux ¼ e0x1

uy ¼ 0
uz ¼ 0

Free Free

Si2(i=1,2,3) Free ux ¼ 0
uy ¼ e0x2

uz ¼ 0

Free

Si3(i=1,2,3) Free Free ux ¼ 0
uy ¼ 0
uz ¼ e0x3

S44 ux ¼ 0
uy ¼ ðc0=2Þx3

uz ¼ ðc0=2Þx2

ux ¼ 0
uy ¼ ðc0=2Þx3

uz ¼ ðc0=2Þx2

ux ¼ 0
uy ¼ ðc0=2Þx3

uz ¼ ðc0=2Þx2

S55 ux ¼ ðc0=2Þx3

uy ¼ 0
uz ¼ ðc0=2Þx1

ux ¼ ðc0=2Þx3

uy ¼ 0
uz ¼ ðc0=2Þx1

ux ¼ ðc0=2Þx3

uy ¼ 0
uz ¼ ðc0=2Þx1

S66 ux ¼ ðc0=2Þx2

uy ¼ ðc0=2Þx1

uz ¼ 0

ux ¼ ðc0=2Þx2

uy ¼ ðc0=2Þx1

uz ¼ 0

ux ¼ ðc0=2Þx2

uy ¼ ðc0=2Þx1

uz ¼ 0
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isotropic properties (Ec ¼ 1756 MPa, mc ¼ 0:42 and Gc ¼ 618:3 MPa)
are obtained using the geometric mean for the orthotropic elastic
modulus and Poisson’s ratio (Lira and Scarpa, 2010). For conve-
nience, the equivalent isotropic elastic constants will be used in
the FEM homogenization and theoretical formulas.

The elastic modulus of the anti-tetrachiral lattices along the z
direction has been obtained from the flatwise compressive tests
performed according to the ASTM standard C365/C365M-11a.
The honeycomb samples (dimensions of 96 mm � 96 mm �
16 mm) have been tested on a tensile machine (Instron DX600)
with a 600 KN load cell (Fig. 4(a)). A constant displacement rate
of 0.5 mm/min has been used during the test. The force and dis-
placement values have been recorded by a BlueHill control and
acquisition software. In order to improve the test accuracy, a video
extensometer has been used to record the accurate strain and dis-
placement value. This system consists a digital video camera
(SONY XCD-X710) with zoom lens (COMPUTAR 18-108/2.5) con-
nected to a PC with video Gauge software (IMETRUM Ltd.) able
to track and measure the position in pixels of targets marked on
the sample during the test. In order to obtain the actual displace-
ment, a reference displacement was used to convert the pixels into
actual metric values (Thill et al., October 6–9, 2008). All the in-
plane tensile tests were performed using a testing machine
(Instron 3343, load cell: 1 KN) with a constant displacement rate
of 1 mm/min. The honeycomb samples had dimensions of
192 mm � 96 mm � 2 mm for the tests related to the elastic mod-
ulus along both the x and y directions (Fig. 4(c) and (d)). A pair of
custom clamps for the test were designed and manufactured, since
the length of the honeycomb sample edge is larger the one of the
machine jaw. These clamps are highlighted on Fig. 4(c) and (d).
The sample strains along the x and y directions (ex and ey) could
be obtained by measuring the positions of any two targets along
the x and y directions, respectively. Base on the measurement re-
sults, the in-plane Poisson’s ratio could be obtained using Eq. (3).
The three-point bending tests have been performed using a testing
machine (Zwick 1478, load cell: 100 KN) with a constant displace-
ment rate of 0.5 mm/min (Fig. 4(b)). The honeycomb samples man-
ufactured for the transverse shear modulus Gxz had dimensions
192 mm � 48 mm � 16 mm, 96 mm � 48 mm � 16 mm for the
specimens made to measure Gyz. The face skins were produced
using four layers of unidirectional prepreg IM7/8552 (Hexcel
Corporation), with ply angles of (+45/�45)2. After been surface
treated with sandpaper, the face skins have a resultant thickness
of 0.4 mm for the sandwich sample related to the Gxz measure-
ment, and 0.3 mm for the Gyz sandwich beam. Two face skins have
been bonded to the top and bottom surfaces of the honeycomb
with a 2-part paste epoxy (REDUX 810, Hexcel Corporation) for a
cold curing of 72 h. The final sandwich structure can also be found
in Fig. 4(b). The transverse shear modulus of the sandwich beams
has been calculated through the expression (Allen, 1969; Lira
et al., 2011):

D ¼WL3

48D
þ WL

4AG
ð33Þ

where G; D and W are respectively the transverse shear modulus,
central deflection and central point load. L, D and A represent the
length, flexural rigidity and cross-sectional area of the sandwich
structures respectively.
4. Results and discussions

4.1. Comparison between experiments and models

The geometrical parameters of the anti-tetrachiral anisotropic
honeycomb samples for the experimental tests related to the
out-of-plane elastic constants are r=4 mm, Lx=24 mm, Ly=12 mm,
t=1 mm and b=16 mm (i.e. ax ¼ 6, ay ¼ 3, b ¼ 0:25 and c ¼ 4).
Since the depth b is independent of the in-plane elastic modulus
and in-plane Poisson’s ratio, b=2 mm has been chosen for the spec-
imen to be tested to identify the in-plane elastic mechanical prop-
erties. Table 2 shows the comparison of the elastic constants
between the theory, FE homogenization and the experimental re-
sults. The FE results show a discrepancy of 6.9% and 9.2% over
the experimental results related to Ez and Gxz, and 19.5% for Gyz.
The in-plane elastic constants Ex and Ey show a 2.17% and 9.5% dif-
ference with the experimental findings. Uncertainties affecting the
discrepancy between the experimental and analytical and FE re-
sults can be ascribed also to the use of an equivalent isotropic elas-
tic modulus Ec (=1756 MPa). The samples produced using FDM
techniques have a layerwise deposition of the ABS plastics, and a
degree of internal porosity that is not consistent with the assump-
tion of an isotropic and homogeneous core material for these lat-
tice structures (Bellini and Güçeri, 2003; Lira and Scarpa, 2010;
Lira et al., 2011). There is however a general excellent agreement
between the theoretical and FE homogenization models, with a
discrepancy lower than 2.7% for Ey, Ez, Gxz and Gyz, as well as a dis-
crepancy of 8.7% and 7.5% for the elastic modulus Ex and Poisson’s
ratio mxy respectively.



Fig. 4. Honeycomb structures experimental setup: (a) flatwise compression tests; (b) three-point bending tests; (c) and (d) tensile tests.

Table 2
Comparison between the theory, FEM and experimental results.

Theory FEM Experiment

Ex (MPa) 4.838 5.260 5.374 ± 0.015
Ey (MPa) 1.209 1.242 1.360 ± 0.017
Ez (MPa) 309.4 308.8 280.5 ± 9.8
Gxz (MPa) 68.23 68.12 63.43 ± 2.92
Gyz (MPa) 42.62 42.86 34.65 ± 0.57
mxy �2.000 �1.849 �1.831 ± 0.005

Fig. 6. FE homogenization and analytical predictions for the non-dimensional
elastic modulus (Ex=Ec) vs. ax (=Lx=r) for different b (=b=r).
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4.2. Parametric analysis

4.2.1. Uniaxial stiffness constants
Figs. 5–7 shows the variation of the elastic properties of the

anti-tetrachiral configurations vs. the geometry parameters of the
unit cells. The curves are obtained via the analytical and FE homog-
enization models. Considering the in-plane symmetry of the anti-
tetrachiral honeycomb and the special orthotropic relation
Fig. 5. FE homogenization and analytical predictions for the non-dimensional
elastic modulus (Ex=Ec) vs. ax (=Lx=r) for different ay (=Ly=r).

Fig. 7. FE homogenization and analytical predictions for the non-dimensional
elastic modulus (Ex=Ec) vs. ay (=Ly=r) for different b (=b=r).



Fig. 9. FE homogenization and analytical predictions for the non-dimensional
transverse elastic modulus (Ez=Ec) vs. ax (=Lx=r) for different b (=b=r).
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(mxyEy ¼ myxEx), only the elastic modulus Ex is analyzed and dis-
cussed in this section. Fig. 5 shows the predictions related to the
non-dimensional elastic modulus (Ex=Ec) vs. ax for different ay val-
ues (with r = 4 mm, c ¼ 4 and b ¼ 0:25). It is worth to notice that
the FE values show a stiffer response (average value: 10.97%) com-
pared to the analytical results. The FE nodes present on the two
surfaces A and B have been constrained from displacement along
the y and z directions (uy and uz) and, in that sense, are more rep-
resentative of the experimental tensile boundary conditions. The
end effect generated by this constraint is not present in the theo-
retical model. In general, the non-dimensional elastic modulus
(Ex=Ec) increases with increasing ax values for ay constant. On the
opposite, the non-dimensional elastic modulus (Ex=Ec) decreases
for increasing ay values, while ax is kept as constant parameter
(Fig. 5).

The FE and analytical models related to the non-dimensional
elastic modulus vs. ax (with r = 4 mm, c ¼ 4 and ay ¼ 6) and ay

(with r = 4 mm, c ¼ 4 and ax ¼ 6) for different b values are shown
in Figs. 6 and 7 respectively. The ratio Ex=Ec increases for increasing
ax when b is kept constant, but the opposite is true for increasing
ay values, for which it is possible to observe a decrease of the
non-dimensional Young’s modulus (Fig. 7). For higher non-dimen-
sional wall thickness (b), Ex=Ec exhibits in both figures a non-linear
increase when the non-dimensional ligament lengths ax and ay

remain constant. The phenomenon can be explained observing
Eq. (12), which contains a b3 term in the numerator, in similarity
with what is observed also for in-plane stiffness properties centre-
symmetric honeycombs (Gibson and Ashby, 1997).

Fig. 8 shows the behavior of Ez=Ec vs. ax for different ay (with
r = 4 mm, c ¼ 4 and b ¼ 0:25) values. When ay is kept constant,
the non-dimensional transverse elastic modulus decreases with
increasing values of ax, reaching its minimum value (b=ay) when
ax is infinitely large. Similarly, when ax is kept constant, Ez=Ec de-
creases with increasing values of ay: The non-dimensional trans-
verse elastic modulus will reach its minimum value (b=ax) when
ay tends towards infinity. The explanation for this trend can be
found observing Eq. (17), in which the non-dimensional parameter
ax and ay give an equal contribution to the behavior of Ez. Therefore,
only ax is used to study the effect of the geometry on the transverse
elastic modulus Ez in the following discussions. Fig. 9 shows the
behavior of the transverse non-dimensional elastic modulus Ez=Ec

vs. ax for different b (with r = 4 mm, c ¼ 4 and ay ¼ 6) values. When
b is kept constant, the non-dimensional elastic modulus (Ez=Ec)
decreases with increasing ax values. However, when ax is made
Fig. 8. FE homogenization and analytical predictions for the non-dimensional
transverse elastic modulus (Ez=Ec) vs. ax (=Lx=r) for different ay (=Ly=r).
constant, the non-dimensional transverse elastic modulus in-
creases for increasing b. An excellent agreement between the FE
homogenization and theoretical values can be observed.

4.2.2. Poisson’s ratios
Fig. 10 shows the comparison between FE homogenization and

analytical results for the in-plane Poisson’s ratio mxy vs. ax for differ-
ent ay (with r = 4 mm, c ¼ 4 and b ¼ 0:25) values. In general, it is
possible to observe a reasonable agreement between the numerical
and theoretical values. The magnitude of the Poisson’s ratio from
the FE simulations is lightly lower (average values: 7.85%) than
the one predicted by the theoretical model, showing a stiffer
mechanical response from the FE homogenization. When ay is kept
constant, the in-plane negative Poisson’s ratio mxy increases with
the increasing of ax. On the opposite, when ax remains constant,
the in-plane negative Poisson’s ratio mxy decrease for increasing
ay value, as expected by inspecting equation (3). The result indi-
cates that large variations in in-plane negative Poisson’s ratio can
be achieved through changing the ligament lengths along the x
and y directions.

4.2.3. Transverse shear moduli
The transverse shear modulus is an important parameter for the

bending stiffness of sandwich beams and plates (Bitzer, 1997).
Fig. 10. FE homogenization and theoretical predictions related to the Poisson’s ratio
(mxy) vs. ax (=Lx=r) for different ay (=Ly=r).



Fig. 12. FE homogenization and theoretical predictions related to the non-dimen-
sional transverse shear modulus (Gxz=ðbGcÞ) vs. c (=t=r) for different ax (=Lx=r).
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Only transverse shear modulus Gxz is discussed in this section due
to the symmetry properties of the anti-tetrachiral lattice configura-
tion. Figs. 11–13 show the comparison between the FE homogeni-
zation and theoretical predictions of transverse shear modulus vs.
different geometry parameters of the anti-tetrachiral unit cell. As
seen in these figures, all the FE-derived results show a good agree-
ment with the theoretical ones. The behavior of non-dimensional
transverse shear modulus (Gxz=ðbGcÞ) vs. ax for different ay (with
r = 4 mm, c ¼ 4 and b ¼ 0:25) values is shown in Fig. 11. Along
with increasing values of ax, the non-dimensional transverse shear
modulus decreases when ay is kept constant. Similarly, for increas-
ing ay values, Gxz=ðbGcÞ tends to decrease.

The variation of the non-dimensional transverse shear modulus
(Gxz=ðbGcÞ) vs. the depth ratio c for different ax (with r = 4 mm,
b ¼ 0:25 and ay ¼ 6) and ay (with r = 4 mm, b ¼ 0:25 and ax ¼ 6)
values are illustrated in Figs. 12 and 13 respectively, showing a
general excellent agreement. The non-dimensional transverse
shear modulus decreases with increasing values of c when ax

and ay are kept constant. The transverse shear modulus first de-
creases rapidly, then approaches to an asymptotic behavior, which
coincides with the lower bound (Fig. 12). A similar trend can also
be observed in Fig. 13. Within the values range of depth ratio c
(0 < c 6 21), the non-dimensional transverse shear moduli reach
their maximum values around zero and decrease to their minimum
values at 21.
Fig. 13. FE homogenization and theoretical predictions for the non-dimensional
transverse shear modulus (Gxz=ðbGcÞ) vs. c (=t=r) for different ay (=Ly=r).
4.2.4. Specific mechanical properties
Density is an important design parameter when selecting core

materials in lightweight sandwich applications (Bitzer, 1997).
Fig. 14 shows the FE homogenization predictions related to the
non-dimensional elastic modulus (Ex=Ec) vs. relative density
(q=qc) for different ay (with r = 4 mm, b ¼ 0:25, c ¼ 4 and ax ¼
3;5;7;9 and 11) and ax (with r = 4 mm, b ¼ 02:5, c ¼ 4 and
ax ¼ 3;5;7;9 and 11) values. For increasing relative density, the
non-dimensional elastic moduli tend to decrease when ay is kept
constant, on the opposite increasing when ax remains constant.
For constant relative density (q=qc), Ex=Ec increases for increasing
ax; on the opposite increasing for lower values of ay. The results
suggest the possibility of using anisotropic anti-tetrachiral configu-
rations to design honeycomb structures with minimum density and
maximizing in-plane elastic modulus. Similarly, Fig. 15 shows the
predictions from the FE homogenization method related to the
non-dimensional transverse shear modulus (Gxz=Gc) vs. relative
density (q=qc) for different ay (with r = 4 mm, b ¼ 0:25, c ¼ 4 and
ax ¼ 3;5;7;9 and 11 and ax (with r = 4 mm, b ¼ 0:25, c ¼ 4 and
Fig. 11. FE homogenization and theoretical predictions for non-dimensional
transverse shear modulus (Gxz=ðbGcÞ) vs. ax (=Lx=r) for different ay (=Ly=r).

Fig. 14. FE homogenization predictions related to the non-dimensional elastic
modulus (Ex=Ec) vs. relative density (q=qc) for different ay (=Ly=r) and different ax

(=Lx=r).
ax ¼ 3;5;7;9 and 11) values. For increasing relative density, the
non-dimensional transverse shear moduli tend to increase when



Fig. 15. FE homogenization predictions for the non-dimensional transverse shear
modulus (Gxz=Gc) vs. relative density (q=qc) for different ay (=Ly=r) and different ax

(=Lx=r).
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ay and ax remain constants. At constant relative density (q=qc),
Gxz=Gc increases for decreasing ay, on the opposite it diminishes
its value for higher ax parameters. Also these results indicate that
it could be possible to design honeycomb structures with minimum
density and maximum transverse shear modulus when using aniso-
tropic anti-tetrachiral configurations.

5. Conclusions

In this work, a novel anti-tetrachiral anisotropic lattice structure
has been modeled, produced with rapid prototyping techniques
and investigated from an analytical, numerical and experimental
point of view. The focus of the investigation was the effect of the
anisotropic chiral lattice over the variation of the in-plane homog-
enized elastic uniaxial elastic constants (Young’s moduli and Pois-
son’s ratios), as well as the transverse shear moduli. The accuracy
of theoretical and FE homogenization models has been validated
by a series of experimental results carried out following standard-
ized tests. A parametric analysis showed that one can expect large
variations of the in-plane negative Poisson’s ratios through chang-
ing the length of the ligaments along the x and y directions.
Anti-tetrachiral anisotropic honeycomb structures with minimum
density but maximum transverse shear modulus (or in-plane elas-
tic modulus) can be identified through careful selection of the
geometry parameters. The analysis presented in this work provides
overall guidelines to develop and manufacture a new type of core
for sandwich structures for a variety of engineering applications.
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