On the Radical of a Group Algebra

Peter Brockhaus

Gierlichstr. 20, 6340 Dillenburg, Federal Republic of Germany
Communicated by B. Huppert
Received January 8, 1984

1. Introduction

Let G be a finite group, p a prime, F a splitting field for G with characteristic $p, S \in \operatorname{Syl}_{p}(G) . P(M)$ will denote the projective cover of the simple $F G$-module M. Let $J F G$ be the Jacobson-radical of $F G$ and $u:=\operatorname{dim}_{F} P\left(1_{G}\right)$, where 1_{G} denotes the trivial $F G$-module. Then there is the following

Lemma. (a) (Brauer and Nesbitt [2]). $\operatorname{dim}_{F} J F G \leqslant|G|-|G| / u$.
(b) (Wallace [21]). $\quad S \triangleq G \Rightarrow \operatorname{dim}_{F} J F G=|G|-|G| / u$.

The converse of (b) is true if G has a p-complement (Wallace [21]) or if S is cyclic (Motose [13]) or if $p=2$ (Okuyama [16]). The main purpose of this paper is to obtain

Theorem 1.1. $\quad S \triangleq G \Leftrightarrow \operatorname{dim}_{F} J F G=|G|-|G| / u$.
The proof uses Okuyama's result, the classification theorem of finite simple groups and the following

Theorem 1.2 (Brockhaus and Michler [4]). If G is a simple group of Lie-type and $p \neq 2$, then G has at least two p-blocks.

Furthermore, the next lemma is needed.
Lemma 1.3 (Wallace [21]). Let G be p-solvable. Then: $S \triangleq G \Leftrightarrow$ $\operatorname{dim}_{F} J F G=|G|-|G| / u$.
(For a short proof see Brockhaus [3].)

2. Further Notation

Let M_{1}, \ldots, M_{k} be representatives of simple $F G$-modules $(k \in \mathbb{N}$). If M, W are $F G$-modules, M simple, then $\chi_{W}: G \rightarrow F$ will denote the Frobenius character afforded by $W, \neq(M, W)$ the multiplicity of M as a composition factor of W and $l(W)$ the composition length of $W .\left|\mathrm{Bl}_{p}(G)\right|$ will be the number of p-blocks of G and $\operatorname{Irr}(G)$ the set of irreducible complex characters of G. For $i, j \in\{1, \ldots, k\}$ let $c_{i j}:=\#\left(M_{j}, P\left(M_{i}\right)\right)$. Then $C:=\left(c_{i j}\right)$ is the Cartan matrix. If $H \subseteq G$, let $\hat{H}:=\sum_{h \in H} h \quad(\epsilon F G)$.

$$
\alpha:=\sum_{\substack{y \in G \\ g p=\text { element }}} g \in Z F G,
$$

the centre of $F G$. Define an F-linear map $T: F G \rightarrow F$ by

$$
\begin{aligned}
T(g) & :=1 & & \text { if } g \text { is a } p \text {-element } \\
& :=0 & & \text { otherwise }
\end{aligned}
$$

T is called " p-trace of $F G$."
If $\chi: F G \rightarrow F$ is a character or the p-trace of G, then $\operatorname{ker} \chi:=$ $\{x \in F G / \chi(g x)=0 \forall g \in G\}$.
ker χ is an ideal of $F G$, because $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for quadratic matrices A, B and $|g h|=\left|(g h)^{g}\right|=|h g|$ for $g, h \in G$. (For these definitions see Formanek and Snider [7].)

Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$.

$$
\begin{aligned}
t_{i j} & :=1 & & \text { if } g_{i}^{-1} g_{j} \text { is a } p \text {-element } \\
& :=0 & & \text { otherwise }
\end{aligned}
$$

$i, j \in\{1, \ldots, n\} . T_{G}:=\left(t_{i j}\right)$, a symmetric matrix. Finally, $\omega(S)$ will denote the augmentation ideal of $F S$ and $Z(G)$ the centre of G.

3. Results

Lemma 3.1. (Formanek and Snider [7]). (a) $J F G \subseteq \operatorname{ker} T$.
(b) If W is an $F G$-module, then: $J F G=\operatorname{ker} \chi_{W} \Leftrightarrow \forall i: p \nmid \#\left(M_{i}, W\right)$.
(c) $\chi_{(1,5)^{6}}=\left|N_{G}(S): S\right| T$.
(d) $J F G=\operatorname{ker} T \Leftrightarrow \forall i: p \nmid \#\left(M_{i},\left(1_{s}\right)^{G}\right)$.

Proof (Formanek and Snider). (a) T annihilates every nilpotent element (see Passman [17, p. 47J).
(b) $R:=F G / J F G, \chi_{i}:=\chi_{M_{i}} \forall i . M_{i}$ becomes a simple R-module via $m(x+J F G):=m x\left(m \in M_{i}, x \in F G\right)$.
(1) $\mathrm{Ann}_{R}\left(M_{i}\right)=\mathrm{Ann}_{F G}\left(M_{i}\right) / J F G$ (where "Ann" denotes the annihilator).

By Wedderburn's theorem:
(2) There are orthogonal central primitive idempotents $e_{1}, \ldots, e_{k} \in R$ having the following properties:
$R=e_{1} R \oplus \cdots \oplus e_{k} R ; \operatorname{Ann}_{R}\left(M_{i}\right)=\left(1-e_{i}\right) R$, a maximal ideal of R.
If B is an F-basis for M_{i} and $d_{i}:=\operatorname{dim}_{F} M_{i}$, then for each i :

$$
\begin{aligned}
\phi_{i}: e_{i} R & \rightarrow F_{d_{i}} \\
x & \mapsto \text { matrix of }\left\{\begin{array}{l}
M_{i} \rightarrow M_{i} \\
m \mapsto m x
\end{array}\right\}
\end{aligned}
$$

with respect to B is a ring isomorphism.
Obviously
(3) $\operatorname{Ann}_{F G}\left(M_{i}\right) \subseteq \operatorname{ker} \chi_{i} \forall i$.
(4) $\operatorname{ker} \chi_{i} \neq F G$.

Proof. Choose $x \in F G$ with $x+J F G \in e_{i} R$ and

$$
\left.\begin{array}{rl}
\phi_{i}(x+J F G) & =\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right) \quad\left(\in F_{d_{i}}\right) \\
\Rightarrow \chi_{r}(x)=\operatorname{tr}\left\{\begin{array}{l}
M_{i} \rightarrow M_{i} \\
m \mapsto m x=m(x+J F G)
\end{array}\right\} \\
& =\operatorname{tr} \phi_{i}(x+J F G)=1 \neq 0
\end{array}\right\}
$$

Therefore (4) holds. $\mathrm{Ann}_{F G}\left(M_{i}\right)$ is a maximal ideal of $F G$ by (1), (2). It follows from (3), (4) that
(5) $\operatorname{ker} \chi_{i}=\operatorname{Ann}_{F G}\left(M_{i}\right) \forall i$.

Let $m_{i}:=\#\left(M_{i}, W\right)$. Then
(6) $\chi_{w}=\sum_{i=1}^{k} m_{i} \chi_{i}$.
(7) $\operatorname{ker} \chi_{W}=\bigcap_{p i m_{i}} \operatorname{ker} \chi_{i}$.

$$
\begin{aligned}
& \text { Proof. " } \supseteq \text { " by (6). } \\
& \text { " } \subseteq \text { ": Suppose (7) is not true. } \\
& \Rightarrow \exists x \in F G \exists j \in\{1, \ldots, k\} \forall g \in G: \chi_{w}(g x)=0, \chi_{i}(x) \neq 0, p \nmid m_{j} .
\end{aligned}
$$

Choose $e_{j}^{\prime} \in F G: e_{j}=e_{j}^{\prime}+J F G$; let $i \in\{1, \ldots, k\}$.

$$
\begin{aligned}
\chi_{i}\left(e_{j}^{\prime} x\right) & =\operatorname{tr}\left\{\begin{array}{l}
M_{i} \rightarrow M_{i} \\
m \mapsto m e_{j}^{\prime} x=\left[m\left(e_{j}^{\prime}+J F G\right)\right] x=\left(m e_{j}\right) x
\end{array}\right\}, \\
m e_{j} & =m \quad \text { if } \quad i=j \\
& =0 \quad \text { otherwise } \quad(\text { by }(2)) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\chi_{i}\left(e_{j}^{\prime} x\right) & =\chi_{i}(x) \quad \text { if } \quad i=j \\
& =0 \quad \text { otherwise, } \\
0 & =\chi_{W}\left(e_{j}^{\prime} x\right) \quad \text { (by assumption) } \\
& \left.=\sum_{i=1}^{k} m_{i} \chi_{i}\left(e_{j}^{\prime} x\right)=m_{i} \chi_{i}(x) \neq 0 \quad \text { (because } p \nmid m_{i}\right),
\end{aligned}
$$

a contradiction!
(8) $\cap_{i=1}^{k} \operatorname{Ann}_{F G}\left(M_{i}\right) \neq \bigcap_{i \in I} \operatorname{Ann}_{F G}\left(M_{i}\right)$, if $I \varsubsetneqq\{1, \ldots, k\}$.

Proof. Let $j \in\{1, \ldots, k\} \backslash I$. Choose $e_{j}^{\prime} \in F G$ with $e_{j}=e_{j}^{\prime}+J F G$. $\forall i \in I: i \neq j$, so

$$
\begin{aligned}
M_{i} e_{j}^{\prime} & =M_{i}\left(e_{i}^{\prime}+J F G\right)=M_{i} e_{i}=0 \\
& \Rightarrow e_{i=1}^{\prime} \in \operatorname{Ann}_{F G}\left(M_{i}\right) \quad \forall i \in I \\
& \Rightarrow e_{i}^{\prime} \in \bigcap_{i \in j} \operatorname{Ann}_{F G}\left(M_{i}\right) .
\end{aligned}
$$

But $M_{j} e_{j}^{\prime}=M_{j}\left(e_{j}^{\prime}+J F G\right)=M_{i} e_{j}={ }_{12} M_{j} \neq 0 \Rightarrow e_{j}^{\prime} \notin \operatorname{Ann}_{F G}\left(M_{j}\right) \Rightarrow e_{j}^{\prime} \notin$ $\bigcap_{i=1}^{k} \mathrm{Ann}_{F G}\left(M_{i}\right)$. Therefore (8) holds.

$$
J F G=\bigcap_{i=1}^{k} \operatorname{Ann}_{F_{G}}\left(M_{i}\right) \subseteq \bigcap_{p \nmid m_{i}} \operatorname{Ann}_{F G}\left(M_{i}\right)=\bigcap_{\overline{(})} \bigcap_{p \nmid m_{i}} \operatorname{ker} \chi_{i} \overline{(7)} \operatorname{ker} \chi_{W V} .
$$

It follows from (8): $J F G=\operatorname{ker} \chi_{W} \Leftrightarrow \forall i: p \nmid m_{i}$.
(c) Let $g \in G$. An easy calculation shows

$$
\begin{aligned}
\chi_{(15)} c(g) & =\left|\left\{P \in \operatorname{Syl}_{p}(G) \mid P g=P\right\}\right| \cdot 1 \\
& =\left|N_{G}(S): S\right| \cdot\left|\left\{P \in \operatorname{Syl}_{p}(G) \mid g \in P\right\}\right| \cdot 1 .
\end{aligned}
$$

The statement is true, if g is not a p-element. Let g be a p-element. Then $g \in P \Leftrightarrow g \in N_{G}(P)$. Therefore

> (9) $\chi_{(1 s)} c(g)=\left|N_{G}(S): S\right|\left|\left\{P \in \operatorname{Syl}_{p}(G) \mid P^{g}=P\right\}\right| \cdot 1$.
> (10) $\left|\left\{P \in \operatorname{Syl}_{p}(G) \mid P^{g}=P\right\}\right| \equiv 1(\bmod p)$.

Proof. $\langle g\rangle$ acts on $\operatorname{Syl}_{p}(G)$ by conjugation. Let Y_{1}, \ldots, Y_{i} be the orbits

$$
\begin{aligned}
& \Rightarrow \operatorname{Syl}_{p}(G)=\bigcup_{\left|Y_{i}\right|=1} Y_{i} \cup \bigcup_{p| | Y_{i} \mid} Y_{i}=\left\{P \in \operatorname{Syl}_{p}(G) \mid P^{g}=P\right\} \cup \bigcup_{p| | Y_{i}} Y_{i} \\
& \Rightarrow 1 \equiv\left|\operatorname{Syl}_{p}(G)\right| \equiv\left|\left\{P \in \operatorname{Syl}_{p}(G) \mid P^{g}=P\right\}\right| \quad(\bmod p) .
\end{aligned}
$$

Part (d) follows from (b), (c).
Q.E.D.

Lemma 3.2.

$$
\operatorname{ker} T=\Lambda \mathrm{nn}_{F G}(\alpha)=\left\{\sum_{i=1}^{n} c_{i} g_{i} \mid c_{1}, \ldots, c_{n} \in F, T_{G}\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=0\right\}
$$

In particular $\operatorname{dim}_{F} \operatorname{Ann}_{F G}(\alpha)=|G|-\operatorname{rk}\left(T_{G}\right)$.
Remark. Lemma 3.2 is essentially contained in Tsushima [20] (where the matrix T_{G} is defined in a slightly different manner).

Proof. Let $x \in F G . \exists f_{j} \in F: x=\sum_{j} f_{j} g_{j}$

$$
\begin{aligned}
x \in \operatorname{ker} T & \Leftrightarrow \forall i: \sum_{j} f_{j} T\left(g_{i}^{-1} g_{j}\right)=0 \\
& \Leftrightarrow\left(t_{i j}\right)\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)=0 \Leftrightarrow x \in\left\{\sum_{i} c_{i} g_{i} \mid \cdots\right\}
\end{aligned}
$$

T_{G} defines an F-linear map

$$
\begin{aligned}
\varphi: F G & \rightarrow F G \\
g_{j} & \mapsto \sum_{i} t_{i j} g_{i} \\
\varphi\left(g_{j}\right) & =\sum_{\substack{i \\
g_{i}^{-1} g_{j} p \text {-el. }}} g_{i}=\sum_{\substack{g \in G \\
g^{-1} p-\mathrm{el} .}} g_{j} g \quad\left(g_{i}=g_{j} g\right) \\
& =g_{j} \sum_{g^{-1} p \text {-el. }} g=g_{j} \alpha .
\end{aligned}
$$

Therefore $\varphi(x)=x \alpha \forall x \in F G$. It follows: $x \in\left\{\sum_{i} c_{i} g_{i} \mid \cdots\right\} \Leftrightarrow \varphi(x)=0 \Leftrightarrow$ $x \in \mathrm{Ann}_{F G}(\alpha)$.
Q.E.D.

Lemma 3.3. (a) $\#\left(M_{i}, F G\right)=\operatorname{dim}_{F} P\left(M_{i}\right) \forall i$.
(b) $\operatorname{dim}_{F} P\left(M_{i}\right)=|S| \#\left(M_{i},\left(1_{S}\right)^{G}\right) \forall i$.
(c) $u=|S| \Leftrightarrow \#\left(1_{G},\left(1_{S}\right)^{G}\right)=1$.

Proof.
(a) $\sum_{j} c_{i j} \operatorname{dim}_{F} M_{j}=\sum_{j} \#\left(M_{j}, P\left(M_{i}\right)\right) \operatorname{dim}_{F} M_{j}=\operatorname{dim}_{F} P\left(M_{i}\right)$, $\sum_{j} c_{j i} \operatorname{dim}_{F} M_{j}=\sum_{j} \#\left(M_{i}, P\left(M_{j}\right)\right) \operatorname{dim}_{F} M_{j}=\#\left(M_{i}, F G\right)$,
since $\operatorname{dim}_{F} M_{j}$ is the multiplicity of $P\left(M_{j}\right)$ as a direct summand of $F G$. $c_{i j}=c_{j i}$ by symmetry of the Cartan-matrix.
(b) Let $O=W_{0}<W_{1}<\cdots<W_{|S|}=F S$ be an $F S$-composition series of $F S$. Then $O=W_{0}^{G}<W_{1}^{G}<\cdots<W_{|S|}^{G}=(F S)^{G} \cong F G$, where $W_{i}^{G} / W_{i-1}^{G} \cong$ $\left(W_{i} / W_{i-1}\right)^{G} \cong\left(1_{S}\right)^{G} \forall i \in\{1, \ldots,|S|\}$. It follows that $|S| \#\left(M_{i},\left(1_{S}\right)^{G}\right)=$ $\#\left(M_{i}, F G\right)={ }_{(\mathrm{a})} \operatorname{dim}_{F} P\left(M_{i}\right)$.

Part (c) follows from (b).
Q.E.D.

Lemma 3.4. (a) $J F G \subseteq A n n_{F G}(\alpha), \alpha F G \subseteq \operatorname{soc} F G$.
(b) The following statements are equivalent:
(i) $J F G=\mathrm{Ann}_{F G}(\alpha)$.
(ii) $\operatorname{soc} F G=\alpha F G$.
(iii) $\quad p \backslash\left(\operatorname{dim}_{F} P\left(M_{i}\right)\right) /|S| \forall i . \quad$ (Note: $\quad\left(\operatorname{dim}_{F} P\left(M_{i}\right)\right) /|S| \in \mathbb{N} \quad$ by Lemma 2.4(b).)
(iv) $P\left(M_{i}\right) \alpha \neq 0 \forall i$.
(v) $P\left(M_{i}\right) \alpha \cong M_{i} \quad \forall i$.
(vi) $1 \in \operatorname{Supp}(e \alpha)$ for every primitive idempotent e.

Proof. (a) $J F G \subseteq \mathrm{Ann}_{F G}(\alpha)$ by Lemmas 3.1(a), 3.2 (see also Tsushima [19]). $\alpha F G \cong F G / \mathrm{Ann}_{F G}(\alpha) \cong(F G / J F G) /\left(\mathrm{Ann}_{F G}(\alpha) / J F G\right)$ is semisimple (since $F G / J F G \cong \operatorname{soc} F G$). $\Rightarrow \alpha F G \subseteq \operatorname{soc} F G$.
(b) (i) \Leftrightarrow (ii) is clear (see proof of (a)).
(i) \Leftrightarrow (iii):

$$
\begin{aligned}
p \nmid \frac{\operatorname{dim}_{F} P\left(M_{i}\right)}{|S|} \forall i & \underset{\text { Lemma } 3.3(\mathrm{~b})}{\Leftrightarrow} p \backslash \#\left(M_{i},\left(1_{S}\right)^{G}\right) \forall i \\
& \stackrel{\text { Lemmas 3.1(d), 3.2 }}{\Leftrightarrow} J F G=\mathrm{Ann}_{F G}(\alpha) .
\end{aligned}
$$

(ii) \Leftrightarrow (iv), (ii) $\Leftrightarrow(\mathrm{v})$: Let $F G=\sum_{i=1}^{t} \oplus P_{i}, \quad P_{i} \quad$ indecomposable
right ideals. $\quad P_{i} \alpha \leqslant P_{i} \cap \alpha F G \leqslant$ Lemma $3.2 P_{i} \cap \operatorname{soc} F G=\operatorname{soc} P_{i} ; \quad$ therefore $\alpha F G=\sum_{i=1}^{t} \oplus P_{i} \alpha \leqslant \sum_{i=1}^{t} \oplus \operatorname{soc} P_{i}=\operatorname{soc} F G$. It follows that $\alpha F G=$ $\operatorname{soc} F G \Leftrightarrow \forall i: P_{i} \alpha=\operatorname{soc} P_{i} \Leftrightarrow \forall i: P_{i} \alpha \neq 0$.

$$
(\text { iv }) \Leftrightarrow(\mathrm{vi}): \quad e \alpha \neq 0 \Leftrightarrow 1 \in \operatorname{Supp}(e \alpha) \text { by Okuyama [14, (1.G)]. }
$$

Q.E.D.

Corollary 3.5. (Formanek and Snider [7]; Tsushima [19]). Let G be p-solvable. Then $J F G=\operatorname{Ann}_{F G}(\alpha)$.

Proof. $\forall i: p \nmid\left(\operatorname{dim}_{F} P\left(M_{i}\right)\right) /|S|$ by Hamernik, Michler [8, Corollary $2.3 \mathrm{~b})]$. The statement follows from Lemma 3.4.
Q.E.D.

Lemma 3.6. (a) (Wallace [21]). $\operatorname{dim}_{F} J F G=|G|-|G| / u \Leftrightarrow \forall i$: $P\left(M_{i}\right) \cong P\left(1_{G}\right) \otimes_{F} M_{i}$.
(b) $\operatorname{dim}_{F} J F G=|G|-|G| / u \Leftrightarrow \forall i, j: \quad \#\left(1_{G}, M_{i}^{*} \otimes_{F} M_{j}\right)=\delta_{i j} . \quad\left(\delta_{i j}\right.$ denotes the Kronecker symbol.)
(c) $\operatorname{dim}_{F} J F G=|G|-|G| / u \Rightarrow p \mid \operatorname{dim}_{F} M_{i} \forall i$. In particular every p-Block has maximal defect.

Remark. Part (b) is due to M. Lorenz. Part (c) may be found in Okuyama [16].

Proöf. (a) $P\left(1_{G}\right) \otimes_{F} M_{i}$ is projective and $M_{i} \cong 1_{G} \otimes_{F} M_{i} \leqslant$ $P\left(M_{i}\right) \otimes_{F} M_{i}$. Therefore

$$
\begin{gathered}
\forall i: P\left(M_{i}\right) \mid P\left(1_{G}\right) \otimes_{F} M_{i} . \\
\operatorname{dim}_{F} F G / J F G=\sum_{i}\left(\operatorname{dim}_{F} M_{i}\right)^{2}-\frac{1}{u} \sum_{i}\left(\operatorname{dim}_{F} M_{i}\right)\left(u \operatorname{dim}_{F} M_{i}\right) \\
\gtrless \frac{1}{u} \sum_{i}\left(\operatorname{dim}_{F} M_{i}\right)\left(\operatorname{dim}_{F} P\left(M_{i}\right)\right)=\frac{|G|}{u}
\end{gathered}
$$

(because $\operatorname{dim}_{F} M_{i}$ is the multiplicity of $P\left(M_{i}\right)$ as a direct summand of $F G$). Therefore $P\left(M_{i}\right) \cong P\left(1_{G}\right) \otimes_{F} M_{i} \forall i \Leftrightarrow \operatorname{dim}_{F} F G / J F G=|G| / u$.
(b) $\#\left(1_{G}, M_{i}^{*} \otimes_{F} M_{j}\right)=\operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(P\left(1_{G}\right), M_{i}^{*} \otimes_{F} M_{j}\right)$

$$
=\operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(P\left(1_{G}\right) \otimes_{F} M_{i}, M_{j}\right)
$$

$$
" \Rightarrow ": \#\left(1_{G}, M_{i}^{*} \otimes_{F} M_{j}\right)=\operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(P\left(M_{i}\right), M_{j}\right)=\delta_{i j}
$$

$" \Leftarrow ":$ Assume $\operatorname{dim}_{F} J F G \neq|G|-|G| / u$

$$
\underset{(\mathrm{a})}{\Rightarrow} \exists j: P\left(M_{i}\right) \oplus P\left(M_{j}\right) \mid P\left(1_{G}\right) \otimes_{F} M_{i}
$$

$$
\begin{aligned}
\#\left(1_{G}, M_{i}^{*} \otimes_{F} M_{j}\right) \geqslant & \operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(P\left(M_{i}\right), M_{j}\right) \\
& +\operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(P\left(M_{j}\right), M_{j}\right) \\
= & \operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(P\left(M_{i}\right), M_{j}\right)+1 .
\end{aligned}
$$

Case 1. $i=j \Rightarrow \#\left(1_{G}, M_{i}^{*} \otimes_{F} M_{j}\right) \geqslant 2$, a contradiction.
Case 2. $i \neq j \Rightarrow \#\left(1_{G}, M_{i}^{*} \otimes_{F} M_{j}\right) \geqslant 1$, a contradiction.
(c) Suppose $\exists i: p \mid \operatorname{dim}_{F} M_{i} \rightarrow \#\left(1_{G}, \quad M_{i}^{*} \otimes_{F} M_{i}\right) \geqslant 2$ (see Puttaswamaiah, Dixon [18, p. 133]). This contradicts (b).
Q.E.D.
G. Michler observed the following fact.

Remark 3.7. Let G be p-solvable. Then: $p \nmid \operatorname{dim}_{F} M_{i} \forall i \Leftrightarrow S \triangleq G$.
Proof.

$$
\begin{aligned}
& p \nmid \operatorname{dim}_{F} M_{i} \Leftrightarrow \operatorname{dim}_{F} P\left(M_{i}\right)=|S| \operatorname{dim}_{F} M_{i} \\
&(\text { Hamernik, Michler [8, Corollary } 2.3(\mathrm{a}, \mathrm{~b})]) \\
& \Leftrightarrow \operatorname{dim}_{F} P\left(M_{i}\right)=u \operatorname{dim}_{F} M_{i} \\
& \quad(\text { since } u=|S|) \\
& \Leftrightarrow P\left(M_{i}\right) \cong P\left(1_{G}\right) \otimes_{F} M_{i} \\
&\left(\text { see }\left(^{*}\right) \text { in the proof of Lemma 3.6(a) }\right) .
\end{aligned}
$$

The result follows from Lemmas 1.3 and 3.6(a).
Q.E.D.

Lemma 3.8. Let $\operatorname{dim}_{F} J F G=|G|-|G| / u$.
(a) $\quad u=|S|, \quad C\left(\begin{array}{c}\operatorname{dim}_{F} M_{1} \\ \vdots \\ \operatorname{dim}_{F} M_{k}\end{array}\right)=|S|\left(\begin{array}{c}\operatorname{dim}_{F} M_{1} \\ \vdots \\ \operatorname{dim}_{F} M_{k}\end{array}\right)$.
(b) Let $S \leqslant U \leqslant G$. Then $\left.P\left(1_{U}\right) \cong P\left(1_{G}\right)\right|_{U}$. In particular $\left.P\left(1_{G}\right)\right|_{S} \cong F S$.

Remark. After I finished the proof Professor Wallace informed me that Lemma 3.8(a) was already known to him. His (unpublished) proof is different from the following.

Proof. (a)
$C\left(\begin{array}{c}\operatorname{dim}_{F} M_{1} \\ \vdots \\ \operatorname{dim}_{F} M_{k}\end{array}\right)=\left(\begin{array}{c}\operatorname{dim}_{F} P\left(M_{1}\right) \\ \vdots \\ \operatorname{dim}_{F} P\left(M_{k}\right)\end{array}\right) \quad \underset{\text { Lemma }}{\text { 3.6(a) }}=\left(\begin{array}{c}\operatorname{dim}_{F} P\left(M_{1}\right) \\ \vdots \\ \operatorname{dim}_{F} P\left(M_{k}\right)\end{array}\right)$.
Let $f(X)$ be the characteristic polynomial of C.

$$
\begin{aligned}
f(X) & =\operatorname{det} \quad C-\left(\begin{array}{ccc}
X & & 0 \\
& \ddots & \\
0 & & X
\end{array}\right) \\
& =a_{k} X^{k}+a_{k-1} X^{k-1}+\cdots+a_{1} X+a_{0} ; \quad a_{0}, \ldots, a_{k} \in \mathbb{Z}
\end{aligned}
$$

By the Euclidean algorithm $f(X)=(X-u)\left(b_{k-1} X^{k-1}+\cdots+\right.$ $\left.b_{1} X+b_{0}\right)+c$ for certain $b_{0}, \ldots, b_{k-1}, c \in \mathbb{Z} . c=f(u)=0$ by (*). Comparing coefficients: $-u b_{0}=a_{0}= \pm \operatorname{det} C$.
det C is a power of p (see Puttaswamaiah and Dixon [18, p. 106])
$\Rightarrow \exists b \in \mathbb{N}: u=p^{b}$
$\Rightarrow u\left||S| \quad\right.$ (otherwise $\operatorname{dim}_{F} J F G=|G|-|G| / u \notin \mathbb{N}$).
By Lemma 3.3(b), $|S| \mid u$. Therefore $u=|S|$.
(b) $\left.P\left(1_{G}\right)\right|_{U}$ is projective and $1_{U} \leqslant\left. P\left(1_{G}\right)\right|_{U}$

$$
\begin{aligned}
& \Rightarrow P\left(1_{U}\right)\left|P\left(1_{G}\right)\right|_{U} \\
& \Rightarrow|S| \leqslant \operatorname{dim}_{F} P\left(1_{U}\right) \quad(\text { Lemma } 3.3(\mathrm{~b})) \\
& \quad \leqslant\left.\operatorname{dim}_{H} P\left(1_{G}\right)\right|_{U}=u=|S| .
\end{aligned}
$$

Therefore $\left.P\left(1_{U}\right) \cong P\left(1_{G}\right)\right|_{U}$.
Q.E.D.

Lemma 3.9. (a) $u=|S| \Rightarrow \forall i: \quad \#\left(M_{i},\left(1_{S}\right)^{G}\right) \leqslant \#\left(M_{i}\right.$, soc $\left.F G\right)$ $\left(=\operatorname{dim}_{F} M_{i}\right)$.
(b) $\operatorname{dim}_{F} J F G=|G|-|G| / u \Leftrightarrow\left(1_{S}\right)^{G}$ and soc $F G$ have the same composition factors (multiplicities included).
(c) $\operatorname{dim}_{F} J F G=|G|-|G| / u \Leftrightarrow \omega(S) F G$ and $J F G$ have the same composition factors (multiplicities included).
(d) $\operatorname{dim}_{F} J F G=|G|-|G| / u \Rightarrow J F G=\mathrm{Ann}_{F G}(\alpha), \operatorname{soc} F G=\alpha F G$.

Proof. (a)

$$
\begin{aligned}
|S| \#\left(M_{i},\left(1_{S}\right)^{G}\right) & =\operatorname{dim}_{F} P\left(M_{i}\right) \quad(\text { Lemma } 3.3(\mathrm{~b})) \\
\leqslant & \leqslant \operatorname{dim}_{F} M_{i} \quad(\text { see }(*) \text { in the proof of Lemma 3.6) } \\
& =u \#\left(M_{i}, \operatorname{soc} F G\right) \\
& =|S| \#\left(M_{i}, \operatorname{soc} F G\right)
\end{aligned}
$$

(b) Case 1. $\operatorname{dim}_{F} J F G=|G|-|G| / u \Rightarrow u=|S|$ (Lemma 3.8(a)).

Case 2. $\left(1_{S}\right)^{G}$ and soc $F G$ have same composition factors

$$
\begin{aligned}
& \Rightarrow 1=\#\left(1_{G},\left(1_{S}\right)^{G}\right)=u /|S| \quad(\text { Lemma 3.3(b)). } \\
& \Rightarrow u=|S| .
\end{aligned}
$$

Therefore $u=|S|$ in each case. It follows that $\#\left(M_{i},\left(1_{s}\right)^{G}\right) \leqslant$ $\#\left(M_{i}, \operatorname{soc} F G\right) \forall i$ and

$$
\begin{aligned}
"=" & \Leftrightarrow \forall i: \operatorname{dim}_{F} P\left(M_{i}\right)=u \operatorname{dim}_{F} M_{i} \\
& \Leftrightarrow \operatorname{dim}_{F} J F G=|G|-|G| / u \quad \text { (Lemma 3.6(a)). }
\end{aligned}
$$

Part (c) follows from (b), since $F G / \omega(S) F G \cong\left(1_{s}\right)^{G}$ (see Passman [17, Lemma 1.2ii, p. 68]) and $F G / J F G \cong \operatorname{soc} F G$.
(d) By Lemma 3.6(c), $p \nmid \operatorname{dim}_{F} M_{i}=\#\left(M_{i}, \operatorname{soc} F G\right) \underset{(\mathrm{b})}{ } \#\left(M_{i},\left(1_{S}\right)^{G}\right)$ $\forall i($ Lemmas 3.1(d), 3.2)

$$
\begin{aligned}
& \Rightarrow J F G=\operatorname{Ann}_{F G}(\alpha) \\
& \Rightarrow \alpha F G \cong F G / \operatorname{Ann}_{F G}(\alpha)=F G / J F G \cong \operatorname{soc} F G \\
& \Rightarrow \operatorname{soc} F G=\alpha F G \quad \text { Lemma 3.4(a) })
\end{aligned}
$$

Q.E.D.

Lemma 3.10. (a) $p \nmid \operatorname{dim}_{F} M_{i} \forall i \Rightarrow \alpha \hat{K}=|K| \alpha$ for each p-conjugacy class K.
(b) $p \nmid \operatorname{dim}_{F} M_{i} \forall i \Leftrightarrow J F G=\operatorname{ker} \chi_{\mathrm{soc} F G}$.
(c) $\operatorname{dim}_{F} J F G=|G|-\frac{|G|}{u} \Rightarrow \chi_{\text {soc } F G}(g)$

$$
=\left\{\begin{array}{ll}
|G: S| \cdot 1_{F} & \text { if } g \text { p-element } \\
0 & \text { otherwise }
\end{array}(g \in G) .\right.
$$

(d) $\sum_{i=1}^{k}\left[u-l\left(P\left(M_{i}\right)\right)\right] \operatorname{dim}_{F} M_{i} \geqslant 0 . "=" \Leftrightarrow \operatorname{dim}_{F} J F G=|G|-$ $|G| / u$.
(e) $\operatorname{dim}_{F} J F G=|G|-|G| / u \Rightarrow \operatorname{rk} T_{G}=|G: S|$.

Proof. (a) It may be assumed that F is algebraically closed. $\forall i \exists c_{i} \in F$ $\forall m \in M_{i}: m \hat{K}=m c_{i} \quad$ by Schur's lemma. $\quad\left(\operatorname{dim}_{F} M_{i}\right) \cdot c_{i}=\chi_{M_{i}}(\hat{K})=$ $\sum_{g \in K} \chi_{M_{i}}(g)=\sum_{g \in K} \chi_{M}(1)=|K|\left(\operatorname{dim}_{F} M_{i}\right) \cdot 1_{F}$. Since

$$
\begin{aligned}
& p \nmid \operatorname{dim}_{F} M_{i}: c_{i}=|K| \cdot 1_{F} \\
& \Rightarrow x \hat{K}=|K| x \quad \forall x \in \operatorname{soc} F G \\
& \Rightarrow \alpha \hat{K}=|K| \alpha .
\end{aligned}
$$

Part (b) follows from Lemmas 3.1(b) and 3.2.

$$
\text { (c) } \begin{aligned}
\chi_{\mathrm{soc} F G} & =\chi_{(1 s)^{G}} & & (\text { Lemma } 3.9(\mathrm{~b})) \\
& =\left|N_{G}(S): S\right| T & & (\text { Lemma } 3.1(\mathrm{c})) \\
& =|G: S| T & & \left(\text { since }\left|G: N_{G}(S)\right| \equiv 1(\bmod p)\right)
\end{aligned}
$$

(d) The multiplicity of $P\left(M_{i}\right)$ as a direct summand of $F G$ is $\operatorname{dim}_{F} M_{i}$; therefore

$$
\begin{array}{rl}
\sum_{i=1}^{k} l & l\left(P\left(M_{i}\right)\right) \operatorname{dim}_{F} M_{i} \\
& =l(F G)=\sum_{i} \#\left(M_{i}, F G\right)=\sum_{i} \operatorname{dim}_{F} P\left(M_{i}\right) \quad \text { (Lemma 3.3(a)) } \\
\quad \leqslant \sum_{i} \operatorname{dim}_{F}\left(P\left(1_{G}\right) \otimes_{F} M_{i}\right)=\sum_{i} u \cdot \operatorname{dim}_{F} M_{i}
\end{array}
$$

It follows that $\sum_{i}\left[u-l\left(P\left(M_{i}\right)\right)\right] \operatorname{dim}_{F} M_{i} \geqslant 0$ and

$$
\begin{aligned}
"=" & \Leftrightarrow \forall i: P\left(M_{i}\right) \cong P\left(1_{G}\right) \otimes_{F} M_{i} \\
& \Leftrightarrow \operatorname{dim}_{F} J F G=|G|-\frac{|G|}{u} \quad \text { (Lemma 3.6(a)). }
\end{aligned}
$$

(e) rk $T_{G}=|G|-\operatorname{dim}_{F} J F G \quad$ (Lemmas 3.2, 3.9(d)) $=|G: S| \quad$ (Lemma 3.8(a)).
Q.E.D.

Lemma 3.11. Let $\operatorname{dim}_{F} J F G=|G|-|G| / u$ and $S \nsubseteq G$ and $|G|$ minimal having this property. Then:
(a) $N \triangleq G \Rightarrow p||G: N|$.
(b) $O_{p}(G)=\langle 1\rangle$.

Proof. (a) Assume

$$
\begin{aligned}
& p \nmid|G: N| \Rightarrow \operatorname{dim}_{F} J F N=|G: N|^{-1} \operatorname{dim}_{F} J F G \\
& \quad \text { (see Passman }[17, \text { p. 278]) } \\
&=|G: N|^{-1}\left(|G|-\frac{|G|}{u}\right) \\
&=|N|-\frac{|N|}{u} \\
&=|N|-\frac{|N|}{\operatorname{dim}_{F} P\left(1_{N}\right)} \quad \text { (Lemma 3.8(b)) } \\
& \Rightarrow S \triangleq N \quad(\text { by the minimality of }|G|) \\
& \Rightarrow S \text { char } N \triangle G \Rightarrow S \triangle G, \quad \text { a contradiction. }
\end{aligned}
$$

$$
\begin{align*}
\operatorname{dim}_{F} J F\left[G / O_{p}(G)\right]= & \operatorname{dim}_{F} J F G-|G|+\left|G: O_{p}(G)\right| \tag{b}\\
& (\text { see Brockhaus }[3, \operatorname{Lemma} 3(\mathrm{~d})]) \\
= & |G|-\frac{|G|}{u}-|G|+\left|G: O_{p}(G)\right| \\
= & \left|G / O_{p}(G)\right|-\frac{\left|G / O_{p}(G)\right|}{u\left|O_{p}(G)\right|^{-1}} \\
= & \left|G / O_{p}(G)\right|-\frac{\left|G / O_{p}(G)\right|}{\operatorname{dim}_{F} P\left(1_{G / /_{p}(G)}\right)} \\
& \text { (see Hamernik and Michler }[8, \text { p. 154]). }
\end{align*}
$$

Assume $O_{p}(G) \neq\langle 1\rangle$. Then, by minimality of $|G|, S / O_{p}(G) \triangleq G / O_{p}(G)$ and therefore $S \triangleq G$. Contradiction! It follows that $O_{p}(G)=\langle 1\rangle$. Q.E.D.

The following lemma is due to R. Knörr and M. Lorenz.

Lemma 3.12. Let $\operatorname{dim}_{F} J F G=|G|-|G| / u$ and $S \Phi G$ and $|G|$ minimal having this property. Then G is simple.

Proof. Assumption: $\exists N \triangleq G:\langle 1\rangle \neq N \neq|G|$.
(1) $\operatorname{dim}_{F} J F[G / N]=|G / N|-(G / N) / \operatorname{dim}_{F} P\left(1_{G / N}\right)$.

Proof. Let V_{1}, V_{2} be simple $F[G / N]$-modules. Define $v g:=v(N g)$ for $g \in G, v \in V_{i}$. Then V_{i} is also a simple $F G$-module with property $N \leqslant \operatorname{ker} V_{i}(i \in\{1,2\})$.

$$
\#\left(1_{G / N}, V_{1}^{*} \otimes_{F} V_{2}\right)=\#\left(1_{G}, V_{1}^{*} \otimes_{F} V_{2}\right)= \begin{cases}1 & \text { if } V_{1} \cong_{F G} V_{2} \\ 0 & \text { otherwise } .\end{cases}
$$

Part (1) follows by Lemma $3.6(\mathrm{~b})$, since $V_{1} \cong{ }_{F G} V_{2} \Leftrightarrow V_{1} \cong_{F[G / N]} V_{2}$. Therefore, by the minimality of $|G|, S N / N \triangle G / N \Rightarrow S N \triangle G \Rightarrow$
(2) $G=S N$ (by Lemma 3.11(a))

$$
\begin{aligned}
& \Rightarrow|G: N| \quad \text { is a power of } p \\
& \Rightarrow P\left(1_{G}\right) \cong\left(P\left(1_{N}\right)\right)^{G}
\end{aligned}
$$

by Green's theorem (see Puttaswamaiah and Dixon [18, p. 126]).
It follows that
(3) $u=|G: N| \operatorname{dim}_{F} P\left(1_{N}\right)$.
(4) $\operatorname{dim}_{F} J F N=|N|-|N| / \operatorname{dim}_{F} P\left(1_{N}\right)$.

Proof. $\quad \varphi: F N / J F G \cap F N \rightarrow F G / J F G, \quad x+J F G \cap F N \mapsto x+J F G$ defines an F-monomorphism. $J F G \cap F N \subseteq J F N$, since $J F G \cap F N$ is a nilpotent ideal of $F N$. It follows that

$$
\begin{aligned}
\operatorname{dim}_{F} J F N & \geqslant \operatorname{dim}_{F} J F G \cap F N=|N|-\operatorname{dim}_{F} F N / J F G \cap F N \\
& \geqslant|N|-\operatorname{dim}_{F} F G / J F G=|N|-|G|+\operatorname{dim}_{F} J F G \\
& =|N| \quad|G|+\left(|G|-\frac{|G|}{u}\right)=|N|-\frac{|N|}{\operatorname{dim}_{F} P\left(1_{N}\right)} .
\end{aligned}
$$

Therefore (4) holds.
It follows, by the minimality of $|G|$, that $S \cap N \triangleq N$

$$
\begin{aligned}
& \Rightarrow S \cap N \text { char } N \triangleq G \Rightarrow S \cap N \triangleq G \\
& \Rightarrow S \cap N=\langle 1\rangle \quad \text { (Lemma 3.11(b)) } \\
& \underset{(2)}{\Rightarrow} G \text { is } p \text {-nilpotent } \\
& \Rightarrow S \triangleq G \quad \text { (Lemma 1.3). }
\end{aligned}
$$

Contradiction!
Q.E.D.

Lemma 3.13. Suppose $u=|S|$. Then
(a) $S \leqslant U \leqslant G \Rightarrow O_{p^{\prime}}(U) \leqslant O_{p^{\prime}}(G)$.
(b) $\left|\mathrm{Bl}_{p}(G)\right|=1 \Leftrightarrow O_{p^{\prime}}(G)=\langle 1\rangle$ and each p-block of G has maximal defect.

Proof. (a) $\left.P\left(1_{U}\right) \cong P\left(1_{G}\right)\right|_{U}$, since $u=|S|$. Therefore ker $P\left(1_{U}\right) \leqslant$ ker $P\left(1_{G}\right)$. By a theorem of H. Pahlings: $\operatorname{ker} P\left(1_{U}\right)=O_{p^{\prime}}(U)$, ker $P\left(1_{G}\right)=$ $O_{p^{\prime}}(G)$.
(b) " $\Rightarrow ": O_{p^{\prime}}(G)=\langle 1\rangle$, since $\left[\left|O_{p^{\prime}}(G)\right| \cdot 1_{F}\right]^{-1} \widehat{O_{p^{\prime}}(G)}$ is a central idempotent.
" $\Leftarrow "$: Apply (a) in case $U=N_{G}(S)$. It follows that $O_{p^{\prime}}(U)=\langle 1\rangle . U$ is p-solvable; therefore $\left|\mathrm{Bl}_{p}(U)\right|=1$ by Fong [6]. By Brauer's first main theorem (see Puttaswamaiah and Dixon [18, p. 151]) G has only one p-block of maximal defect. So $\left|\mathrm{Bl}_{p}(G)\right|=1$.
Q.E.D.

Corollary 3.14. Suppose $\operatorname{dim}_{F} J F G=|G|-|G| / u$ and $S \nsubseteq G$ and $|G|$ minimal having this property. Then G is simple, non-cyclic und has only one p-block.

Lemma 3.15. $\zeta \in \operatorname{Irr}(G), x \in Z(S), \zeta(x)=0 \Rightarrow \zeta$ does not belong to the principal p-block.

Proof. Trivial.
Q.E.D.

4. Groups Having a Single p-Block

Assume $F:=R / I$, where R is the ring of algebraic integers in \mathbb{C} and I is a fixed maximal ideal of R containing $p R$. Then F is an algebraically closed field with characteristic p, algebraic over its prime field (see Isaacs [10, pp. 262-263]).

Lemma 4.1. (a) Let $\quad\left|\mathrm{Bl}_{p}(G)\right|=1, \quad g \in G$. Then: $\quad p \nmid\left|G: C_{G}(g)\right|$ $\left(=\left|g^{G}\right|\right) \Leftrightarrow g$ lies in the centre of a Sylow p-subgroup.
(b) The following statements are equivalent:
(i) $\left|\mathrm{Bl}_{p}(G)\right|=1$.
(ii) $\forall \zeta \in \operatorname{Irr}(G):\left|g^{G}\right| \equiv\left|g^{G}\right|(\zeta(g) / \zeta(1))(\bmod I)$.
(iii) $\hat{K}-|K| \cdot 1_{F} \in J F G$ for each conjugacy class K.
(iv) $\alpha \hat{K}=|K| \alpha$ for each conjugacy class K.
(v) $\hat{K}^{|S|}=0$ for each p^{\prime}-conjugacy class $K \neq\{1\}$.
(vi) $\quad C_{G}(S) \subseteq S$ and for each p^{\prime}-element $g \neq 1$:

$$
\left|g^{G}\right| \frac{\zeta(g)}{\zeta(1)} \equiv 0 \quad(\bmod I)
$$

(vii) Let K be a conjugacy class and $g \in G$. Then

$$
\begin{aligned}
(\text { number of p-elements in } g K) & \equiv|K| & & \text { if } g \text { is a p-element } \\
& \equiv 0 & & \text { otherwise }
\end{aligned}
$$

Proof. It holds that
(1) $\left|\mathrm{Bl}_{\mathrm{p}}(G)\right|=\operatorname{dim}_{F} Z F G / J(Z F G)$ (Clarke [5, Lemma 2]).
(2) $J(Z F G)=Z F G \cap \operatorname{Ann}_{F G}(\alpha)$ (Iizuka and Watanabe [9]).
(3) $[J(Z F G)]^{|S|}=0$ (Okuyama [15]).
(4) $J(Z F G) \subseteq J F G$.

Proof. $x \in J(Z F G) \Rightarrow x F G$ is a nilpotent ideal of $F G \Rightarrow x \in x F G \subseteq$ $J F G$.
(5) $\left|\mathrm{Bl}_{p}(G)\right|=1 \Rightarrow \alpha \hat{K}=|K| \alpha$ for each conjugacy class K.

Proof. By (1)

$$
\begin{aligned}
Z F G & =F \oplus J(Z F G) \\
& \Rightarrow \exists c_{K} \in F: \hat{K}-c_{K} \in J(Z F G) \subseteq J F G \underset{\text { Lemma } 3.2}{\subseteq} \operatorname{Ann}_{F G}(\alpha) \\
& \Rightarrow \alpha \hat{K}=\alpha c_{K} \text { and } \hat{K}-c_{K} \in \operatorname{Ann}_{F G}(\hat{G}) \\
& \quad\left(\text { since } J F G \subseteq \operatorname{Ann}_{F G}\left(1_{G}\right)=\operatorname{Ann}_{F G}(\hat{G})\right) \\
& \Rightarrow c_{K} \hat{G}=\hat{G} \hat{K}=|K| \hat{G} \Rightarrow c_{K}=|K| \cdot 1_{F} .
\end{aligned}
$$

So (5) holds.
(a) Let $g \in G$.

Case 1. g lies in the centre of a Sylow p-subgroup $\Rightarrow p$ \{ $\left|G: C_{G}(g)\right|$.

Case 2. g does not lie in the centre of a Sylow p-subgroup
Case 2a. g is a p-element $\Rightarrow p\left|\left|G: C_{G}(g)\right|\right.$.
Case 2b. g is not a p-element. $K:=g^{G} . \alpha \hat{K}=|K| \alpha$ by (5). $1 \notin \operatorname{Supp}(\alpha \hat{K})$ (since K does not contain any p-element). Therefore $p||K|=$ $\left|G: C_{G}(g)\right|$.
(b) (i) \Leftrightarrow (ii): Follows from Isaacs [10, p. 271].
(i) \Rightarrow (iii): $\hat{K}-|K| \cdot 1_{F} \epsilon_{(5)} Z F G \cap \operatorname{Ann}_{F G}(\alpha)={ }_{(2)} J(Z F G) \subseteq{ }_{(4)} J F G$.
(iii) \Rightarrow (iv): Follows from $J F G \subseteq \mathrm{Ann}_{F G}(\alpha)$.
(iv) \Rightarrow (v): Let K be a p^{\prime}-class $\neq\{1\}$. By assumption $\alpha \hat{K}=|K| \alpha$. $1 \notin \operatorname{Supp}(\alpha \hat{K})$, since K does not contain any p-element $\Rightarrow p||K| \Rightarrow \alpha \hat{K}=$ $0 \Rightarrow \hat{K} \in Z F G \cap A n n_{F G}(\alpha)={ }_{(2)} J(Z F G) \Rightarrow_{(3)} \hat{K}^{|S|}=0$.
(v) \Rightarrow (i): Let e be an idempotent in $Z F G$. By Osima's theorem (see Michler [12, p. 467])

$$
\begin{aligned}
& e=\sum_{K p^{\prime} \text { class }} c_{K} \hat{K}, \quad \text { where } \quad c_{K} \in F, \\
& e=e^{|S|}=c_{\{1\}}^{|S|}+\sum_{K p^{\prime} \text { class } \neq\{1\}} c_{K^{|S|}}^{|S|} \hat{K}^{|S|}=c_{\{1\}}^{|S|} \mid
\end{aligned}
$$

by assumption. $\Rightarrow e \in F \Rightarrow e=1$. Therefore $\left|\mathrm{Bl}_{p}(G)\right|=1$.
(i) $\Rightarrow(\mathrm{vi}): \quad g \in C_{G}(S) \Rightarrow S \subseteq C_{G}(g) \Rightarrow p \nmid\left|G: C_{G}(g)\right| \Rightarrow_{(\mathrm{a})} g$ is a p element $\Rightarrow S\langle g\rangle p$-group $\Rightarrow g \in S$. It follows that $C_{G}(S) \subseteq S$. Furthermore (ii) holds.
$(\mathrm{vi}) \Rightarrow$ (ii): It may be assumed that g is a p^{\prime}-element $\neq 1$. $p\left|\left|G: C_{G}(g)\right|=\left|g^{G}\right| \quad\right.$ (since $\left.\quad C_{G}(S) \subseteq S\right)$. So $\quad\left|g^{G}\right|(\zeta(g) / \zeta(1)) \equiv 0 \equiv\left|g^{G}\right|$ $(\bmod p)$.
(iv) \Leftrightarrow (vii): Let K be a conjugacy class. Choose an arrangement g_{1}, \ldots, g_{n} for the elements of G such that $\left\{g_{1}, \ldots, g_{|K|}\right\}=K$ and define the matrix $T_{G}=\left(t_{i j}\right)$ with respect to this arrangement.

Define an F-linear map $\varphi: F G \rightarrow F G$ by $\varphi\left(g_{j}\right):=\sum_{i} t_{i j} g_{i}$. Then $\varphi(g)=\alpha g \forall g \in G$ (see proof of Lemma 3.2).

$$
\alpha \hat{K}=\sum_{g \in K} \varphi(g)=\sum_{j=1}^{|K|} \varphi\left(g_{j}\right)=\sum_{j=1}^{|K|} \sum_{i=1}^{n} t_{i j} g_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{|K|} t_{i j}\right) g_{i}
$$

Therefore $\alpha \hat{K}=|K| \alpha \Leftrightarrow \forall i$:

$$
\begin{aligned}
\sum_{j=1}^{|K|} t_{i j} & =|K| & & \text { if } g_{i} \text { is a } p \text {-element } \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

Since $\sum_{j=1}^{|K|} t_{i j}=$ (number of p-clements in $g_{i}^{-1} K$), the result follows. Q.E.D.

5. Proof of Theorem 1.1

Let S_{n} denote the symmetric group on n symbols and A_{n} the corresponding alternating group.

Let D be a Young diagram. The associated Young diagram D^{\prime} arises by interchanging the rows and columns (see Kerber [11, p. 20]). The uniquely determined Young diagram \tilde{D}, which is obtained by removing as many p-hooks as possible, is called the p-core of D. $|D|$ denotes the number of nodes of D.
R. Knörr told me the following

Lemma 5.1. Let $n \in \mathbb{N}, n \geqslant 4, n \geqslant p \neq 2$. Then there is a Young diagram D with $|D|=n$ and $|\widetilde{D}| \geqslant p$.

Proof. $\exists r, t \in \mathbb{N}, r<p, t \geqslant 1: n=t p+r$.
Case 1. $r \neq 0$. Consider the diagram

$$
r\left\{\begin{array}{l}
t p \text { nodes } \\
\square \square \square \square \\
\square \square
\end{array} \quad|D|=n\right.
$$

Remove successively p-hooks in the first row from the right:

Then there remains the p-core \tilde{D} with $|\widetilde{D}|=p+r \geqslant p$:

Case 2. $r=0$. Consider D :

p-core, if $p \neq 3$:

p-core for $p=3$:

In both cases $|\widetilde{D}| \geqslant p$. Q.E.D.

Lemma 5.2. $n \in \mathbb{N}, n \geqslant 4,2 \neq p| | A_{n} \mid \Rightarrow$ not every p-block of A_{n} has maximal defect.

Proof. Let $\left|S_{n}\right|=p^{a} m, m \in \mathbb{N}, p \nmid m$. If $\zeta \in \operatorname{Irr}\left(S_{n}\right)$, let D_{ζ} denote its corresponding Young diagram and $d(\zeta)$ the defect of the p-block, which contains ζ. It follows from Kerber [11, p. 132, 7.4] that $d(\zeta)=a \Leftrightarrow\left|\widetilde{D}_{\zeta}\right|=$ $\min \left\{\tilde{D}_{\xi} \mid \xi \in \operatorname{Irr}\left(S_{n}\right)\right\}$. The diagram

has $|\tilde{D}|<p$. Therefore
(1) $\forall \zeta \in \operatorname{Irr}\left(S_{n}\right): d(\zeta)=a \Leftrightarrow\left|\tilde{D}_{\zeta}\right|<p$. Since $p\left|\left|A_{n}\right| \Leftrightarrow p\right|\left|S_{n}\right| \Leftrightarrow p \leqslant n$ it follows from Lemma 5.1 that
(2) $\exists \zeta_{1} \in \operatorname{Irr}\left(S_{n}\right):\left|\tilde{D}_{\zeta_{1}}\right| \geqslant p$. Let φ_{1} be an irreducible constituent of
$\zeta_{\left.1\right|_{A_{n}}}$ and B the p-block of A_{n} which contains φ_{1}. Assumption: B has maximal defect. Therefore
(3) $\exists \varphi_{2} \in B: p \nmid \varphi_{2}(1)$. By Kerber [11, p. 133, 7.6] there exists $\zeta_{2} \in \operatorname{Irr}\left(S_{n}\right): \varphi_{2}$ is a constituent of $\zeta_{\left.2\right|_{A_{n}}}$ and $\tilde{D}_{\zeta_{2}}=\tilde{D}_{\zeta_{1}}$ or $\tilde{D}_{\zeta_{2}}=\left(\widetilde{D_{\zeta_{1}}^{\prime}}\right)$. In each case $\left|\widetilde{D}_{\zeta_{2}}\right|=\left|\widetilde{D}_{\zeta_{1}}\right| \geqslant_{(2)} p$, since $\left|\left(\widetilde{D}_{\zeta_{1}}^{\prime}\right)\right|=\left|\tilde{D}_{\zeta_{1}}\right| . \Rightarrow_{(1)} d\left(\zeta_{2}\right) \neq a$. It follows that
(4) $p \mid \zeta_{2}(1)$. By Kerber [11, p. 85, 4.54]: $\zeta_{2 \mid A_{n}}=\varphi_{2}$ or $\zeta_{\left.2\right|_{A_{n}}}=\varphi_{2}+\varphi_{3}$, where $\varphi_{3} \in \operatorname{Irr}\left(A_{n}\right)$ and φ_{2}, φ_{3} are conjugate $\Rightarrow \varphi_{2}(1)=\zeta_{2}(1)$ or $\varphi_{2}(1)=$ $\zeta_{2}(1) / 2 \Rightarrow_{(4)} p \mid \varphi_{2}(1)$, sincc $p \neq 2$. This contradicts (3). Therefore B does not have maximal defect.
Q.E.D.

Lemma 5.3. The 26 known sporadic simple groups have at least two p-blocks, if $p \neq 2$.

Remark. The Mathieu groups M_{22} and M_{24} have only one p-block. (For M_{24} see Brauer [1, p. 162].)

Proof of Lemma 5.3. Follows from the character tables, using Lemma 3.15.
Q.E.D.

Since by the classification theorem every non-cyclic finite simple group is an alternating group or a group of Lie type or one of the 26 known sporadic groups, Theorem 1.1 now follows from Okuyama's result for $p=2$ (see Introduction) (" \Rightarrow " follows from Lemma 1.3).

Acknowledgments

I wish to thank Professor G. Michler for many helpful discussions and Dr. R. Knörr and Dr. M. Lorenz for their contributions (Lemmas 3.6(b), 3.12, and 5.1). Furthermore I am grateful to Professor J. Neubüser and Dr. W. Plesken for sending me the character tables of all sporadic simple groups.

References

1. R. Brauer, Some applications of the theory of blocks of characters of finite groups, I, J. Algebra 1 (1964), 152-167.
2. R. Brauer and C. J. Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556-590.
3. P. Brockhaus, A remark on the radical of a group algebra, Proc. Edinburgh Math. Soc. 25 (1982), 69-71.
4. P. Brockhaus and G. Michler, Finite simple groups of Lie type have non-principal p-blocks, $p \neq 2$, to appear.
5. R. J. Clarke, On the radical of the centre of a group algebra, J. London Math. Soc. (2) 1 (1969), 565-572.
6. P. Fong, On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263-284.
7. E. Formanek and R. L. Snider, The Jacobson radical of the group algebra of a p-solvable group (1977), unpublished.
8. W. Hamernik and G. Michler, On vertices of simple modules in p-solvable groups, Mitt. Math. Inst. Univ. Gießen 121 (1976).
9. K. Iizuka and A. Watanabe, On the number of blocks of irreducible characters of a finite group with a given defect group, Kumamoto J. Sci. Math. 9 (1973), 55-61.
10. I. M. Isaacs, "Character Theory of Finite Groups," Academic Press, New York, 1976.
11. A. Kerber, "Representations of Permutation Groups, I," Lecture Notes in Mathematics No. 240, Springer-Verlag, Berlin, 1971.
12. G. Michler, Blocks and centers of group algebras, in "Lecture Notes in Mathematics No. 246 ," pp. 430-465, Springer-Verlag, Berlin, 1973.
13. K. Motose, On radicals of principal blocks, Hokkaido Math. J. 6 (1977), 255-259.
14. T. Okifyama, Some studies on group algebras, Hokkaido Math. J. 9 (1980), 217-221.
15. T. Okuyama, On the radical of the center of a group algebra, to appear.
16. T. Okuyama, On a problem of Wallace, to appear.
17. D. S. Passman, "The Algebraic Structure of Group Rings," Wiley, New York, 1977.
18. B. M. Puttaswamaiah and J. D. Dixon, "Modular Representations of Finite Groups," Academic Press, New York, 1977.
19. Y. Tsushima, On the annihilator ideals of the radical of a group algebra, Osaka J. Math. 8 (1971), 9197.
20. Y. Tsushima, Some notes on the radical of a finite group ring, Osaka J. Math. 15 (1978), 647-653.
21. D. A. R. Wallace, On the radical of a group algebra, Proc. Amer. Math. Soc. 12 (1961), 133-137.
