On the distance from a rational power to the nearest integer

Artūras Dubickas
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

Received 5 May 2005; revised 18 May 2005
Available online 28 September 2005
Communicated by K.A. Ribet

Abstract

We prove that for any non-zero real number ξ the sequence of fractional parts $\left\{\xi(3 / 2)^{n}\right\}$, $n=1,2,3, \ldots$, contains at least one limit point in the interval [$0.238117 \ldots, 0.761882 \ldots$] of length $0.523764 \ldots$. More generally, it is shown that every sequence of distances to the nearest integer $\left\|\xi(p / q)^{n}\right\|, n=1,2,3, \ldots$, where $p / q>1$ is a rational number, has both 'large' and 'small' limit points. All obtained constants are explicitly expressed in terms of p and q. They are also expressible in terms of the Thue-Morse sequence and, for irrational ξ, are best possible for every pair $p>1, q=1$. Furthermore, we strengthen a classical result of Pisot and Vijayaraghavan by giving similar effective results for any sequence $\left\|\xi \alpha^{n}\right\|, n=1,2,3, \ldots$, where $\alpha>1$ is an algebraic number and where $\xi \neq 0$ is an arbitrary real number satisfying $\xi \notin \mathbb{Q}(\alpha)$ in case α is a Pisot or a Salem number. © 2005 Elsevier Inc. All rights reserved.

MSC: 11J71; 11R06; 11B85
Keywords: Distribution modulo 1; Algebraic numbers; Pisot numbers; Salem numbers; The Thue-Morse sequence; Words

[^0]
1. Introduction

Let throughout $\alpha>1$ be an algebraic number, and let $p>q \geqslant 1$ be two coprime positive integers. Write $[x]$ and $\{x\}$ for the integer and the fractional parts of a real number x, respectively. Let $\|x\|$ be the distance between x and the nearest integer to x, so that $\|x\|=\min (\{x\}, 1-\{x\})$. Let also $\xi \neq 0$ and η be fixed real numbers.

The distribution of the sequences $\left\{\xi \alpha^{n}+\eta\right\}, n=1,2,3, \ldots$, in general, and $\left\{\xi(p / q)^{n}\right\}$, $n=1,2,3, \ldots$, in particular, is a subject of intensive studies. The behavior of the sequences $\left\{\xi \alpha^{n}\right\}, n=1,2,3, \ldots$, and $\left\|\xi \alpha^{n}\right\|, n=1,2,3, \ldots$, is different depending on arithmetical nature of α. To be precise, it depends on whether α is (or is not) an algebraic integer which has no other conjugates outside the unit circle. This was noticed already by Pisot [25], Vijayaraghavan and Salem [27] (see also [8,11]). Later, such algebraic numbers were named after them. More precisely, an algebraic integer $\alpha>1$ is called a PV-number (or a Pisot and Vijayaraghavan number, or simply a Pisot number) if its other conjugates (if any) lie in the open unit disc $|z|<1$. An algebraic integer $\alpha>1$ is called a Salem number if its other conjugates lie in the unit disc $|z| \leqslant 1$ with at least two conjugates lying on $|z|=1$.

In terms of the distance to the nearest integer one can express their results as follows. Suppose that $\varepsilon>0$ is an arbitrary positive number. Then, for each α which is a Pisot or a Salem number, there is a non-zero $\xi \in \mathbb{Q}(\alpha)$, such that $\left\|\xi \alpha^{n}\right\|<\varepsilon$ for every $n \in \mathbb{N}$. See, e.g., [8,11] for a classical version of these results and also [16,34] for the 'fractional part' versions of this theorem for Pisot and Salem numbers, respectively. In all other cases, the sequence $\left\|\xi \alpha^{n}\right\|, n=1,2,3, \ldots$, has a limit point which is greater than a constant depending on α only. However, so far no such constant was given explicitly, so we begin with the following effective version of this statement.

Theorem 1. Let $\alpha>1$ be a real algebraic number and let ξ be a non-zero real number lying outside the field $\mathbb{Q}(\alpha)$ in case α is a Pisot or a Salem number. Then the sequence $\left\|\xi \alpha^{n}\right\|, n=1,2,3, \ldots$, has a limit point $\geqslant 1 / \min (L(\alpha), 2 \ell(\alpha))$.

Here, $L(\alpha)=L(P)=\sum_{k=0}^{d}\left|a_{k}\right|$ is the length of the minimal polynomial

$$
P(z)=a_{d} z^{d}+\cdots+a_{1} z+a_{0} \in \mathbb{Z}[z]
$$

of α over \mathbb{Q}. The quantity $\ell(\alpha)$ is called the reduced length of α. It is defined by $\ell(\alpha)=$ $\ell(P)=\inf L(P G)$, where the infimum is taken over every polynomial $G(z) \in \mathbb{R}[z]$ whose either leading or constant coefficient is equal to 1 . This quantity was introduced by the author in [14] and then studied in detail by Schinzel [28].

The bound $1 / 2 \ell(\alpha)$ of Theorem 1 follows from the next result.
Theorem 2. Let $\alpha>1$ be a real algebraic number, $\eta \in \mathbb{R}$, and let ξ be a non-zero real number lying outside the field $\mathbb{Q}(\alpha)$ in case α is a Pisot or a Salem number. Then the difference between the largest and the smallest limit points of the sequence $\left\{\xi \alpha^{n}+\eta\right\}$, $n=1,2,3, \ldots$, is at least $1 / \ell(\alpha)$.

The problems related to Theorem 2 were raised by Vijayaraghavan [32] and Mahler [24] who asked whether there exist $\xi>0$, such that $\left\{\xi(3 / 2)^{n}\right\}<1 / 2$ for each $n \in$ \mathbb{N}. Such ξ, if exist, are called Mahler's Z-numbers. Despite some efforts, no serious progress towards showing that Mahler's Z-numbers do not exist (which is widely believed) was achieved until the work of Flatto et al. [19] (see also [18]). They were the first to prove an effective inequality for the difference between the largest and the smallest limit points of the sequence $\left\{\xi(p / q)^{n}\right\}, n=1,2,3, \ldots$. To be precise, they proved that this difference is at least $1 / p$ and, in general, no better bound is known, although there are several variations of their inequality that in some sense explain the phenomenon of $1 / p$ [1,9,15,29]. Recently, the author proved Theorem 2 for $\eta=0$. Since $\ell(p / q)=p$ (see [14] or [28]), the inequality of Flatto et al. [19] is a particular case Theorem 2 for $\eta=0$ and $\alpha=p / q$. The proof of Theorem 2 is essentially the same as that of its particular case with $\eta=0$ [14].

As we already said above, $\ell(p / q)=p$. Hence, for every rational number $\alpha=$ $p / q>1$, we have $2 p=2 \ell(p / q)>p+q=L(p / q)$. (Although, for some α, the reverse inequality $2 \ell(\alpha)<L(\alpha)$ holds.) Consequently, Theorem 1 implies that, for any non-zero ξ which is, in addition, irrational if $q=1$, the sequence $\left\|\xi(p / q)^{n}\right\|$, $n=1,2,3, \ldots$, has a limit point greater than or equal to $1 /(p+q)$.

The aim of this paper is to improve this bound. Set

$$
\begin{equation*}
T(z):=\prod_{m=0}^{\infty}\left(1-z^{2^{m}}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
E(z):=\frac{1-(1-z) T(z)}{2 z} \tag{2}
\end{equation*}
$$

The main result of this paper is the following statement.
Theorem 3. Let ξ be a non-zero real number and let $p / q>1, \operatorname{gcd}(p, q)=1$, be a rational number. Suppose that ξ is, in addition, irrational if $q=1$. Then the sequence $\left\|\xi(p / q)^{n}\right\|, n=1,2,3, \ldots$, has a limit point greater than or equal to $E(q / p) / p$, and a limit point smaller than or equal to $1 / 2-(1-e(q / p) T(q / p)) / 2 q$, where $e(q / p)=1-q / p$ if $p+q$ is even and $e(q / p)=1$ if $p+q$ is odd.

Note that, by (1) and (2), $1 /(p+q)<E(q / p) / p=(1-(1-q / p) T(q / p)) / 2 q$, because $(1+q / p) T(q / p)<1$, so Theorem 3 improves the bound $1 /(p+q)$ for every rational number $p / q>1$.

Usually, the powers of $3 / 2$ are of additional interest, because of their connection with Mahler's and Waring's problems (see, e.g., [31] for more references concerning the latter). So we begin explaining the implications of Theorem 3 with its simple numerical restatement for $p / q=3 / 2$. (Note that $e(3 / 2)=1$, since $3+2=5$ is odd.)

Corollary 1. If $\xi \neq 0$ then the sequence $\left\|\xi(3 / 2)^{n}\right\|, n=1,2,3, \ldots$, has a limit point greater than or equal to $(3-T(2 / 3)) / 12=0.238117 \ldots$ and a limit point smaller than or equal to $(1+T(2 / 3)) / 4=0.285647 \ldots$.

In other words, the first part of Corollary 1 says that, for any $\xi \neq 0$, the interval $[0.238117 \ldots, 0.761882 \ldots]$ of length $0.523764 \ldots$ contains a limit point of the sequence $\left\{\xi(3 / 2)^{n}\right\}, n=1,2,3, \ldots$. This shows the progress towards Mahler's conjecture which can be also stated in the following stronger form: prove that the interval $(1 / 2,1]$ (or even any subinterval of $[0,1]$ of length $1 / 2$) always contains a limit point of the sequence $\left\{\xi(3 / 2)^{n}\right\}, n=1,2,3, \ldots$, where $\xi \neq 0$. Although the interval is 'wrong', the progress from earlier results proving the same for all intervals of length $2 / 3$ to the interval of length $0.523764 \ldots$ which is only just greater than $1 / 2$ is obvious. (Formally, this result for all intervals of length $2 / 3$ only follows from Theorem 2 and not from earlier results.) In the opposite direction, Akiyama et al. proved recently [2] that there exists a non-zero ξ, such that $\left\|\xi(3 / 2)^{n}\right\|<1 / 3$ for every $n \in \mathbb{N}$. So the constant $(3-T(2 / 3)) / 12=0.238117 \ldots$ of Corollary 2 cannot be replaced by a constant greater than $1 / 3$. On the other hand, Pollington [26] showed that there is a non-zero ξ, such that $\left\|\xi(3 / 2)^{n}\right\|>4 / 65$ for every $n \in \mathbb{N}$, so the constant $(1+T(2 / 3)) / 4=0.285647 \ldots$ cannot be replaced by a constant smaller than $4 / 65$.

Apparently, Theorem 3 is the best result which one can obtain with the tools developed in [14-17]. This is shown by the following corollary stating that the bounds of Theorem 3 for $q=1$ and $p>1$ are sharp.

Corollary 2. Let ξ be an irrational number and let $p>1$ be an integer. Then the sequence $\left\|\xi p^{n}\right\|, n=1,2,3, \ldots$, has a limit point greater than or equal to $\xi_{p}:=$ $E(1 / p) / p$, and a limit point smaller than or equal to $\hat{\xi}_{p}:=e(1 / p) T(1 / p) / 2$, where $e(1 / p)=1-1 / p$ if p is odd, and $e(1 / p)=1$ if p is even. Furthermore, both bounds are best possible: in particular, $\xi_{p}, \hat{\xi}_{p} \notin \mathbb{Q}$ and $\left\|\xi_{p} p^{n}\right\|<\xi_{p},\left\|\hat{\xi}_{p} p^{n}\right\|>\hat{\xi}_{p}$ for every $n \in \mathbb{N}$.

As an example, we give a numerical version of the lower bound of Corollary 2 corresponding to $p=10$.

Corollary 3. If ξ is an irrational number then the sequence $\left\|\xi 10^{n}\right\|, n=1,2,3, \ldots$, has a limit point greater than or equal to

$$
\xi_{10}=E(1 / 10) / 10=0.09909009900909909009099009909009 \ldots
$$

Furthermore, $\xi_{10} \notin \mathbb{Q}$ and $\left\|\xi_{10} 10^{n}\right\|<\xi_{10}$ for every $n \in \mathbb{N}$.
A reader having experience with automatic sequences will recognize the sequence corresponding to the digits 0 and 9 of ξ_{10} immediately. It is the Thue-Morse sequence (see Section 3 for definitions), because, by (1) and (2), $E(z)=(1-z)\left(z+z^{2}+z^{4}+\right.$ $\left.z^{6}+\ldots\right)$, where the coefficients 0,1 of the series correspond to the 0,1 elements
in the Thue-Morse sequence. We shall use Thue-Morse and some other automatic sequences in the proof of Theorem 3. A version of Corollary 3 (although not equivalent to Corollary 3) concerning the upper bound $\hat{\xi}_{2}$ corresponding to $p=2$ was known before. See, e.g., $[4,5]$. The same result for any other pair $p>1, q=1$ can be derived using certain extremal properties of the Thue-Morse sequence [23]. The main difficulties in the proof of Theorem 3 arise from the case when q / p is large, say, greater than $(\sqrt{5}-1) / 2$, because the proof for small q / p, say for $q / p \leqslant 1 / 2$, can be obtained by combining the ideas of [14] with the results of combinatorics on words [4-6,23]. (Then, in the sense of Section 3, a greater value is attached to a greater word; this is not true for 'large' $r=q / p$.)

The problems concerning fractional parts of rational powers are closely related to corresponding problems for integer parts. For instance, Mahler's Z-numbers do not exist if for each $\xi>0$ the sequence $\left[\xi(3 / 2)^{n}\right], n=1,2,3, \ldots$, contains infinitely many odd numbers. Surprisingly, it is not known whether, for each fixed $\xi>0$, the sequence $\left[\xi(p / q)^{n}\right], n=1,2,3, \ldots$, contains infinitely many composite numbers or not (see, e.g., [21, Problem E19]). This was only proved for $p / q=3 / 2, p / q=4 / 3$ [20], and for $p / q=5 / 4$ [17]. See also $[3,7,10,13]$ for other results about prime and composite numbers of the form $\left[\xi \alpha^{n}\right.$]. One should mention that the problems concerning [$\xi \alpha^{n}$] and $\left\{\xi \alpha^{n}\right\}$ with real $\alpha>1$ and $\xi \neq 0$ are extremely difficult and the progress is slow only when one considers specific values of ξ and α. Metrical results are well-known from the work of Weyl [33] and Koksma [22]; see, e.g., [7] for an example of such result and also [30] for a result concerning any (not necessarily algebraic) $\alpha>1$.

Recall that the sequence $s_{1}, s_{2}, s_{3}, \ldots$ is called ultimately periodic if there is $t \in \mathbb{N}$, such that $s_{n+t}=s_{t}$ for all sufficiently large n. We shall derive Theorem 3 from the next result which is of independent interest.

Theorem 4. Let $s_{1}, s_{2}, s_{3}, \ldots$ be a sequence of integers which is not ultimately periodic, and let r be a fixed real number satisfying $0<r<1$. Then, for each $\varepsilon>0$, there are infinitely many $l \in \mathbb{N}$, such that

$$
\begin{equation*}
\left|s_{l}+s_{l+1} r+s_{l+2} r^{2}+\ldots\right|>E(r)-\varepsilon \tag{3}
\end{equation*}
$$

Similarly, if $s_{1}, s_{2}, s_{3}, \ldots$ is a sequence of odd integers which is not ultimately periodic, then, for each $\varepsilon>0$, there are infinitely many $l \in \mathbb{N}$ for which

$$
\begin{equation*}
\left|s_{l}+s_{l+1} r+s_{l+2} r^{2}+\ldots\right|>(1-T(r)) / r-\varepsilon . \tag{4}
\end{equation*}
$$

Furthermore, both inequalities (3) and (4) are best possible. In Section 4, we will construct sequences of integers $s_{1}, s_{2}, s_{3}, \ldots$ and of odd integers $\hat{s}_{1}, \hat{s}_{2}, \hat{s}_{3}, \ldots$ (in terms of the Thue-Morse sequence) which are not ultimately periodic and satisfy $\mid s_{l}+s_{l+1} r+$ $s_{l+2} r^{2}+\ldots \mid<E(r)$ and $\left|\hat{s}_{l}+\hat{s}_{l+1} r+\hat{s}_{l+2} r^{2}+\ldots\right|<(1-T(r)) / r$ for every $l \in \mathbb{N}$.

In the next section, we will recall our earlier results and prove Theorems 1 and 2. All results related to automatic sequences are given in Section 3. Section 4 contains the proofs of Theorems 3, 4 and Corollary 2. (Recall that Corollary 1 is just a numerical
version of Theorem 3 for $p / q=3 / 2$, whereas Corollary 3 is a numerical version of Corollary 2 for $p=10$.)

2. Earlier results

Let throughout $x_{n}=\left[\xi \alpha^{n}+\eta\right]$ and $y_{n}=\left\{\xi \alpha^{n}+\eta\right\}$. Since $\alpha^{n} P(\alpha)=a_{d} \alpha^{n+d}+\cdots+$ $a_{1} \alpha^{n+1}+a_{0} \alpha^{n}=0$ and $\xi \alpha^{n}=x_{n}+y_{n}-\eta$, we have

$$
\begin{equation*}
s_{n}:=a_{d} x_{n+d}+\cdots+a_{1} x_{n+1}+a_{0} x_{n}=-a_{d} y_{n+d}-\cdots-a_{1} y_{n+1}-a_{0} y_{n}+P(1) \eta \tag{5}
\end{equation*}
$$

In particular, setting $\eta=1 / 2$, we see that $x_{n}=\left[\xi \alpha^{n}+1 / 2\right]$ is the nearest integer to $\xi \alpha^{n}$ and $\left|y_{n}-1 / 2\right|=\left|\left\{\xi \alpha^{n}+1 / 2\right\}-1 / 2\right|=\| \xi \alpha^{n}| |$.

The key lemma in [14] was the following:
Lemma 1. The sequence $s_{1}, s_{2}, s_{3}, \ldots$ is not ultimately periodic, unless α is a Pisot number or a Salem number and $\xi \in \mathbb{Q}(\alpha)$.

Its proof is given in [14] for $\xi>0$ and $\eta=0$. It is completely independent of η (since, assuming that it is periodic with period t, we work with the difference $s_{n+t}-s_{n}$ cancelling the term depending on η in (5)) and carries over without change to arbitrary real η and to arbitrary real $\xi \neq 0$.

We will combine this lemma with a simple combinatorial result of [14]:
Lemma 2. Assume that an infinite sequence of letters which belong to a finite alphabet $\left\{\kappa_{1}, \ldots, \kappa_{n}\right\}$ is not ultimately periodic. Then, for every $N \in \mathbb{N}$, there is a pattern U of length N and two different letters κ_{i} and κ_{j}, such that the sequence contains infinitely many patterns of the form $\kappa_{i} U$ and $\kappa_{j} U$. Similarly, there is a pattern U^{\prime} of length N and two different letters $\kappa_{i^{\prime}}$ and $\kappa_{j^{\prime}}$, such that the sequence contains infinitely many patterns of the form $U^{\prime} \kappa_{i^{\prime}}$ and $U^{\prime} \kappa_{j^{\prime}}$.

An alternative proof of Lemma 2 can be given using Theorem 10.2.6 of Allouche and Shallit [6]. In [14], Lemma 2 is stated with 'of length N ' replaced by a weaker statement 'of length at least N '. Evidently, the weaker statement implies the stronger statement immediately, because we can disregard the end of U and the beginning of U^{\prime}.

Lemma 3. Let d be a fixed positive integer, and let $q_{d}, \ldots, q_{1}, q_{0}$, where $q_{d} q_{0} \neq 0$, be real numbers. Suppose that $\vartheta_{n} \in \mathbb{R}, n=1,2, \ldots$, satisfy the linear recurrent relation

$$
q_{d} \vartheta_{n+d}+\cdots+q_{1} \vartheta_{n+1}+q_{0} \vartheta_{n}=s_{n}
$$

where each element of the sequence $s_{1}, s_{2}, s_{3}, \ldots$ belongs to a set of real numbers \mathcal{S}. Let $Q(z)=q_{d} z^{d}+\cdots+q_{1} z+q_{0}$. If $\left|s_{n}\right| \geqslant \hat{s}$ for infinitely many n then

$$
\begin{equation*}
\left|\vartheta_{n}\right| \geqslant \hat{s} / L(Q) \tag{6}
\end{equation*}
$$

for infinitely many $n \in \mathbb{N}$. Moreover, if \mathcal{S} is finite and the sequence $s_{1}, s_{2}, s_{3}, \ldots$ is not ultimately periodic then

$$
\begin{equation*}
\lim \sup _{n \rightarrow \infty} \vartheta_{n}-\lim \inf _{n \rightarrow \infty} \vartheta_{n} \geqslant s^{*} / \ell(Q) \tag{7}
\end{equation*}
$$

where s^{*} is the smallest non-zero distance between two elements of \mathcal{S}.
Proof. Observing that there are infinitely many n for which

$$
\hat{s} \leqslant\left|s_{n}\right| \leqslant L(Q) \max _{0 \leqslant k \leqslant d}\left|\vartheta_{n+k}\right|
$$

we obtain (6) immediately.
Set $L^{+}(F)$ and $-L^{-}(F)$ for the sum of positive and negative coefficients of a polynomial $F(z) \in \mathbb{R}[z]$, respectively, so that $L^{+}(F)+L^{-}(F)=L(F)$. Let also $\mu=\lim \sup _{n \rightarrow \infty} \vartheta_{n}$ and $\lambda=\liminf _{n \rightarrow \infty} \vartheta_{n}$. For the proof of (7), we fix $\epsilon>0$ and assume that there is a polynomial $G(z)=1+b_{1} z+\cdots+b_{m} z^{m} \in \mathbb{R}[z]$, such that $\ell(Q)>$ $L(Q G)-\epsilon$. By Lemma 2, there are infinitely many n (say, of the first kind), such that $\overline{s_{n} s_{n+1} \ldots s_{n+m}}=s^{\prime \prime} U$, and infinitely many n (say, of the second kind) for which $\overline{s_{n} s_{n+1} \ldots s_{n+m}}=s^{\prime} U$, where $s^{\prime \prime}-s^{\prime} \geqslant s^{*}$. Fix $\varepsilon>0$. By choosing a sufficiently large n of the first kind and multiplying the equalities $q_{d} \vartheta_{n+j+d}+\cdots+q_{1} \vartheta_{n+j+1}+q_{0} \vartheta_{n+j}=$ s_{n+j}, where $j=0,1, \ldots, m$, by $1, b_{1}, \ldots, b_{m}$, respectively, and adding them we obtain $L^{+}(Q G)(\mu+\varepsilon)-L^{-}(Q G)(\lambda-\varepsilon) \geqslant s^{\prime \prime}+c(U)$, where $c(U)$ is a constant depending on U and on b_{1}, \ldots, b_{m}, but not on n. Similarly, by taking a large n of the second kind, we get $L^{-}(Q G)(\mu+\varepsilon)-L^{+}(Q G)(\lambda-\varepsilon) \geqslant-s^{\prime}-c(U)$. Adding both inequalities we get $L(Q G)(\mu-\lambda+2 \varepsilon) \geqslant s^{\prime \prime}-s^{\prime} \geqslant s^{*}$. Since $L(Q G)<\ell(Q)+\epsilon$, and both ϵ and ε can be taken arbitrarily small, this yields $\ell(Q)(\mu-\lambda) \geqslant s^{*}$, that is (7).

The alternative case, when there is a polynomial $G(z)=b_{0}+b_{1} z+\cdots+b_{m-1} z^{m-1}+$ $z^{m} \in \mathbb{R}[z]$, such that $\ell(Q)>L(Q G)-\epsilon$, can be treated in the same manner using the second part of Lemma 2.

Proof of Theorem 2. Let us write (5) in the form $a_{d} y_{n+d}+\cdots+a_{1} y_{n+1}+a_{0} y_{n}=$ $-s_{n}+P(1) \eta$. Here, the right-hand sides, $-s_{n}+P(1) \eta$, take values of the form $\mathbb{Z}+P(1) \eta$. Their moduli are bounded from above by $L(P)$, so there are only finitely many of them. By Lemma 1, the sequence, $-s_{n}+P(1) \eta, n=1,2,3, \ldots$, is not ultimately periodic. The difference between two distinct values of this sequence is at least 1 . Now, using (7) we deduce that $\lim \sup _{n \rightarrow \infty} y_{n}-\liminf _{n \rightarrow \infty} y_{n} \geqslant 1 / \ell(P)$, as claimed.

Proof of Theorem 1. If the largest limit point of the sequence $\left\|\xi \alpha^{n}\right\|, n=1,2,3, \ldots$, is strictly smaller than $1 / 2 \ell(\alpha)$, then the limit points of the sequence $\left\{\xi \alpha^{n}+1 / 2\right\}$, $n=1,2,3, \ldots$, all belong to the open interval $((1-1 / \ell(\alpha)) / 2,(1+1 / \ell(\alpha)) / 2)$ of length $1 / \ell(\alpha)$, a contradiction with Theorem 2. (In fact, by the results of Section 6 in [14] and more general results of Schinzel [28], $\ell(\alpha) \geqslant 2$ for each non-zero algebraic α.)

The bound $1 / L(P)$ follows from (6). Indeed, by Lemma 1, there are infinitely many n for which $\left|s_{n}\right| \geqslant 1$. Using $P(1)=a_{d}+\cdots+a_{1}+a_{0}$ we can write (5) in the form

$$
s_{n}=-a_{d}\left(y_{n+d}-1 / 2\right)-\cdots-a_{1}\left(y_{n+1}-1 / 2\right)-a_{0}\left(y_{n}-1 / 2\right),
$$

where $\left|y_{n}-1 / 2\right|=\left\|\xi \alpha^{n}\right\|$. Now, (6) implies that $\left\|\xi \alpha^{n}\right\| \geqslant 1 / L(P)$ for infinitely many $n \in \mathbb{N}$ which is more than required.

3. Automatic sequences

In this section, several infinite sequences will be used. (N.J.A. Sloane in his on-line encyclopedia of integer sequences http://www.research.att.com/~njas/ sequences/ assigned to them the numbers $A 001285$, A026465, A003159, respectively.) The best known is the Thue-Morse sequence usually given by

$$
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1, \ldots
$$

It begins with 0 and is obtained by making infinitely many steps, where at each step 0 is replaced by the pattern 0,1 and 1 is replaced by the pattern 1,0 . There are many equivalent definitions of this sequence: see, e.g., [5]. Throughout, we will denote the elements of the Thue-Morse sequence by $t_{0}, t_{1}, t_{2}, t_{3}, \ldots$.

Less well known, but most important to us, is the sequence of the number of consecutive identical symbols in the Thue-Morse sequence (A026465)

$$
\begin{aligned}
& 1,2,1,1,2,2,2,1,1,2,1,1,2,1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,1,1,2, \\
& 1,1,2,2, \ldots
\end{aligned}
$$

which we will call the pairs in Thue-Morse sequence. Its elements will be denoted by $p_{0}, p_{1}, p_{2}, p_{3}, \ldots$.

Let us order the words (finite and infinite) of the alphabet $\{1,2\}$ as follows. If $\mathbf{v} \neq \mathbf{v}^{\prime}$ and neither word is a prefix (beginning) of the other, then there is a smallest positive integer k, such that the first $k-1$ symbols in both \mathbf{v} and \mathbf{v}^{\prime} coincide, but their k th symbols are different, say 2 and 1 , respectively. Then, we define their order by $\mathbf{v}>\mathbf{v}^{\prime}$ if k is odd, and $\mathbf{v}^{\prime}>\mathbf{v}$ if k is even. For example, $21111>21122222$ and $122211 \ldots>121221$. In the sequel, we will write \mathbf{v}_{m} for the word obtained from an infinite word \mathbf{v} by deleting its first m letters. In particular, $\mathbf{v}_{0}=\mathbf{v}$.

Lemma 4. The word $\mathbf{w}=2112221121121122211222112221121121122 \ldots$ corresponding to the pairs in Thue-Morse sequence (but without the first symbol $p_{0}=1$) is the smallest non-periodic infinite word satisfying $\mathbf{w}>\mathbf{w}_{m}$ for each $m \in \mathbb{N}$.

Proof. Let W be the set of all infinite non-periodic words \mathbf{v} of the alphabet $\{1,2\}$ satisfying $\mathbf{v}>\mathbf{v}_{m}$ for each $m \in \mathbb{N}$. We need to show that, firstly, for any $\mathbf{v} \in W \backslash\{\mathbf{w}\}$, we have $\mathbf{v}>\mathbf{w}$, and, secondly, $\mathbf{w} \in W$.

The fact that the word \mathbf{v} is non-periodic implies that there are infinitely many symbols 2 in \mathbf{v}. So \mathbf{v} begins with 2 . Similarly, as \mathbf{v} contains infinitely many patterns 21, \mathbf{v} begins with 21 . If \mathbf{v} begins with 212 then $\mathbf{v}>\mathbf{w}$. So in the search of the least word of W we can only consider the subset of W (denoted by W_{1}) of words which begin with 211. Similarly, since $2111>2112$, we can only consider the words of W_{1} which begin with 2112 (denoted by W_{1} again). Hence, $\mathbf{v} \in W_{1}$ contains no patterns of the form 2111 and 212 , so only words composed of the blocks $A_{1}=211$ and $A_{0}=2$ which start from A_{1} belong to W_{1}. Now, since each word of W_{1} is non-periodic it contains infinitely many patterns $A_{1} A_{0}$. Note that $A_{1} A_{0} A_{0}>A_{1} A_{1}$, and $A_{1} A_{0} A_{1}>A_{1} A_{1}$, so each $\mathbf{v} \in W_{1}$ begins with $A_{1} A_{0}$. But $A_{1} A_{0} A_{1}>A_{1} A_{0} A_{0} A_{1}$ and $A_{1} A_{0} A_{1}>A_{1} A_{0} A_{0} A_{0}$, so all words of W_{1} that begin with the pattern $A_{1} A_{0} A_{1}$ are greater than \mathbf{w}. Assume therefore that each $\mathbf{v} \in W_{2} \subset W_{1}$ begins with $A_{1} A_{0} A_{0}$, where W_{2} contains the words composed of the patterns $A_{1} A_{0} A_{0}$ and A_{1} only. Similarly, as $A_{1} A_{0} A_{0} A_{0} A_{1}>A_{1} A_{0} A_{0} A_{1}$ and $A_{1} A_{0} A_{0} A_{0} A_{0}>A_{1} A_{0} A_{0} A_{1}$, we define W_{2} as containing only the words composed from the blocks $A_{2}=A_{1} A_{0} A_{0}$ and A_{1} only that begin with A_{2}. Since the lengths of A_{2} and A_{1} are odd, we can repeat the same argument with A_{2} and A_{1} (as we did with A_{1} and A_{0}) and so on. We thus obtain a sequence of sets $\ldots \subset W_{3} \subset W_{2} \subset W_{1} \subset W$, where $\mathbf{v}>\mathbf{w}$ for every $\mathbf{v} \in W_{k}$ and $\mathbf{v} \in W$. But $\bigcap_{j=1}^{\infty} W_{j}$ contains at most one element, so it must be \mathbf{w} in case $\mathbf{w} \in W$. Indeed, \mathbf{w} is non-periodic (which is wellknown and follows from one of the definitions of the sequence corresponding to \mathbf{w} as starting with 2 , and at each step replacing 2 by 211 and 1 by 2), so that $\mathbf{w} \neq \mathbf{w}_{m}$ for any $m \in \mathbb{N}$. Furthermore, \mathbf{w} contains no patterns of the form 212, 2111, $A_{k} A_{k-1} A_{k}$, $A_{k} A_{k-1} A_{k-1} A_{k-1} A_{k-1}$, where $k \in \mathbb{N}$, so \mathbf{w} cannot be smaller than \mathbf{w}_{m}, where $m \geqslant 1$. This completes the proof of the lemma.

The word \mathbf{w} can be also constructed as follows. (This is exactly what we did in our proof.) We start with $A_{1}=211, A_{0}=2$, and then, for each $m \geqslant 2$, define $A_{m}=$ $A_{m-1} A_{m-2} A_{m-2}$. Then each word A_{m-1} is a prefix of A_{m} and the word \mathbf{w} begins with the pattern A_{m} for every $m \in \mathbb{N}$. (We can also write this as $\mathbf{w}=A_{\infty}$.) This argument shows that each pattern A_{m} (and, moreover, each subpattern of \mathbf{w}) appears in \mathbf{w} infinitely often. By the construction, A_{m} is of length f_{m}, where $f_{0}=1, f_{1}=3$, and $f_{k+1}=f_{k}+2 f_{k-1}$ for $k=1,2,3, \ldots$. Hence $\mathbf{w}=A_{m} \mathbf{w}_{f_{m}}$ for every $m \geqslant 0$. The construction of A_{m} in the lemma also implies the following corollary.

Corollary 4. Let $m \geqslant 2$ be a fixed integer, and let \mathbf{v} be a non-periodic word. Then \mathbf{v} contains either A_{m} infinitely many times or it contains a finite word \mathbf{u} satisfying $\mathbf{u}>\mathbf{w}$ infinitely many times.

Proof. Indeed, if A_{m} appears in \mathbf{v} only finitely many times then \mathbf{v} contains infinitely many patterns either 212, or 2111 , or $A_{k} A_{k-1} A_{k}$, where $0<k<m$, or $A_{k} A_{k-1} A_{k-1} A_{k-1} A_{k-1}$, where $0<k<m-1$. Since $A_{k}>A_{k-1} A_{k}$ and $A_{k}>$ $A_{k-1} A_{k-1}$, any of the above patterns is greater than \mathbf{w} which implies the corollary.

We remark that Lemma 4 can be also derived from a result of Allouche and Cosnard [4] on some extremal property of the Thue-Morse sequence or from [23], where a similar result is given for the words of the alphabet $\{-1,1\}$ instead of $\{1,2\}$.

Now, to each finite or infinite word $\mathbf{v}=v_{1} v_{2} v_{3} \ldots$ of the alphabet $\{1,2\}$ and to each number r, where $0<r<1$, we attach the real number

$$
E(\mathbf{v}, r)=1-r^{v_{1}}+r^{v_{1}+v_{2}}-r^{v_{1}+v_{2}+v_{3}}+r^{v_{1}+v_{2}+v_{3}+v_{4}}-r^{v_{1}+v_{2}+v_{3}+v_{4}+v_{5}}+\ldots .
$$

In particular,

$$
\begin{aligned}
E(\mathbf{w}, r)= & 1-r^{2}+r^{3}-r^{4}+r^{6}-r^{8}+r^{10}-r^{11}+r^{12}-r^{14}+r^{15}-r^{16}+r^{18} \\
& -r^{19}+\ldots
\end{aligned}
$$

We remark that the powers in $r E(\mathbf{w}, r)$, that is, the sequence of partial sums of the word $1 \mathbf{w} p_{0}, p_{0}+p_{1}, p_{0}+p_{1}+p_{2}, \ldots$ is another sequence from the above mentioned web page of N.J.A. Sloane (A003159)

$$
\begin{aligned}
& 1,3,4,5,7,9,11,12,13,15,16,17,19,20,21,23,25,27,28,29,31,33,35 \\
& 36,37,39,41, \ldots
\end{aligned}
$$

(This is known as the sequence with the property that for each $n \in A$ we have $2 n \notin A$, where A and $2 A$ form a partition of \mathbb{N}.) Subtracting 1 , let us write $a_{1}=2, a_{2}=3$, $a_{3}=4, a_{4}=6$, etc., where the sum of the first k symbols of \mathbf{w} is denoted by a_{k}, i.e. $a_{k}=p_{1}+p_{2}+\cdots+p_{k}$. The above series for $E(\mathbf{w}, r)$ will be expressed in the form

$$
\begin{equation*}
E(\mathbf{w}, r)=1-r^{a_{1}}+r^{a_{2}}-r^{a_{3}}+r^{a_{4}}-r^{a_{5}}+\ldots . \tag{8}
\end{equation*}
$$

It is well-known that the quantity $T(r)$ given in (1) can be expressed by the ThueMorse sequence as follows

$$
\begin{aligned}
& (-1)^{t_{0}}+(-1)^{t_{1}} r+(-1)^{t_{2}} r^{2}+(-1)^{t_{3}} r^{3}+\ldots \\
& \quad=(1-r)\left(1-r^{2}\right)\left(1-r^{4}\right)\left(1-r^{8}\right) \ldots=T(r)
\end{aligned}
$$

(see, e.g., [5]). By the definition of \mathbf{w} and (8), the connection between $E(\mathbf{w}, r)$ and the generating function of the Thue-Morse sequence is given by

$$
r E(\mathbf{w}, r)=(1-r)\left(t_{0}+t_{1} r+t_{2} r^{2}+t_{3} r^{3}+\ldots\right)
$$

Since $1-(-1)^{t_{m}}=2 t_{m}$, we deduce that

$$
\frac{1}{1-r}-T(r)=\frac{2 r E(\mathbf{w}, r)}{1-r}
$$

giving $E(\mathbf{w}, r)=(1-(1-r) T(r)) / 2 r$. Hence

$$
\begin{equation*}
E(r)=E(\mathbf{w}, r)<1 / 2 r \tag{9}
\end{equation*}
$$

(see (1) and (2)). Likewise, for each $m \geqslant 0$, the definition of \mathbf{w} as the pairs in ThueMorse sequence yields

$$
\begin{equation*}
E\left(\mathbf{w}_{m}, r\right)=(1-r) F_{a_{m}+1}(r)=(1-r) F_{p_{0}+\cdots+p_{m}}(r), \tag{10}
\end{equation*}
$$

where \mathbf{w}_{m} denotes the word obtained from \mathbf{w} by deleting its first m letters and where

$$
F_{k}(z):= \begin{cases}t_{k}+t_{k+1} z+t_{k+2} z^{2}+t_{k+3} z^{3}+\ldots & \text { if } t_{k}=1 \tag{11}\\ \bar{t}_{k}+\bar{t}_{k+1} z+\bar{t}_{k+2} z^{2}+\bar{t}_{k+3} z^{3}+\ldots & \text { if } t_{k}=0\end{cases}
$$

Here, $\bar{t}_{j}=1-t_{j}$ for each $j \geqslant 0$. For instance, since $p_{0}+p_{1}+p_{2}+p_{3}=1+2+1+$ $1=5, F_{5}(r)=1+r+r^{4}+r^{5}+r^{7}+\ldots$ corresponds to $E\left(\mathbf{w}_{3}, r\right)=1-r^{2}+r^{4}-r^{6}+$ $r^{7}-r^{8}+\ldots$.

Lemma 5. Let r be a fixed real number, $0<r<1$, and let $u, v \geqslant 0$. Then $F_{u}(r)-$ $r F_{v}(r) \geqslant T(r)$. In particular, $r F_{v}(r)<F_{u}(r)$.

Proof. It is sufficient to prove that each sum of the form either $t_{u}+t_{u+1} r+t_{u+2} r^{2}+\ldots$ or $\bar{t}_{u}+\bar{t}_{u+1} r+\bar{t}_{u+2} r^{2}+\ldots$ is at least $\bar{t}_{0}+\bar{t}_{1} r+\bar{t}_{2} r^{2}+\ldots$ if it starts with the first coefficient 1 and that it is at most $t_{1} r+t_{2} r^{2}+t_{3} r^{3}+\ldots$ if it starts with the first coefficient 0 . Then, since $\bar{t}_{k}-t_{k}=(-1)^{t_{k}}$, the difference between two such infinite sums will be at least $\sum_{k=0}^{\infty}(-1)^{t_{k}} r^{k}=T(r)$, as claimed. Clearly, since $1 /(1-r)-t_{u}-t_{u+1} r-t_{u+2} r^{2}-\cdots=$ $\bar{t}_{u}+\bar{t}_{u+1} r+\bar{t}_{u+2} r^{2}+\ldots$, it is sufficient to prove only 'half' of this, namely, that each sum $t_{u}+t_{u+1} r+t_{u+2} r^{2}+\ldots$ starting with $t_{u}=0$ (and each sum $\bar{t}_{u}+\bar{t}_{u+1} r+\bar{t}_{u+2} r^{2}+\ldots$ starting with $\bar{t}_{u}=0$) is at most $t_{0}+t_{1} r+t_{2} r^{2}+t_{3} r^{3}+\ldots$.

Assume for the contradiction that $t_{u}+t_{u+1} r+t_{u+2} r^{2}+\ldots>t_{0}+t_{1} r+t_{2} r^{2}+\ldots$, where $t_{u}=0$. Then there is a $k \in \mathbb{N}$ so large that

$$
\begin{aligned}
T_{u, k}(r) & :=t_{u}+t_{u+1} r+t_{u+2} r^{2}+\cdots+t_{u+2^{k}-1} r^{2^{k}-1} \\
& >t_{0}+t_{1} r+t_{2} r^{2}+\cdots+t_{2^{k}-1} r^{2^{k}-1}
\end{aligned}
$$

We will prove, however, that $T_{u, k}(r) \leqslant T_{0, k}(r)$ and $\bar{T}_{u, k}(r) \leqslant T_{0, k}(r)$ for each $k \in \mathbb{N}$ and for each u satisfying $t_{u}=0$ and $\bar{t}_{u}=0$, respectively. Here, $\bar{T}_{u, k}(r):=\bar{t}_{u}+\bar{t}_{u+1} r+$ $\bar{t}_{u+2} r^{2}+\cdots+\bar{t}_{u+2^{k}-1} 2^{2^{k}-1}$.

This certainly holds for $k=1$. Suppose that this holds for each $j<k$. Using the fact that $t_{2 i}=t_{i}$ and $t_{2 i+1}=\bar{t}_{i}$ (this is one of the definitions of the Thue-Morse sequence), we can write, for even $u, T_{u, k}(r)=T_{u / 2, k-1}\left(r^{2}\right)+r \bar{T}_{u / 2, k-1}\left(r^{2}\right)$. We need
to show that

$$
T_{u / 2, k-1}\left(r^{2}\right)+r \bar{T}_{u / 2, k-1}\left(r^{2}\right) \leqslant T_{0, k}(r)=T_{0, k-1}\left(r^{2}\right)+r \bar{T}_{0, k-1}\left(r^{2}\right)
$$

But the sum $T_{u, k}(r)+\bar{T}_{u, k}(r)=1+r+\cdots+r^{2^{k}-1}$ is independent of u, so $T_{u / 2, k-1}\left(r^{2}\right)+$ $\bar{T}_{u / 2, k-1}\left(r^{2}\right)=T_{0, k-1}\left(r^{2}\right)+\bar{T}_{0, k-1}\left(r^{2}\right)$ and the above inequality is equivalent to $(1-r)\left(T_{0, k-1}\left(r^{2}\right)-T_{u / 2, k-1}\left(r^{2}\right)\right) \geqslant 0$, which holds by induction on k. If u is odd, say $u=2 l+1$, then $T_{u, k}(r)=\bar{T}_{l, k-1}\left(r^{2}\right)+r T_{l+1, k-1}\left(r^{2}\right) \leqslant r^{2} \bar{T}_{l+1, k-1}\left(r^{2}\right)+r T_{l+1, k-1}\left(r^{2}\right)$, because $\bar{t}_{l}=t_{2 l+1}=0$. Now, either $t_{l+1}=0$ or $\bar{t}_{l+1}=0$. In the first case, $r^{2} \bar{T}_{l+1, k-1}\left(r^{2}\right)+r T_{l+1, k-1}\left(r^{2}\right) \leqslant r \bar{T}_{l+1, k-1}\left(r^{2}\right)+T_{l+1, k-1}\left(r^{2}\right)$, and the proof follows from $T_{l+1, k-1}\left(r^{2}\right) \leqslant T_{0, k-1}\left(r^{2}\right)$, as above. In the second case, $\bar{t}_{l+1}=0$, using $r^{2} \bar{T}_{l+1, k-1}$ $\left(r^{2}\right)+r T_{l+1, k-1}\left(r^{2}\right) \leqslant \bar{T}_{l+1, k-1}\left(r^{2}\right)+r T_{l+1, k-1}\left(r^{2}\right)$, we obtain the required inequality from $\bar{T}_{l+1, k-1}\left(r^{2}\right) \leqslant T_{0, k-1}\left(r^{2}\right)$. The proof of $\bar{T}_{u, k}(r) \leqslant T_{0, k}(r)$, where $\bar{t}_{u}=0$, is similar.

Lemma 6. Let r be a fixed real number, $0<r<1$, and let $j, i \geqslant 0$. Then $r E\left(\mathbf{w}_{j}, r\right)<$ $E\left(\mathbf{w}_{i}, r\right) \leqslant E(\mathbf{w}, r)$.

Proof. The first inequality follows by (10), (11) and Lemma 5. Suppose that there is $i \in \mathbb{N}$ such that $E\left(\mathbf{w}_{i}, r\right) \geqslant E(\mathbf{w}, r)$. By Lemma 4, $\mathbf{w}>\mathbf{w}_{i}$, so there is a smallest index, say k, such that the first difference between the words \mathbf{w} and \mathbf{w}_{i} occurs at the k th place. These k th symbols of \mathbf{w} and \mathbf{w}_{i} should be 2 and 1 , respectively, if k is odd and 1 and 2 , respectively, if k is even. In the first case, by (8),

$$
E(\mathbf{w}, r)-E\left(\mathbf{w}_{i}, r\right)=-r^{a_{k}} E\left(\mathbf{w}_{k-1}, r\right)+r^{a_{k}-1} E\left(\mathbf{w}_{i+k-1}, r\right)
$$

which is positive by the first inequality of this lemma. In the second case, $E(\mathbf{w}, r)-$ $E\left(\mathbf{w}_{i}, r\right)=r^{a_{k}} E\left(\mathbf{w}_{k-1}, r\right)-r^{a_{k}+1} E\left(\mathbf{w}_{i+k-1}, r\right)$, which is positive, by the first inequality of this lemma again. This proves more than required, namely, $E\left(\mathbf{w}_{i}, r\right)<E(\mathbf{w}, r)$ for every $i>0$.

Lemma 7. Let r be a fixed real number, $0<r<1$, and let \mathbf{v} be any non-periodic word. Then, for any $\varepsilon>0$, there are infinitely many $l \in \mathbb{N}$, such that $E\left(\mathbf{v}_{l}, r\right)>E(r)-\varepsilon$.

Proof. Fix m so large that $r^{a_{k}+1}<\varepsilon$, where $k=f_{m}$. (Recall that f_{m} is the length of the word $A_{m} ; f_{m}$ is an odd number.) Then, for any word \mathbf{v} which begins with A_{m} (in particular, for w), we have $E\left(A_{m}, r\right)<E(\mathbf{v}, r)<E\left(A_{m}, r\right)+\varepsilon$, so $E(\mathbf{v}, r)>E(r)-\varepsilon$. Hence, if \mathbf{v} contains infinitely many subwords A_{m}, the lemma is proved.

By Corollary 4, the only alternative is that there is a finite word $\mathbf{u}, \mathbf{u}>\mathbf{w}$, which occurs in \mathbf{v} infinitely many times. Without loss of generality we can assume that the length of \mathbf{u} is k, and that first $k-1$ symbols of \mathbf{u} coincide with the first $k-1$ symbols of \mathbf{w}. Then the k th symbols in \mathbf{u} and \mathbf{w} are 2 and 1 if k is odd, and 1 and 2 if k is even. Suppose also that \mathbf{u} starts at the l th place of \mathbf{v}. In the first case, as in Lemma 6,
we can write the value attached to the finite word consisting of $k-1$ first symbols of \mathbf{w} as

$$
E(\mathbf{w}, r)+r^{a_{k}} E\left(\mathbf{w}_{k-1}, r\right)=E\left(\mathbf{v}_{l-1}, r\right)+r^{a_{k}+1} E\left(\mathbf{v}_{l+k-2}, r\right)
$$

For $E\left(\mathbf{v}_{l-1}, r\right) \leqslant E(\mathbf{w}, r)$ and $E\left(\mathbf{v}_{l+k-2}, r\right) \leqslant E(\mathbf{w}, r)$, this implies that $E\left(\mathbf{w}_{k-1}, r\right) \leqslant r E$ (\mathbf{w}, r), a contradiction with Lemma 6. Therefore, at least one of the numbers $E\left(\mathbf{v}_{l-1}, r\right)$, $E\left(\mathbf{v}_{l+k-2}, r\right)$ is greater than $E(\mathbf{w}, r)=E(r)$.

Alternatively, if k is even,

$$
E(\mathbf{w}, r)-r^{a_{k}} E\left(\mathbf{w}_{k-1}, r\right)=E\left(\mathbf{v}_{l-1}, r\right)-r^{a_{k}-1}+r^{a_{k}+\delta} E\left(\mathbf{v}_{l+k-1}, r\right)
$$

where $\delta \in\{0,1\}$. So

$$
E\left(\mathbf{v}_{l-1}, r\right)-E(\mathbf{w}, r)=r^{a_{k}-1}\left(1-r^{1+\delta} E\left(\mathbf{v}_{l+k-1}, r\right)-r E\left(\mathbf{w}_{k-1}, r\right)\right)
$$

If $E\left(\mathbf{v}_{l+k-1}, r\right) \leqslant E(\mathbf{w}, r)$, then, by (9) and Lemma 6, we have $r^{1+\delta} E\left(\mathbf{v}_{l+k-2}, r\right)+$ $r E\left(\mathbf{w}_{k-1}, r\right) \leqslant 2 r E(r)<1$, so $E\left(\mathbf{v}_{l-1}, r\right)>E(\mathbf{w}, r)$. Consequently, at least one of the numbers $E\left(\mathbf{v}_{l+k-1}\right), E\left(\mathbf{v}_{l-1}, r\right)$ is greater than $E(\mathbf{w}, r)=E(r)$.

Summarizing, we see that if \mathbf{v} contains a finite word $\mathbf{u}>\mathbf{w}$ infinitely many times then the stronger inequality $E\left(\mathbf{v}_{l}, r\right)>E(\mathbf{w}, r)=E(r)$ holds for infinitely many l.

Lemma 8. Let r be a fixed real number, $0<r<1$. Then $E(r)<1 /\left(1+r^{3}\right)$.
Proof. By (9) we have $E(r)<1 / 2 r$. This is less than or equal to $1 /\left(1+r^{3}\right)$ for $r \geqslant(\sqrt{5}-1) / 2$. It remains to prove the lemma for $r<(\sqrt{5}-1) / 2$. Then, as $E(r)<$ $1-r^{2}+r^{3}-r^{4}+r^{6}$,

$$
\begin{aligned}
\left(1+r^{3}\right) E(r) & <1-r^{2}+2 r^{3}-r^{4}-r^{5}+2 r^{6}-r^{7}+r^{9}<1-r^{2}+2 r^{3}-r^{4}+r^{6} \\
& =1-r^{2}\left((1-r)^{2}-r^{4}\right)=1-r^{2}\left(1-r+r^{2}\right)\left(1-r-r^{2}\right)
\end{aligned}
$$

is less than 1 if $r<(\sqrt{5}-1) / 2$. This proves the lemma.

4. Proofs

Proof of Theorem 4. Let $s_{1}, s_{2}, s_{3}, \ldots$ be a sequence of integers. We define

$$
\begin{equation*}
U_{l}(z):=s_{l}+s_{l+1} z+s_{l+2} z^{2}+s_{l+3} z^{3}+\ldots \tag{12}
\end{equation*}
$$

If there are infinitely many $l \in \mathbb{N}$ such that $\left|s_{l}\right| \geqslant 2$, we have

$$
2 \leqslant\left|s_{l}\right|=\left|U_{l}(r)-r U_{l+1}(r)\right| \leqslant\left|U_{l}(r)\right|+r\left|U_{l+1}(r)\right|
$$

Hence at least one of the numbers $\left|U_{l}(r)\right|,\left|U_{l+1}(r)\right|$ is greater than or equal to

$$
2 /(r+1)>1-r^{2}+r^{3}>E(\mathbf{w}, r)=E(r)
$$

so (12) implies (3).
If, say there are infinitely many $l \in \mathbb{N}$ for which $s_{l}= \pm 1, s_{l+1}=0, s_{l+2}=0$, then

$$
1=\left|s_{l}\right|=\left|U_{l}(r)-r^{3} U_{l+3}(r)\right| \leqslant\left|U_{l}(r)\right|+r^{3}\left|U_{l+3}(r)\right|
$$

Now, at least one of the numbers $\left|U_{l}(r)\right|,\left|U_{l+3}(r)\right|$ is greater than or equal to $1 /\left(1+r^{3}\right)$ which is strictly greater than $E(r)$, by Lemma 8 . This proves (3) for such sequences too. If there are infinitely many $l \in \mathbb{N}$ such that $s_{l}=1, s_{l+1}=0, s_{l+2}=1$ then $U_{l}(r)-r^{3} U_{l+3}(r)=1+r^{2}$, so at least one of the numbers $\left|U_{l}(r)\right|,\left|U_{l+3}(r)\right|$ is greater than or equal to $\left(1+r^{2}\right) /\left(1+r^{3}\right)>1>E(r)$. (Evidently, Lemma 8 implies that $E(r)<1$.) Similarly, we obtain the required inequality (3) in case there are infinitely many $l \in \mathbb{N}$ such that $s_{l}=-1, s_{l+1}=0, s_{l+2}=-1$. Finally, if there are infinitely many $l \in \mathbb{N}$ for which $s_{l}=1, s_{l+1}=1$, then $U_{l}(r)-r^{2} U_{l+2}(r)=1+r$, and so at least one of the numbers $\left|U_{l}(r)\right|,\left|U_{l+2}(r)\right|$ is greater than or equal to $(1+r) /\left(1+r^{2}\right)>1>E(r)$. The case with infinitely many $l \in \mathbb{N}$ for which $s_{l}=-1, s_{l+1}=-1$ is similar.

Therefore, we can assume without loss of generality that, starting with certain place, say n_{0}, the non-periodic sequence $s_{n_{0}}, s_{n_{0}+1}, s_{n_{0}+2}, \ldots$ begins with $s_{n_{0}}=1$ and is of the form $1,-1,1,-1, \ldots$, with some units (either 1 and -1 or -1 and 1) separated by one 0 . Omitting the first symbol $s_{n_{0}}=1$, we will write 2 if two units are separated by 0 and 1 if they are not. This translates such a sequence into a non-periodic word of the alphabet $\{1,2\}$. For instance, the sequence $1,0,-1,1,-1,0,1,0,-1,0,1,-1,1, \ldots$ translates into the word $21122211 \ldots$. For such sequences, each $\left|U_{l}(r)\right|$, where $s_{l}=$ $\pm 1, l \geqslant n_{0}$, is equal to $E\left(\mathbf{v}_{s}, r\right)$, where \mathbf{v} is the word corresponding to $s_{n_{0}}=1, s_{n_{0}+1}$, $s_{n_{0}+2}, \ldots$ (Here, $n-n_{0}-s$ is the number of zeros among $s_{n_{0}+1}, \ldots, s_{n_{0}+l-1}$.) Similarly, since two zeros in a row do not occur, $\left|U_{l}(r)\right|=r E\left(\mathbf{v}_{s}, r\right)$ if $s_{l}=0$. Inequality (3) now follows from Lemma 7.

The proof of (4) is similar. We will show that s_{n} (which now are odd integers), starting from a certain place, take only values ± 1 and no more than two values in a row have the same sign. Set $V_{l}(z):=s_{l}+s_{l+1} z+s_{l+2} z^{2}+\ldots$. Evidently, if $\left|s_{l}\right| \geqslant 3$ for infinitely many l, then $3=\left|s_{l}\right|=\left|V_{l}(r)-r V_{l+1}(r)\right|$. So at least one of the numbers $\left|V_{l}(r)\right|,\left|V_{l+1}(r)\right|$ is greater than $3 /(1+r)$. We will show that this is greater than $(1-T(r)) / r$. Indeed, by $(2), T(r)=(1-2 r E(r)) /(1-r)$, so inequality $3 /(1+r)>$ $(1-T(r)) / r$ is equivalent to the inequality $E(r)<(2-r) /(1+r)$ which follows from Lemma 8 combined with $1<(2-r)\left(1-r+r^{2}\right)$. Similarly, if three values 1 in row (or three values -1 in a row) occur infinitely often, then writing $1+r+r^{2}=$ $\left|V_{l}(r)+r^{3} V_{l+3}(r)\right|$ we deduce that at least one of the numbers $\left|V_{l}(r)\right|,\left|V_{l+3}(r)\right|$ is greater than $\left(1+r+r^{2}\right) /\left(1+r^{3}\right)$. This is greater than $(1-T(r)) / r$, because $\left(1+r+r^{2}\right) /\left(1+r^{3}\right)>(1-T(r)) / r$ transforms into $E(r)<1 /\left(1+r^{3}\right)$ which holds by Lemma 8 .

So, starting from a certain n_{0}, s_{n} takes only two values $1,-1$ with at most two equal values in a row. Let h be a map taking any $H(r)$ into $(1+(1-r) H(r)) / 2$. Assuming, without loss of generality that $n_{0}=0, s_{0}=1$, we can transform the sequence of $1,-1$ with the above properties into the sequence of $1,-1,0$ considered in the previous part on applying h to $V_{0}(r)$ which will take $V_{0}(r) \rightarrow U_{0}(r)$. Since $h: H(r) \rightarrow(1+(1-r) H(r)) / 2$, this map will transform the right-hand side of (4), $(1-T(r)) / r$, into $(1+(1-r)(1-T(r)) / r) / 2=E(r)$, which is the right-hand side of (3). This completes the proof of (4) and of Theorem 4.

Both inequalities (3) and (4) are sharp. We can define, for instance, the sequence s_{1}, s_{2}, \ldots, as the coefficients of $s_{0}+s_{1} z+s_{2} z^{2}+s_{3} z^{3}+\ldots:=E(\mathbf{w}, z)=1-z^{2}+$ $z^{3}-z^{4}+z^{6}-z^{8}+\ldots$ Then, for each $l \in \mathbb{N},\left|s_{l}+s_{l+1} r+s_{l+2} r^{2}+\ldots\right|<E(r)$, by the inequality $E\left(\mathbf{w}_{l}, r\right)<E(\mathbf{w}, r)=E(r)$ (see Lemma 6), so (4) is sharp. Similarly, we can define odd integers by the formula

$$
\begin{aligned}
\hat{s}_{0}+\hat{s}_{1} z+\hat{s}_{2} z^{2}+\hat{s}_{3} z^{3}+\ldots & :=(1-T(z)) / z=(2 E(z)-1) /(1-z) \\
& =\sum_{k=0}^{\infty}(-1)^{t_{k+1}+1} z^{k}=\sum_{k=0}^{\infty}\left(2 t_{k+1}-1\right) z^{k} \\
& =1+z-z^{2}+z^{3}-z^{4}-z^{5}+\ldots
\end{aligned}
$$

This gives $\left|\hat{s}_{l}+\hat{s}_{l+1} r+\hat{s}_{l+2} r^{2}+\ldots\right|<(1-T(r)) / r$ for every $l \in \mathbb{N}$. So two 'extreme' sequences of integers s_{1}, s_{2}, \ldots and of odd integers $\hat{s}_{1}, \hat{s}_{2}, \ldots$ showing that (3) and (4) are best possible can be given in terms of the Thue-Morse sequence as $s_{k}=t_{k+1}-t_{k}$, $k=1,2, \ldots$, and $\hat{s}_{k}=2 t_{k+1}-1, k=1,2, \ldots$, respectively.

Proof of Theorem 3. The proof is a combination of Lemma 1 and Theorem 4. We will first prove that the sequence $\left\|\xi(p / q)^{n}\right\|, n=1,2,3, \ldots$, has a 'large' limit point and then that it has a 'small' limit point. Throughout the proof of this theorem, $r:=q / p$.

For $\alpha=p / q$, we have $P(z)=-p+q z$. Now, equality (5) with $\eta=1 / 2$ implies that

$$
s_{n}=-q g_{n+1}+p g_{n}
$$

where $g_{n}:=y_{n}-1 / 2=\left\{\xi(p / q)^{n}+1 / 2\right\}-1 / 2$, so that $\left\|\xi \alpha^{n}\right\|=\left|g_{n}\right|$. Hence $g_{n}=$ $s_{n} / p+r g_{n+1}$ with $r=q / p<1$. By expressing g_{n+1} by g_{n+2} and so on, this yields

$$
g_{n}=(1 / p)\left(s_{n}+s_{n+1} r+s_{n+2} r^{2}+s_{n+3} r^{3}+\ldots\right)
$$

By Lemma 1 , the sequence of integers $s_{n}, n=1,2,3, \ldots$, is not ultimately periodic. Using (3) we deduce that there are infinitely many integers n, such that $\left|g_{n}\right|>(E(r)-$ $\varepsilon) / p$. This proves the first part of Theorem 3.

To show that the sequence $\left\|\xi(p / q)^{n}\right\|, n=1,2,3, \ldots$, has a 'small' limit point, we write the fractional part $\left\{\xi(p / q)^{n}\right\}$ in the form $1 / 2+g_{n}$, where $-1 / 2 \leqslant g_{n}<1 / 2$. Set $g:=\lim \sup _{n \rightarrow \infty}\left|g_{n}\right|$. We need to show that $g \geqslant(1-e(r) T(r)) / 2 q$, where $e(r)=1-r$ if $p+q$ is even and $e(r)=1$ if $p+q$ is odd. This time,

$$
\begin{aligned}
p\left[\xi(p / q)^{n}\right]-q\left[\xi(p / q)^{n+1}\right] & =-p\left(1 / 2+g_{n}\right)+q\left(1 / 2+g_{n+1}\right) \\
& =(q-p) / 2-p g_{n}+q g_{n+1},
\end{aligned}
$$

so $s_{n}:=-q g_{n+1}+p g_{n}$ belongs to \mathbb{Z} if $p+q$ is even and to $1 / 2+\mathbb{Z}$ if $p+q$ is odd. As above, $s_{1}, s_{2}, s_{3}, \ldots$ is not ultimately periodic, by Lemma 1 . The case with $p+q$ being even corresponds to the case which we just considered and follows by (3). Suppose $p+q$ is odd and s_{n} take the values of the form $1 / 2+\mathbb{Z}$. We need to prove that then $g \geqslant(1-T(r)) / 2 q$.

Indeed, as above, $g_{n}=(1 / p)\left(s_{n}+s_{n+1} r+s_{n+2} r^{2}+s_{n+3} r^{3}+\ldots\right)$ with the difference being that s_{n} are of the form $1 / 2+\mathbb{Z}$. Multiplying both sides of this equality by 2 we see that $2 s_{n}$ are odd integers and derive from (4) that $2 g \geqslant(1-T(r)) / r p$. Since $r p=q$, this yields $g \geqslant(1-T(r)) / 2 q$ and completes the proof of Theorem 3.

Proof of Corollary 2. Both $\xi_{p}=E(1 / p) / p$ and $\hat{\xi}_{p}=e(1 / p) T(1 / p) / 2$ are linear forms in $t_{0}+t_{1} p^{-1}+t_{2} p^{-2}+t_{3} p^{-3}+\ldots$ and 1 with rational coefficients, so ξ_{p} and $\hat{\xi}_{p}$ are irrational numbers, because the Thue-Morse sequence $t_{0}, t_{1}, t_{2}, t_{3}, \ldots$ is not ultimately periodic. (Transcendence of such constants was proved in [12]. The number $t_{0}+t_{1} / 2+t_{2} / 2^{2}+t_{3} / 2^{3}+\ldots=0.412454 \ldots$ corresponding to $p=2$ is usually called the Thue-Morse constant.) Using (1), (2), (8), (10), (11) one can easily see that the constants ξ_{p} and $\hat{\xi}_{p}$ can be written in the form

$$
\begin{aligned}
\xi_{p} & =1 / p-1 / p^{3}+1 / p^{4}-1 / p^{5}+1 / p^{7}-1 / p^{9}+1 / p^{11}-\ldots \\
& =(1-1 / p)\left(t_{0}+t_{1} / p+t_{2} / p^{2}+t_{3} / p^{3}+t_{4} / p^{4}+t_{5} / p^{5}+\ldots\right)
\end{aligned}
$$

where the powers form the sequence $A 003159$ mentioned above, and
$\hat{\xi}_{p}=\left\{\begin{array}{l}1 / 2-\xi_{p} \text { if } p \text { is odd, } \\ (1 / 2)\left(1-1 / p-1 / p^{2}+1 / p^{3}-1 / p^{4}+p^{5}+1 / p^{6}-1 / p^{7}-\ldots\right) \text { if } p \text { is even. }\end{array}\right.$
The inequalities $\left\|\xi_{p} p^{n}\right\|<\xi_{p}$ and $\left\|\hat{\xi}_{p} p^{n}\right\|>\hat{\xi}_{p}$ for $n \in \mathbb{N}$ follow from Lemmas 5 and 6.

Acknowledgment

This research was partially supported by the Lithuanian State Science and Studies Foundation.

References

[1] S.D. Adhikari, P. Rath, N. Saradha, On the sets of uniqueness of the distribution function of $\left\{\xi(p / q)^{n}\right\}$, Acta Arith., to appear.
[2] S. Akiyama, C. Frougny, J. Sakarovitch, On number representation in a rational base, submitted for publication.
[3] G. Alkauskas, A. Dubickas, Prime and composite numbers as integer parts of powers, Acta Math. Hungar. 105 (2004) 249-256.
[4] J.-P. Allouche, M. Cosnard, Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set, Acta Math. Hungar. 91 (2001) 325-332.
[5] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in: C. Ding, et al. (Eds.), Sequences and their applications, Proceedings of the International Conference, SETA '98, Singapore, December 14-17, 1998, Springer Series in Discrete Mathematics and Theoretical Computer Science, London, Springer, 1999, pp. 1-16.
[6] J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003.
[7] R.C. Baker, G. Harman, Primes of the form [c^{p}], Math. Z. 221 (1996) 73-81.
[8] M.J. Bertin, A. Decomps-Guillox, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.P. Schreiber, Pisot and Salem Numbers, Birkhäuser, Boston, 1992.
[9] Y. Bugeaud, Linear mod one transformations and the distribution of fractional parts $\left\{\xi(p / q)^{n}\right\}$, Acta Arith. 114 (2004) 301-311.
[10] D. Cass, Integer parts of powers of quadratic units, Proc. Amer. Math. Soc. 101 (1987) 610-612.
[11] J.W.S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, Cambridge, 1957.
[12] M. Dekking, Transcendance du nombre de Thue-Morse, C.R. Acad. Sci. Paris Sér. A 285 (1977) 157-160.
[13] A. Dubickas, Integer parts of powers of Pisot and Salem numbers, Arch. Math. 79 (2002) 252-257.
[14] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc., to appear.
[15] A. Dubickas, On the fractional parts of rational powers, submitted for publication.
[16] A. Dubickas, On the limit points of the fractional parts of powers of Pisot numbers, submitted for publication.
[17] A. Dubickas, A. Novikas, Integer parts of powers of rational numbers, Math. Z., to appear.
[18] L. Flatto, Z-numbers and β-transformations, in: P. Walters (Ed.), Symbolic Dynamics and its Applications, New Haven, 1991, Contemp. Math. 135 (1992) 181-201.
[19] L. Flatto, J.C. Lagarias, A.D. Pollington, On the range of fractional parts $\left\{\xi(p / q)^{n}\right\}$, Acta Arith. 70 (1995) 125-147.
[20] W. Forman, H.N. Shapiro, An arithmetic property of certain rational powers, Comm. Pure Appl. Math. 20 (1967) 561-573.
[21] R.K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1994.
[22] J.F. Koksma, Ein mengen-theoretischer Satz über Gleichverteilung modulo eins, Compositio Math. 2 (1935) 250-258.
[23] V. Komornik, P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998) 636-639.
[24] K. Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. 8 (1968) 313-321.
[25] C. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scuola Norm. Sup. Pisa 7 (1938) 204-248.
[26] A. Pollington, Progressions arithmétiques généralisées et le problème des $(3 / 2)^{n}$, C.R. Acad. Sci. Paris Sér. I 292 (1981) 383-384.
[27] R. Salem, Algebraic Numbers and Fourier Analysis, D.C. Heath, Boston, 1963.
[28] A. Schinzel, On the reduced length of a polynomial with real coefficients, Func. Approximatio, Comment. Math., to appear.
[29] O. Strauch, Distribution functions of $\left\{\xi(p / q)^{n}\right\} \bmod 1$, Acta Arith. 81 (1997) 25-35.
[30] R. Tijdeman, Note on Mahler's $\frac{3}{2}$-problem, K. Norske Vidensk. Selsk. Skr. 16 (1972) 1-4.
[31] R.C. Vaughan, T.D. Wooley, Waring's problem: a survey, in: M.A. Bennett, et al. (Eds.), Number Theory for the Millennium, III (Urbana, IL, 2000), A. K. Peters, Natick, MA, 2002, pp. 301-340.
[32] T. Vijayaraghavan, On the fractional parts of the powers of a number, J. London Math. Soc. 15 (1940) 159-160.
[33] H. Weyl, Über die Gleichverteilung von Zahlen mod: Eins, Math. Ann. 77 (1916) 313-352.
[34] T. Zaimi, An arithmetical property of powers of Salem numbers, submitted for publication.

[^0]: E-mail address: arturas.dubickas@maf.vu.lt.

 0022-314X/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jnt.2005.07.004

