
Theoretical Computer Science 411 (2010) 2502–2512

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Approximating minimum power covers of intersecting families and
directed edge-connectivity problemsI

Zeev Nutov ∗
The Open University of Israel, Raanana, Israel

a r t i c l e i n f o

Article history:
Received 22 July 2006
Received in revised form 13 February 2010
Accepted 2 March 2010
Communicated by D. Peleg

Keywords:
Approximation algorithms
Wireless networks
Power minimization
Directed graphs
Edge-connectivity
Intersecting families

a b s t r a c t

Given a (directed) graph with costs on the edges, the power of a node is the maximum cost
of an edge leaving it, and the power of the graph is the sum of the powers of its nodes. Let
G = (V , E) be a graph with edge costs {c(e) : e ∈ E} and let k be an integer. We consider
problems that seek to find amin-power spanning subgraphG ofG that satisfies a prescribed
edge-connectivity property. In theMin-Power k-Edge-Outconnected Subgraph problemwe
are given a root r ∈ V , and require that G contains k pairwise edge-disjoint rv-paths for
all v ∈ V − r . In the Min-Power k-Edge-Connected Subgraph problem G is required to be
k-edge-connected. For k = 1, these problems are at least as hard as the Set-Cover prob-
lem and thus have anΩ(ln |V |) approximation threshold. For k = Ω(nε), they are unlikely
to admit a polylogarithmic approximation ratio [15]. We give approximation algorithms
with ratioO(k ln |V |). Our algorithms are based on amore generalO(ln |V |)-approximation
algorithm for the problem of finding a min-power directed edge-cover of an intersecting
set-family; a set-familyF is intersecting if X∩Y , X∪Y ∈ F for any intersecting X, Y ∈ F ,
and an edge set I covers F if for every X ∈ F there is an edge in I entering X .

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

A large research effort focused on developing algorithms for finding a ‘‘cheap’’ sub-network (subgraph) that satisfies
prescribed requirements. In wired networks, where connecting any two nodes incurs a cost, the goal is to find a subgraph
of the minimum cost. In wireless networks, a range (power) of the transmitters determines the resulting communication
network.We consider finding a power assignment to the nodes of a network such that the resulting communication network
satisfies prescribed edge-connectivity properties and the total power is minimized. We note that node-connectivity is
more central here than edge-connectivity, as it models station crashes. For further motivation and applications to wireless
networks see, e.g., [1,2,9,13,3,4,10,17].
Henceforth, unless stated otherwise, ‘‘graph’’ means ‘‘directed graph’’. Let G = (V , E) be a (directed) graph with edge

costs {c(e) : e ∈ E}. For v ∈ V , the power p(v) = pc(v) of v in G (w.r.t. c) is the maximum cost of an edge leaving v in G
(or zero, if no such edge exists). The power p(G) =

∑
v∈V p(v) of G is the sum of the powers of its nodes. Note that the ratio

between the power p(G) and the cost c(G) of G can be as large as the maximum outdegree of a node in G, e.g., for stars with
unit costs. The following known statement that appeared in various papers, c.f., [9,10], shows that this is the extremal case
for general edge costs.

Proposition 1.1. For any directed graph G holds: c(G)/∆(G) ≤ p(G) ≤ c(G), where∆(G) is the maximum outdegree of a node
in G; in particular, p(G) = c(G) if∆(G) = 1.

I A preliminary version is Nutov (2006) [16].
∗ Tel.: +972 9 778 1254.
E-mail address: nutov@openu.ac.il.

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.03.009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82065601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:nutov@openu.ac.il
http://dx.doi.org/10.1016/j.tcs.2010.03.009

Z. Nutov / Theoretical Computer Science 411 (2010) 2502–2512 2503

A simple connectivity requirement is when there should be a path from a root r to any other node. In this case, the
min-cost variant is just the Min-Cost Arborescence problem which is solvable in polynomial time, while the Min-Power
Arborescence problem is at least as hard as the Set-Cover problem; combined with the result of [19] this implies an
Ω(ln |V |)-approximation threshold for the Min-Power Arborescence problem (namely, it cannot be approximated within
C ln |V | for some universal constant 0 < C < 1, unless P = NP). If we require a path from any node to the other, then we
get theMin-Cost/Min-Power Strongly Connected Subgraph problem. The min-cost variant admits an easy 2-approximation
algorithm, while the min-power variant is again Set-Cover hard.
A graph is k-edge-outconnected from r if it has k pairwise edge-disjoint rv-paths for every v ∈ V . A graph is k-edge-

connected if it is k-edge-outconnected from every node. We consider the following generalization of the Min-Power Ar-
borescence and theMin-Power Strongly Connected Subgraph problems studied in [2].

Min-Power k-Edge-Outconnected Subgraph
Instance: A (directed) graph G = (V , E)with edge costs {c(e) : e ∈ E}, r ∈ V , and an integer k.
Objective: Find a min-power k-edge-outconnected from r spanning subgraph G of G.

Min-Power k-Edge-Connected Subgraph
Instance: A (directed) graph G = (V , E)with edge costs {c(e) : e ∈ E} and an integer k.
Objective: Find a min-power k-edge-connected spanning subgraph G of G.

Min-cost versions of these problems were studied extensively for both directed and undirected graphs; see surveys in
[6,11,14].Min-Cost k-Edge-Outconnected Subgraph is solvable in polynomial time [5]; see also more efficient algorithms in
[8] and [7].Min-Cost k-Edge-Connected Subgraph admits an easy 2-approximation algorithm, c.f., [14].
As intermediate problems, we consider the augmentation versions of the problems. Suppose that G has a subgraph

G0 = (V , E0) of power zero which is k0-edge-outconnected from r , and the goal is to augment G0 by a min-power edge
set F ⊆ E − E0 so that the resulting graph G = G0 + F is k-edge-outconnected from r . Formally:

Min-Power (k0, k)-Edge-Outconnectivity Augmentation
Instance: A graph G0 = (V , E0)which is k0-edge-outconnected from r , an edge set I on V with edge costs {c(e) : e ∈ I}, and
an integer k > k0.
Objective: Find a min-power edge set I ⊆ I so that G = G0 + I is k-edge-outconnected from r .

In a similar way, the augmentation version Min-Power (k0, k)-Edge-Connectivity Augmentation of Min-Power k-Edge-
Connected Subgraph is defined. In [2] are given approximation algorithms for k0 = 0 and k = 1: a 2H(n)-approximation
forMin-Power Arborescence and a (2H(n)+1)-approximation forMin-Power Strongly Connected Subgraph, where n = |V |
and H(n) denotes the nth Harmonic number. Both problems generalize the Set-Cover problem (c.f., [2]), and thus the result
in [2] is essentially tight up to a constant factor. For arbitrary k0, kwe prove:

Theorem 1.2. Min-Power (k0, k)-Edge-Outconnectivity Augmentation admits a 3(k−k0)H(n)-approximation algorithm.Min-
Power (k0, k)-Edge-Connectivity Augmentation admits a (k − k0)(3H(n) + 1)-approximation algorithm. Thus each one of
the problems Min-Power k-Edge-Outconnected Subgraph and Min-Power k-Edge-Connected Subgraph admits an O(k ln n)-
approximation algorithm.

Remark. In the preliminary version [16] of this paper, the author claimed an O(k ln n)-approximation algorithms also for
the node-connectivity versions of the problems. However, the proof was found to contain an error by one of the referees of
this paper.
The approximation ratio in Theorem 1.2 is O(ln n) for any fixed k, which is tight up to a constant factor if k is ‘‘small’’

(usually, k ≤ 3 in practical networks), but may seemweak if k is large. However, it might be that a much better approxima-
tion algorithms do not exist. In [15] it is proved that for k = Ω(nε) the problems in Theorem 1.2 cannot be approximated
within O(2log

1−ε n) for any fixed ε > 0, unless NP ⊆ Quasi-P.
Theorem 1.2 is just an application of a general approximation algorithm for finding a min-power edge-cover of a certain

widely studied type of set-families. We need some definitions to present this result.

Definition 1.1. Let F ⊆ 2V be a set-family of subsets of a groundset V .

• F is an intersecting family if X ∩ Y , X ∪ Y ∈ F for any X, Y ∈ F with X ∩ Y 6= ∅.
• An edge set I covers F if for every X ∈ F there is an edge in I entering X , that is, there is uv ∈ I with u ∈ V − X and
v ∈ X .

Min-Power Set-Family Edge-Cover
Instance: A set-family F on a groundset V and an edge set I on V with edge costs {c(e) : e ∈ I}.
Objective: Find a minimum power F -cover I ⊆ I.

Given an instance of Min-Power Set-Family Edge-Cover we assume that I covers F , as otherwise the problem has no
feasible solution. We give a 3H(n)-approximation algorithm forMin-Power Set-Family Edge-Coverwith intersecting F , but
its polynomial implementation requires that certain queries related to F can be answered in polynomial time.

2504 Z. Nutov / Theoretical Computer Science 411 (2010) 2502–2512

Definition 1.2. Given an edge set I on V (I is a partial cover ofF), the residual familyFI ofF (w.r.t. I) consists of all members
of F that are uncovered by edges of I .

It is known that if F is intersecting, so is FI , for any I . Note that if F is intersecting, then for any v, t ∈ V , the family
{X ∈ FI : t ∈ X, v /∈ X}, if non-empty, is an intersecting family that has a unique inclusion minimal set; such a family is
often called a ring family in the literature. For any edge set I on V and v, t ∈ V , make the following two assumptions (in our
application they can be implemented using max-flow and min-cost k-flow algorithms).

Assumption 1. Computing the minimal member of the family {X ∈ FI : t ∈ X, v /∈ X} or determining that such does not
exists can be done in polynomial time.

Assumption 2. Given an edge set with costs on V , a min-cost cover of the family {X ∈ FI : t ∈ X, v /∈ X} can be computed
in polynomial time.

Theorem 1.3. Min-Power Set-Family Edge-Cover with intersecting F admits a 3H(n)-approximation algorithm under
Assumptions 1 and 2.

Theorem 1.3 is proved in Section 3. Here we show that Theorem 1.3 can be extended to so called ‘‘crossing families’’. A
set-family F is a crossing family if X ∩ Y , X ∪ Y ∈ F for any X, Y ∈ F so that X ∩ Y , X − Y , Y − X, V − (X ∪ Y) are all
non-empty. Let us say that an edge set I is a reverse cover of F if for every X ∈ F there is an edge in I leaving X . It is known
that (c.f., [7]):

Fact 1.4. Let F be an intersecting family. If I is an inclusion minimal reverse cover of F then dI(v) ≤ 1 for every v ∈ V (recall
that dI(v) is the outdegree of v w.r.t. I), and thus the power of I equals it cost. In particular, I is a min-power reverse cover of F
if, and only if, I is a min-cost reverse cover of F .

Any crossing family F can be naturally represented by two intersecting families as follows: fix r ∈ V and define F in
r =

{X ∈ F : r /∈ X} and F out
r = {V − X : X ∈ F − F in

r }. Then I covers F if, and only if, I is a cover of F in
r and I is a reverse

cover of F out
r . Combining with Fact 1.4, we get:

Corollary 1.5. The problem of finding a min-power cover of a crossing family F on V admits a (3H(n) + 1)-approximation
algorithm, if for some r ∈ V Assumptions 1 and 2 are valid for F in

r , and if a min-cost reverse cover of F
out
r can be computed in

polynomial time.

A set-function f on 2V is positively intersecting supermodular if f (X) + f (Y) ≤ f (X ∩ Y) + f (X ∪ Y) for any intersecting
X, Y ⊂ V with f (X), f (Y) > 0. An edge set I covers f if at least f (X) edges in I enter every X ⊂ V . A {0, 1}-valued set-function
f is positively intersecting supermodular if, and only if, its support familyF = {X ⊆ V : f (X) = 1} is an intersecting family.
A natural question is whether Theorem 1.3 extends to (positively) intersecting supermodular set-functions. As Min-Power
k-Edge-Outconnected Subgraph is a particular case of the problem of finding a min-power cover of a positively intersecting
supermodular set-function, such an extension is unlikely due to the hardness result of [15].
Our techniques are inspired by the algorithm of Klein and Ravi [12] for the undirected Node Weighted Steiner Forest

problem. The Klein–Ravi algorithm [12] uses the ‘‘set-cover greedy approach’’ based on ‘‘density’’ considerations. At
each step a ‘‘spider’’ (a subtree having at most one node of degree more than 2) is chosen that minimizes the ratio of
spider’s weight over the number of terminal pairs it connects minus 1. They proved that greedily adding spiders yields
a 2H(n)-approximation algorithm (H(n) denotes the nth Harmonic number). ForMin-Power Arborescence [2] gave a 2H(n)-
approximation algorithm using a similar method.
The main tool used to prove Theorem 1.3 is a decomposition of directed edge-covers of intersecting families into an

analogue of spiders which we call ‘‘star-covers’’. This enables us to apply the Klein–Ravi [12] approach. However, ‘‘star-
covers’’ are much more complicated than spiders, and the proof that any cover of an intersecting set-family can be properly
decomposed into ‘‘star-covers’’ is substantially harder than the proof that every tree can be decomposed into spiders; see
Section 2. Unlike [12], and other papers that used the approach of [12], e.g., [2], a star-cover is not necessarily a tree, and
as we deal with covers of set-families, we cannot use specific graph properties. Another major difficulty is that inclusion
minimal edge-covers of intersecting families can contain cycles. This is the reason why our approximation ratio is 3H(n),
and not 2H(n) as in [12,2], where minimal feasible solutions are trees. (However, with some additional effort, it seems
possible to improve the ratio in Theorem 1.3 to (2 + ε)H(n); see a Remark at the end of Section 3.) Recently, based on the
ideas of this paper, a more involved decomposition of undirected edge-covers was derived in [18] for so called ‘‘uncrossable’’
set-families, which are related to the undirected Node Weighted Steiner Network problem — a generalization of the Node
Weighted Steiner Forest problem considered in [12].
This paper is organized as follows. In the rest of this section we introduce some notation used in the paper. Section 2

presents our decomposition of directed edge-covers of intersecting families. Theorems 1.3 and 1.2 are proved in Sections 3
and 4, respectively.

Notation: Let G = (V , E) be a (directed) graph. For disjoint X, Y ⊆ V let δG(X, Y) = δE(X, Y) be the set of edges from X to
Y in E. For brevity, δE(X) = δE(X, V − X) is the set of edges in E leaving X , dE(X) = |δE(X)|, δinE (X) = δE(V − X, X) is the
set of edges in E entering X , and dinE (X) = |δ

in
E (X)| is the indegree of X . Given edge costs {c(e) : e ∈ E}, the power of a node

Z. Nutov / Theoretical Computer Science 411 (2010) 2502–2512 2505

a b c

Fig. 1. Star-covers (min-cores are shown by dark gray circles).

v in G (with respect to c) is p(v) = maxe∈δE (v) c(e), and the power of G is p(G) = pE(V) =
∑

v∈V p(v). For an edge set I , let
tails(I) = {u : uv ∈ I} denote the set of tails of the edges in I . Let n = |V | and let opt denote the optimal solution value of a
problem instance at hand.

2. Decomposition of covers of intersecting families

We start by describing some simple properties of intersecting families.

Definition 2.1. A member of a set-family F is an F -core if it does not contain two disjoint members of F ; an inclusion
minimal F -core is amin-F -core and an inclusion maximal F -core is amax-F -core. Let C(F) denote the family of min-F -
cores, and letM(F) denote the family of max-F -cores. We will often use core, min-core, and max-core, instead of F -core,
min-F -core, and max-F -core, respectively, if F is understood.

Fact 2.1. Let F be an intersecting family. Then the family of F -cores is also an intersecting family. Consequently, the members
of each one of the families C(F) and M(F) are pairwise disjoint, and for every min-core C there is a unique max-core MC
containing C.

Proof. Clearly, themin-cores are just the inclusionminimal members ofF . Note that if X ∩C 6= ∅ for X ∈ F and C ∈ C(F)
then C ⊆ X . Indeed, X ∩ C ∈ F since F is an intersecting family; as C is a min-core, we must have X ∩ C = C , implying
C ⊆ X . We prove that if X, Y are cores with X ∩ Y 6= ∅ then X ∩ Y , X ∪ Y are also cores. We have X ∩ Y , X ∪ Y ∈ F , since F
is an intersecting family. In particular, X ∩Y contains somemin-core C ∈ C(F). Since X, Y are cores, none of them contains
a min-core disjoint to C . Consequently, each one of X ∩ Y , X ∪ Y belongs to F and does not intersect a min-core disjoint to
C . Hence X ∩ Y , X ∪ Y are cores, as claimed. �

We now describe a variant of the decomposition of [12] of a directed tree (arborescence) into spiders.

Definition 2.2. A spider is a directed tree with at least one edge and at most one node of outdegree ≥2. Given a subset
U of nodes of a directed tree T , a collection S = {S1, . . . , Sq} of spiders contained in T is a spider decomposition of T ,U if
tails(Si) ∩ tails(Sj) = ∅ for all i 6= j = 1, . . . , q, and if every u ∈ U is covered by (that is, belongs to) at most one member of
S.

Lemma 2.2 ([12]). Any subset U of nodes of a directed tree (or of a directed forest) T can be covered by a spider decomposition.

Proof-Sketch. By induction on U . We may assume that every leaf of T belongs to U . If |U| = 1 the statement is trivial.
Otherwise, T has a node s so that the subtree S that consists of s and all its descendants is a spider, and for every u ∈ U ∩ S,
either u = s or u is a leaf of S. Now, if U ⊆ S, then we are done. Otherwise, let T ′ ← T − S and U ′ ← U − (S ∩ U). By the
induction hypothesis, T ′ admits a spider decomposition S′ that covers all U ′. It is not hard to verify that then S′ ∪ {S} is a
spider decomposition of T that covers all U . �

For C ∈ C(F) and s ∈ V let

F (s, C) = {X ∈ F : C ⊆ X ⊆ MC , s /∈ X}

denote the family ofF -cores that contain C and do not contain s. Given s ∈ V wewill say that an edge set S star-covers (from
s) a min-core C ∈ C(F) if S covers the family F (s, C). Note that if s ∈ C then F (s, C) = ∅; in this case S = ∅ star-covers C ,
although no edge in S covers C itself.
For directed covers of intersecting set-families, we define the following analogue of spiders:

Definition 2.3. Let F be an intersecting set-family on V . An edge set S on V is a star-cover (with center s) of a subfamily
C ⊆ C(F) of min-cores if (see Fig. 1) S can be partitioned into F (s, C)-covers {SC : C ∈ C} (possibly SC = ∅ for one C ∈ C,
if s ∈ C), such that if C = {C} then s /∈ MC , and such that for every C ∈ C:

• Edges in SC − δS(s) have their both endnodes inMC , and no two such edges share a tail.
• If s /∈ MC , then SC contains a unique edge eMC from s toMC .

2506 Z. Nutov / Theoretical Computer Science 411 (2010) 2502–2512

Fig. 2. An example showing that the bound d2|C(F)|/3e in Theorem 2.3 is tight.

We now state our definition of ‘‘star-cover decomposition’’ of directed covers of intersecting set-families.

Definition 2.4. Let I be an F -cover of an intersecting set-family F on V . A collection S = {S1, . . . , Sq} of star-covers is a
star-cover decomposition of I if tails(Si) ∩ tails(Sj) = ∅ for all i 6= j = 1, . . . , q, and if every C ∈ C(F) is star-covered by at
most one member of S.

The main technical result of this paper is the following ‘‘analogue’’ of Lemma 2.2:

Theorem 2.3 (The Star-Cover Decomposition Theorem). Any directed cover I of an intersecting family F admits a star-cover
decomposition that star-covers at least d2|C(F)|/3emin-cores.

Example. The bound d2|C(F)|/3e in Theorem 2.3 is tight even for laminar set-families; see Fig. 2. In this example, there
are three distinct star-covers each star-covering two min-cores, but there is no star-cover decomposition that star-covers
all min-cores.

The proof of Theorem 2.3 follows. In what follows, let F be an intersecting family and let I be an inclusion minimal F -
cover. We need to establish some properties of I . By the minimality of I , for every e ∈ I there exists We ∈ F such that
δinI (We) = {e}; we call suchWe a witness set for e; note that emight have several distinct witness sets.

Lemma 2.4. Let We,Wf be witness sets of two distinct edges e, f ∈ I so that We ∩Wf 6= ∅. Then We ∩Wf is a witness set for
one of e, f and We ∪Wf is a witness set for the other.

Proof. Note that there is an edge in I enteringWe ∩Wf and there is an edge in I enteringWe ∪Wf ; this is sinceWe,Wf ∈ F
andWe ∩Wf 6= ∅ implies thatWe ∩Wf ,We ∪Wf belong toF and thus each of them is covered by some edge in I . However,
if for arbitrary intersecting sets X, Y an edge covers at least one of X ∩ Y , X ∪ Y then it also covers at least one of X, Y , and
if some edge covers both X ∩ Y and X ∪ Y then it must cover both X and Y . Thus no edge in I − {e, f } can coverWe ∩Wf or
We ∪Wf , so one of e, f coversWe ∩Wf , and thus the other must coverWe ∪Wf . �

Corollary 2.5. dinI (C) = 1 for any min-F -core C.

Proof. Clearly, δinI (C) ≥ 1 for any min-F -core C , since I is an F -cover and C ∈ F . Assume to the contrary that there are
distinct e, f ∈ δinI (C) for some min-core C; letWe,Wf be their witness sets. As the head of each of e, f is in C , we must have
We ∩ C 6= ∅ andWf ∩ C 6= ∅. Then C ⊆ We ∩Wf by Fact 2.1, soWe ∩Wf 6= ∅, and e, f ∈ δinI (We ∩Wf). This contradicts
Lemma 2.4. �

An intersecting family F is simple if every member of F is an F -core. It would be sufficient to prove Theorem 2.3 for
simple families. If F is not simple, we may replace F by the family of F -cores; by Fact 2.1, the latter is intersecting if F is.
So throughout the rest of this section, assume that F is a simple intersecting family.

Lemma 2.6. Let M ∈ M(F) and let I(M) = {uv ∈ I : u, v ∈ M}. Assuming I(M) 6= ∅, there exists a unique ordering
e1, e2, . . . , eq of I(M) and a nested family X1 ⊂ X2 · · · ⊂ Xq ⊂ M of sets in F so that: Xj+1 is a min-core of FIj where
Ij = {e1, . . . , ej} (and I0 = ∅), and ej is the unique edge in I entering Xj. Furthermore, for any j, if s is a tail of ej and C is
the min-core contained in M, then Ij is an F (s, C)-cover.

Proof. Let X1 be themin-core contained inM . By Corollary 2.5 there is a unique edge in I entering X1, say e1. Suppose that e1
coversM . We claim that then I(M) = ∅, so the statement holds in this case. Suppose to the contrary that there is e ∈ I(M),
and letWe be a witness set for e (such exists, by the minimality of I). By Fact 2.1, and since we assume that F is simple, we
must have X1 ⊆ We ⊆ M . However, e1 covers all cores contained in M , hence e1 covers We. This contradicts that We is a
witness set for e.
If e1 does not coverM , let X2 be the minimal Fe1-core contained inM . By Fact 2.1, X1 ⊂ X2. Let e2 be the unique edge in

I entering X2, and so on, untilM is covered by some edge eq+1. In such a way we obtain sequences e1, e2, . . . , eq of edges in
I(M) (an additional edge eq+1 /∈ I(M) since it entersM), and X1 ⊂ X2 · · · ⊂ Xq ⊂ M of sets in F so that: Xj+1 is the core of
FIj , where Ij = {e1, . . . , ej} and ej is the unique edge in I entering Xj. The statement follows. �

Z. Nutov / Theoretical Computer Science 411 (2010) 2502–2512 2507

Fig. 3. Illustration to the proof of Lemma 2.8. (a) J is a 2-cycle. (b) J is a directed tree.

Remark. Lemma2.6 is not true ifF is not simple. A counterexample is:V = {u, v, x, y, z, a},F = {{v}, {a}, {v, z}, {v, z, y},
{v, z, u, a}, {v, z, u, a, y}} and I = {uv, ua, xy, yz}. ThenF is intersecting but not simple— {v, z, u, a} contains the twomin-
cores {v} and {a}. The edge e1 = uv covers both the max-core M = {v, z, y} and the min-core {v}, but I(M) = {yz} 6= ∅.
Also, I is a minimal cover, as the witness sets are: {v} for uv, {a} for ua, {v, z, u, a} for yz, and {v, z, u, a, y} for xy.

Corollary 2.7. Let M ∈M(F). Then dI(M)(v) ≤ 1 for every v ∈ M; thus p(I(M)) = c(I(M)), namely, the power of I(M) equals
its cost. Furthermore, let eM be the unique edge in I entering the minimal core X of FI(M) contained in M (possibly X = M). Then
δinI (M) = {eM} and I(M)+ eM covers the family {Y ∈ F : Y ⊆ M}.

Proof. The first statement follows from Lemma 2.6 and the last statement of Proposition 1.1. It is also easy to see that
I(M) + eM covers the family {Y ∈ F : Y ⊆ M}. We prove that δinI (M) = {eM}. Suppose to the contrary that there is f ∈
I − {eM} entering M . By Corollary 2.5, X is a witness set for eM . Let Wf be a witness set for f . The head of f is in Wf ∩ M .
ThusWf ⊆ M , by Fact 2.1 and since F is simple. As M is a core, X ∩Wf 6= ∅. But then both eM and f enter X ∪Wf ⊆ M ,
contradicting Lemma 2.4. �

ForM ∈M(F) let eM be the (unique, by Corollary 2.7) edge in I enteringM , and let IM = {eM : M ∈M(F)}. By Fact 2.1,
the members ofM(F) are pairwise disjoint. Obtain an auxiliary graph J from (V , IM) by shrinking every M ∈ M(F) into
a single node, which we call compound node. As every edge eM has its head in M and its tail not in M , the edge set of J
is exactly IM . In J , the indegree of every node is at most 1, by Corollary 2.7. Furthermore, every node of indegree 1 is a
compound node. Thus, ignoring the isolated nodes, J is a collection of node-disjoint graphs (‘‘components’’) of the following
type: each component is either a cycle, or a directed tree rooted at a non-compound node, or a cycle with disjoint directed
trees attached to it by the roots.
Note that any node of a cycle and any leaf of J is a compound node, since its indegree is 1. Thus if a component Jq of

J contains a cycle, then either Jq is a 2-cycle, or Jq has at least 3 compound nodes. In the latter case, delete one edge eM
from the cycle, remove from F all the members of F (M) = {X ∈ F : X ⊆ M}, and remove from I the set I(M). Note
that at least d2|C(F)|/3e max-cores remain. Thus we obtain a new simple intersecting family F and a new F -cover I ,
so that every component of the new graph J will be either a 2-cycle or a tree. If we can show that in this case I admits a
star-cover decomposition that star-covers all min-cores, then we are done. This can be proved for each component Jq of J
separately. More formally, letMq be the set of max-cores corresponding to the compound nodes of Jq, let Fq = {X ∈ F :
X ⊆ M,M ∈Mq}, and let Iq = {uv ∈ I : v ∈ M∩T ,M ∈Mq}. Note that Iq coversFq, since I is anF -cover, and since no edge
in I − Iq can cover a member of Fq. The familiesMq partitionM, the families Fq partition F , and the families Iq partition I .
Hence if for every qwe obtain a star-cover decomposition Sq of Iq that star-covers C(Fq), then the union of the star-covers
Sq is a star-cover decomposition of I that star-covers C(F). Consequently, the following statement implies Theorem 2.3:

Lemma 2.8. Let I be aminimal cover of a simple intersecting familyF on V . Let J be the graph obtained from (V , IM) by shrinking
every M ∈ M(F) into a compound node. If J is a 2-cycle or if J is a directed tree, then I admits a star-cover decomposition that
star-covers all min-cores.

Proof. Suppose that J is a 2-cycle connecting M,M ′ ∈ M(F) (see Fig. 3(a) for illustration). Let e = eM be the edge of this
cycle enteringM and let e′ = eM ′ be the edge of this cycle enteringM ′. Let C and C ′ be the min-cores contained inM andM ′,
respectively. SinceM∩M ′ = ∅, tails(I(M))∩ tails(I(M ′)) = ∅. Note that I(M)∪{e} star-covers C and I(M ′)∪{e′} star-covers
C ′, by the last statement in Corollary 2.7. Hence if both the tail of e is not in tails(I(M ′)) and the tail of e′ is not in tails(I(M)),
then

{
I(M) ∪ {e}, I(M ′) ∪ {e′}

}
is a star-cover decomposition as required. Otherwise, the tail of e is in tails(I(M ′)) or the tail

of e′ is in tails(I(M)), and suppose that the former holds (see Fig. 3(a)); the proof of the latter case is identical. Let s be the
tail of e. Then a star-cover that star-covers both C and C ′ is obtained by adding to I(M) ∪ {e} any F (s, C ′)-cover contained
in I(M ′); such F (s, C ′)-cover exists, by the last statement in Lemma 2.6.
Let us now consider the case when J is a tree with root r . Every node of J distinct from r is a compound node. We prove

the statement by induction on the number of compound nodes in J , using a similar approach as in the proof of Lemma 2.2.
The induction base is when J has a unique compound node corresponding to a max-core M . Then S = I(M) ∪ {eM} is a

2508 Z. Nutov / Theoretical Computer Science 411 (2010) 2502–2512

star-cover with center s = r , of the type in Fig. 1(b). Otherwise, J has a node (a father of the farthest node from r) so that all
its children are leaves. If this node is r , then I is a star-cover with center r of C(F) and we are done. Otherwise, this node
is a compound node that corresponds to a max-core R (see Fig. 3(b)). Let Y = tails(δ(R)) be the set of tails of the edges in J
leaving R, and let Z = tails(I(R)) be the set of tails of edges in I(R). Consider two cases: Y − Z 6= ∅ and Y ⊆ Z .
If there is s ∈ Y − Z (see Fig. 3(b)), then we form the star-cover S =

⋃
{{eM} ∪ I(M) : eM ∈ δJ(s)} by taking

every edge eM ∈ δ(s) leaving s together with the edges with both endpoints in M . By Corollary 2.7, S covers the family
F (M) = {X ∈ F : X ⊆ M} for every M ∈ M(F) so that eM ∈ δ(s). Now, set I ′ ← I − S and F ′ ← F −

⋃
eM∈δ(s)

F (M)
(so F ′ is obtained by removing from F the cores containing a min-core star-covered by S). Since F is simple, F ′ is also an
intersecting family that is simple (note that no new cores appear inF ′). The residual instanceF ′, I ′ satisfies the assumptions
of the lemma, and thus, by the induction hypothesis, admits a star-cover decomposition S′. Since no edge in S has a tail in
common with an edge in I ′ = I − S, S′ ∪ {S} is a star-cover decomposition of I as required.
Now suppose that Y ⊆ Z . Let e1, . . . , eq be an ordering of the edges in I(R) as in Lemma 2.6, and let si be the tail of ei.

For every si ∈ Y we form a star-cover Si as in the previous case, by taking every edge eM ∈ δ(si) leaving si together with
the edges with both endpoints in M . This gives a star-cover decomposition that star-covers all min-cores contained in the
children of R. We will extend it to star-cover the min-core C contained in R as follows. Let j be the least index so that sj ∈ Y
and let SC = {ej, ej−1, . . . , e1} (see Fig. 3(b)). Note that tails(SC)∩tails(Si) = ∅ for si ∈ Y \{sj}while tails(SC)∩tails(Sj) = {sj}.
By Lemma 2.6, SC is an (sj, C)-cover, so Sj ∪ SC also star-covers C . Thus we obtain a star-cover decomposition that covers
all min-cores contained in the children of R and also the core C contained in R. We then remove from I all edges taken into
the decomposition, and remove from F the cores containing a min-core star-covered by the decomposition. Note that R
remains a compound node and, in the terminology of Lemma 2.6, the min-core inside R is Xj+1. Now we apply the inductive
hypothesis in the same way as in the case s ∈ Y − Z . �

The proof of Theorem 2.3 is now complete.

Remark. As far as we can see, the bound d2|C(F)|/3e in Theorem 2.3 can be improved to |C(F)|minus the number of odd
cycles in J . Specifically, one can prove that if J is an even cycle, then all its cores can be star-covered by the decomposition, in
a similar way as for 2-cycles; the same is valid if J contains an even cycle, by combining the proof for even cycles and trees.
Components containing an odd cycle, are handled in the same way as in the proof, by removing one edge from the cycle,
and give up star-covering the core entered by the removed edge.

3. Covering intersecting families (Proof of Theorem 1.3)

We use a well-known result about the performance of a greedy algorithm for the following type of ‘‘covering problems’’:
Covering Problem
Instance: Set-functions ν, p on groundset I given by an evaluation oracle, so that ν is integral and ν(I) = 0.
Objective: Find I ⊆ I with ν(I) = 0 and with p(I)minimized.

Definition 3.1. A set-function f on 2I is:
• decreasing (resp, increasing) if f (I2) ≤ f (I1) (resp., if f (I2) ≥ f (I1)) for any I1 ⊂ I2 ⊆ E.
• subadditive if f (I1 ∪ I2) ≤ f (I1)+ f (I2) for all I1, I2 ⊆ E.

In the Covering Problem, ν is the deficiency function (it is assumed to be decreasing and measures how far is I from being
a feasible solution) and p the payment function (assumed to be increasing and subadditive). In our case, p is just the power
function, and ν(I) is the number of minimal cores in FI . Let ρ > 1 and let opt be the optimal solution value for the Covering
Problem. The ρ-Greedy Algorithm starts with I = ∅ and iteratively adds subsets of I − I to I one after the other using the
following rule. As long as ν(I) ≥ 1 it adds to I a set S ⊆ I− I so that

σI(S) =
p(S)

ν(I)− ν(I + S)
≤ ρ ·

opt

ν(I)
. (1)

σI(S) is called the density of S. The following statement is known, c.f., [12].

Theorem 3.1. For any Covering Problem with ν decreasing and p increasing and subadditive, the ρ-Approximate Greedy
Algorithm computes a solution I with p(I) ≤ ρH(ν(∅)) · opt.

In the rest of this section we prove the following statement:

Lemma 3.2. Let ν(I) be the number of minimal cores in FI . Then an edge set S ⊆ I − I satisfying (1) with ρ = 3 can be found
in polynomial time under Assumptions 1 and 2.

For simplicity of exposition, let us revise our notation and set F ← FI and I ← I − I . Let ν = ν(∅). Then we need to
show that under Assumptions 1 and 2 one can find in polynomial time an edge set S ⊆ I so that:

σ(S) =
p(S)

ν − ν(S)
≤ 3 ·

opt

ν
. (2)

Z. Nutov / Theoretical Computer Science 411 (2010) 2502–2512 2509

Lemma 3.3. If S star-covers d min-cores then ν − ν(S) ≥ ∆(S) ≥ d/2, where∆(S) = max{1, d− 1}.

Proof. Clearly, min-F -cores not star-covered by S remain min-cores of FS . Any other min-FS-core X must contain a min-
F -core C , and C is star-covered by S. In particular, S covers every member of F (s, C), where s is the center of S, and s /∈ MC
if d = 1. We claim that s ∈ X and thus:
- If d = 1 then no such X exists. Otherwise, since s /∈ MC , S covers every F -core containing C; hence X must contain a
min-F -core C ′ 6= C , by Fact 2.1. But then C ′, and not X , is a min-FS-core.
- If d ≥ 2 then there is at most one such X . This is since the min-FS-cores are pairwise disjoint.
Suppose to the contrary that s /∈ X . Then X contains another min-F -core C ′ 6= C; otherwise, X ∈ F (s, C), but S covers

F (s, C), contradicting that X ∈ FS . Consequently, s /∈ MC or s /∈ MC ′ , say s /∈ MC (note that C ′ is also star-covered by S since
X and not C ′ is a min-core of FS , hence we can interchange the roles of C and C ′). Let Y = X ∩MC . Then Y ∈ F and Y ⊆ MC ,
thus S covers Y , since S covers all F -cores contained inMC . Consequently, there is an edge uv ∈ S entering Y . Since uv does
not cover X , we must have u ∈ X −MC . But then uv coversMC , implying, by the definition of a star-cover, that u = s. �

Lemma 3.4. There exists a star-cover S ⊆ I so that p(S)/∆(S) ≤ 3 · opt/ν .

Proof. Let I ⊆ I be an optimal F -cover, so p(I) = opt. By Theorem 2.3, I admits a star-cover decomposition S1, . . . , St
that star-covers at least 2|C(F)|/3 = 2ν/3 min-cores. Recalling that every min-F -core is star-covered at most once, the
statement follows by a simple averaging argument. Let pi = p(Si), let di be the number of min-F -cores star-covered by Si,
and let∆i = ∆(Si) ≥ di/2. We have

∑t
i=1 pi ≤ p(I) = opt and

∑t
i=1∆i ≥

1
2

∑t
i=1 di ≥

1
2 ·

2
3ν ≥ ν/3. Thus

t∑
i=1

pi

t∑
i=1

∆i

≤
p(I)
ν/3
= 3 ·

p(I)
ν
.

Consequently, there must be an index i so that pi/∆i ≤ 3 · p(I)/ν = 3 · opt/ν. �

Note that by Lemma3.3, (2) holds for any star-cover S as in Lemma3.4. Nowwewill showhow to find such S in polynomial
time, under Assumptions 1 and 2.

Lemma 3.5. Let F be an intersecting family on V and let I be an edge set with costs on V . Then the following can be computed
in polynomial time under Assumptions 1 and 2:

(i) The families C(F) andM(F).
(ii) A min-cost cover of the family F (v, C) for any C ∈ C(F) and v ∈ V .

Proof. The family C(F) of min-F -cores can be computed as follows. For every v, t ∈ V compute the minimal member Cvt
of the ring family {X ∈ F : t ∈ X, v /∈ X}, or determine that such does not exist, using the algorithm as in Assumption 1.
The inclusion minimal (non-empty) members among the sets Cvt computed are the min-F -cores.
After the min-F -cores are found, to find the familyM(F) of max-F -cores, for every min-core C ∈ C(F) we show a

decision procedure that checks if a given node u ∈ V − C is in MC ∈ M(F). Thus to find MC it is enough to check every
node. Our decision procedure is as follows. We fix some t ∈ C . The procedure accepts u if there exists v ∈ V so that the
minimal member of the ring family {X ∈ F{ut} : t ∈ X, v /∈ X} contains C and does not contain any other min-F -core (this
can be checked in polynomial time, by Assumption 1). Indeed, if u ∈ MC then the procedure accepts u for any v ∈ V −MC ;
otherwise, if u /∈ MC , then u is not accepted, since any member of Fut must contain a min-core distinct from X , by Fact 2.1.
Finally, we will show how to find a min-cost F (v, C)-cover for given C ∈ C(F) and v ∈ V . Let J be an edge set of a star

with center v and an edge from v to every min-core distinct from C that does not contain v (J = ∅ if C(F) = {C}). It is not
hard to verify that for any t ∈ C , F (v, C) = {X ∈ FJ : t ∈ X, v /∈ X}. Hence to find a min-cost F (v, C)-cover, we find a
min-cost cover of the family {X ∈ FJ : t ∈ X, v /∈ X}, which can be implemented in polynomial time, by Assumption 2. �

Lemma 3.6. A star-cover S ⊆ I that minimizes p(S)/∆(S) can be found in polynomial time under Assumptions 1 and 2.

Proof. First compute the families C(F) andM(F); this can be implemented in polynomial time, by Lemma 3.5. Second,
for every v ∈ MC for some C ∈ C(F) define the weight w(v) of v to be the minimum cost of an F (v, C)-cover among the
edges in Iwith both endpoints inMC , if such exists, andw(v) = ∞ otherwise; this also can be implemented in polynomial
time, by Lemma 3.5. Assume that we know the center s and its power p(s) = pS(s) in S; there are O(n2) distinct choices.
Among the edges leaving s, delete all edges of cost> p(s), and zero the costs of the others. Construct an auxiliary weighted
star T with center s as follows. For every min-core C ∈ C(F) add a node vC and an edge from s to vC . The weightW (vC) of
vC is defined by:
- If s /∈ MC , thenW (vC) = min{w(v) : v ∈ MC , sv ∈ I, c(sv) ≤ p(s)} is the minimum weight of a neighbor of s contained
inMC , if such exists, andW (vC) = ∞ otherwise.
- If s ∈ MC ′ for some C ′ ∈ C(F) then W (vC ′) is the minimum cost of an F (s, C ′)-cover, if such exists (in particular,
W (vC ′) = 0 if F (s, C ′) = ∅), andW (vC ′) = ∞ otherwise.

2510 Z. Nutov / Theoretical Computer Science 411 (2010) 2502–2512

We now see that our goal is to compute a sub-star S of T , S 6= {svC ′} if s ∈ MC ′ , that minimizesW (S)/max{|LS | − 1, 1},
whereW (S) = p(s)+W (LS) and LS is the set of leaves of S. Sort the leaves of T distinct from vC ′ by increasing weight, say
W (v1) ≤ W (v2) ≤ . . . ≤ W (vq). Assuming that svC ′ /∈ S, let σ1 = p(s) +W (v1) and σj = (p(s) +

∑j
i=1W (vi))/(j − 1),

j = 2, . . . , q. Assuming that svC ′ ∈ S, let σj = (p(s)+ w(vC ′)+
∑j
i=1W (vi))/j, j = 1, . . . , q. In both cases, we can find the

index j for which σj is minimum, which determines the required star-cover. �

The proof of Lemma 3.2, and thus also of Theorem 1.3 is complete.

Remark. As far as we can see, the approximation ratio in Theorem 1.3 can be improved to (2+ε)H(n) if, in addition to star-
covers, we will also consider ‘‘`-cycle-covers’’; `-cycle-cover Q is obtained by taking a cycle of length≤` onmax-cores, and
adding anF (v, C)-cover contained inMC for every cycle edge uv entering amax-coreMC . An analogue of Theorem2.3would
state that any cover of an intersecting family F admits a decomposition into star-covers and `-cycle-covers that covers at
least (`+ 1)|C(F)|/(`+ 2)min-cores. An analogue of Lemma 3.3 would state that ν− ν(Q) ≥ `− 1, if Q is obtained from
a cycle of length `; hence σ(Q) ≤ p(Q)/(` − 1) for such Q . For any `, we can find an `-cycle-cover Q minimizing σ(Q)
in time nq(`), where q(`) is polynomial in ` (details omitted). Setting ` = b1/εc, we obtain a (2 + ε)H(n)-approximation
scheme.

4. Proof of Theorem 1.2

We give a 3H(n)-approximation algorithm forMin-Power (`, `+ 1)-Edge-Outconnectivity Augmentation, that is, for the
problems of finding a min-power augmenting edge set that increases the edge-outconnectivity from r by 1. We apply this
algorithm sequentially for ` = k0, . . . , k − 1 to produce edge sets Ik0 , . . . , Ik−1 so that G0 + (Ik0 + · · · + I`) is (` + 1)-
edge-outconnected from r , and p(I`) ≤ 3H(n) · opt, ` = k0, . . . , k − 1. Consequently, G = G0 + (Ik0 + · · · + Ik−1) is
k-edge-outconnected from r , and

p(Ik0 + · · · + Ik−1) ≤
k−1∑
`=k0

p(I`) ≤
k−1∑
`=k0

3H(n) · opt = 3(k− k0)H(n) · opt.

Following [7],Min-Power (`, `+1)-Edge-Outconnectivity Augmentation is reduced to the problemof finding amin-power
cover of an intersecting family. We say that ∅ 6= X ⊆ V − r is tight in G0 if din(X) = `. From Menger’s Theorem we have:

Fact 4.1. Let G0 = (V , E0) be `-edge-outconnected from r. Then G = G0 + I is (`+ 1)-edge-outconnected from r if, and only if,
I covers all the tight sets in G0.

We now see that our augmentation problem is equivalent to the problem of finding a min-power cover of the family F
of tight sets. It is well known (c.f., [7]) that:

Fact 4.2. The family of tight sets is intersecting.

It remains to show that given an instance G0 = (V , E0), `, r, I, c of Min-Power (`, ` + 1)-Edge-Outconnectivity
Augmentation, Assumptions 1 and 2 are valid for the family F of tight sets. It is not hard to verify, using elementary
constructions, that the algorithm as in Assumption 1 can be implemented using one max-flow computation, and that the
algorithm as in Assumption 2 can be implemented using one min-cost (` + 1)-flow computation. However, since here we
know in advance a node r not contained in any member of F , we can achieve a more efficient implementation. For that we
show how to implement (i) and (ii) in Lemma 3.5 directly, without using Assumptions 1 and 2, as (i) and (ii) in Lemma 3.5 is
all we use in our algorithm. The implementation is similar to the one in Lemma 3.5 but uses a simpler procedure to find the
max-cores. As before, we assume F ← FI , meaning that the edge set I accumulated during the algorithm is included in G0.
For (i) we need to show that the families C(F) andM(F) can be found in polynomial time; we will show that this can be
done using O(n)max-flow computations. For (ii) we will show that finding a min-cost F (v, C)-cover for given v ∈ V and
C ∈ C(F) can be done using one min-cost (`+ 1)-flow computation.
The min-F -cores can be found using n − 1 max-flow computations using the following standard procedure; see for

example [7]. For every t ∈ V − r , compute a maximum rt-flow in G0 with unit edge capacities. If its value is `, then in the
corresponding residual network compute the set Ct = {v ∈ V : t is reachable from v}. Then, among the sets Ct computed,
output the inclusion minimal ones.
After the min-F -cores are found, to find the max-F -coreMC containing a specific min-core C ∈ C(F) do the following.

Construct a graph G′0 by adding to G0 an edge from r to every min-core distinct from C . These added edges do not cover any
F -core containing C , but they do cover any other member of F . Thus MC is the largest node subset of V − r of indegree
` in G′0 that contains C (or, which is equivalent, some node t ∈ C). Hence MC can be found using the following known
procedure. Choose t ∈ C and compute a maximum rt-flow in G′0 with unit edge capacities; the max-flow value is `, by the
Max-Flow–Min-Cut Theorem. In the corresponding residual network the set of nodes {v ∈ V : v is not reachable from r} is
the max-coreMC containing C .
Now we show how to find a min-cost F (v, C)-cover for any v ∈ V and C ∈ C(F). Let G′0 be the graph obtained by

adding to G0 an edge from r to every min-core distinct from C and the edge rv. Note that these added edges do not cover

Z. Nutov / Theoretical Computer Science 411 (2010) 2502–2512 2511

any member of F (v, C), but they do cover all the other members of F . Thus an edge set is a F (v, C)-cover if, and only if,
its addition to G′0 allows a flow of value `+ 1 from r to any node t ∈ C (with all edges having unit capacities), by the Max-
Flow–Min-Cut Theorem. Now construct a flow network by adding I to G′0; the edges in H0 have cost zero, while the edges
in I keep their original cost. Then compute a min-cost (`+ 1)-flow f from r to some t ∈ C . The edge set {e ∈ I : f (e) = 1}
is the desired F (v, C)-cover.
We now give a (3H(n) + 1)-approximation algorithm for Min-Power (`, ` + 1)-Edge-Connectivity Augmentation. We

apply this algorithm sequentially for ` = k0, . . . , k − 1 to produce edge sets Ik0 , . . . , Ik−1 so that G0 + (Ik0 + · · · + I`) is
(` + 1)-edge-connected, and p(I`) ≤ (3H(n) + 1) · opt, ` = k0, . . . , k − 1. Consequently, G = G0 + (Ik0 + · · · + Ik−1) is
k-edge-connected, and

p(Ik0 + · · · + Ik−1) ≤
k−1∑
`=k0

p(I`) ≤
k−1∑
`=k0

(3H(n)+ 1) · opt = (k− k0)(3H(n)+ 1) · opt.

A (3H(n)+1)-approximation algorithm forMin-Power (`, `+1)-Edge-Connectivity Augmentation can be deduced from
Corollary 1.5 by establishing a reduction to Set-Family Edge-Coverwith crossing F . But even simpler would be to describe
the algorithm explicitly. Let us say that a graph is `-edge-inconnected to r if its reverse graph is `-edge-outconnected from r .
It is well known, and easily follows from Facts 1.4 and 4.2, that if I is an inclusionminimal augmenting edge set that increases
the edge-inconnectivity of a given directed graph from ` to ` + 1 then dI(v) ≤ 1 for all v ∈ V . Thus the power of I equals
its cost, by Proposition 1.1. The problem of finding a min-cost augmenting edge set that increases the edge-inconnectivity
of a given directed graph from ` to `+ 1 can be solved in polynomial time, c.f., [7]. Thus we have:

Proposition 4.3. A min-power augmenting edge set that increases the edge-inconnectivity of a given directed graph by 1 can be
computed in polynomial time.

The algorithm forMin-Power (`, `+ 1)-Edge-Connectivity Augmentation is as follows.

1. Let r be a node of G. Compute an edge set I ′ so that G0 + I ′ is (`+ 1)-edge-outconnected from r using the algorithm for
Min-Power (`, `+ 1)-Edge-Outconnectivity Augmentation.

2. Compute a min-power edge set I ′′ so that G0 + I ′′ is (`+ 1)-edge-inconnected to r .
3. Output I = I ′ + I ′′.

Note that G = G0 + I is both (` + 1)-edge-outconnected from r and (` + 1)-edge-inconnected to r . This implies that
G is (` + 1)-edge connected (c.f., [14]), so I is a feasible solution. To bound its power, let OPT be an optimal solution for
Min-Power (`, ` + 1)-Edge-Connectivity Augmentation. Since G0 + OPT is (` + 1)-edge-outconnected from r we have
p(I ′) ≤ 3H(n) · p(OPT) = 3H(n) · opt. Since G0 + OPT is (` + 1)-edge-inconnected to r we have p(I ′′) ≤ p(OPT) ≤ opt.
Consequently,

p(I) = p(I ′ + I ′′) ≤ p(I ′)+ p(I ′′) ≤ 3H(n) · opt+ opt = (3H(n)+ 1) · opt.

The proof of Theorem 1.2 is complete.

Acknowledgement

I thank an anonymous referee for many useful comments.

References

[1] E. Althaus, G. Calinescu, I. Mandoiu, S. Prasad, N. Tchervenski, A. Zelikovsky, Power efficient range assignment for symmetric connectivity in static
ad-hoc wireless networks, Wireless Networks 12 (3) (2006) 287–299.

[2] G. Calinescu, S. Kapoor, A. Olshevsky, A. Zelikovsky, Network lifetime and power assignment in ad hoc wireless networks, in: ESA, 2003, pp. 114–126.
[3] G. Calinescu, P.J. Wan, Range assignment for biconnectivity and k-edge connectivity in wireless ad hoc networks, Mobile Networks and Applications
11 (2) (2006) 121–128.

[4] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, Energy-efficient wireless network design, Theory of Computing Systems 39 (5) (2006) 593–617.
[5] J. Edmonds, Matroid intersection, Annals of Discrete Mathematics (1979) 185–204.
[6] A. Frank, Connectivity and network flows, in: R. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, Elsevier Science, 1995,
pp. 111–177.

[7] A. Frank, Increasing the rooted-connectivity of a digraph by one, Mathematical Programming 84 (3) (1999) 565–576.
[8] H.N. Gabow, A representation for crossing set families with application to submodular flow problems, in: SODA, 1993, pp. 202–211.
[9] M.T. Hajiaghayi, G. Kortsarz, V.S. Mirrokni, Z. Nutov, Power optimization for connectivity problems, Mathematical Programming 110 (1) (2007)
195–208.

[10] X. Jia, D. Kim, S. Makki, P.J. Wan, C.W. Yi, Power assignment for k-connectivity in wireless ad hoc networks, Journal of Combinatorial Optimization 9
(2) (2005) 213–222.

[11] S. Khuller, Approximation algorithms for for finding highly connected subgraphs, in: D.S. Hochbaum (Ed.), Approximation Algorithms for NP-hard
problems, PWS, 1995, pp. 236–265 (Chapter 6).

[12] P.N. Klein, R. Ravi, A nearly best-possible approximation algorithm for node-weighted steiner trees, Journal of Algorithms 19 (1) (1995) 104–115.
[13] G. Kortsarz, V.S. Mirrokni, Z. Nutov, E. Tsanko, Approximation algorithms for minimum power degree and connectivity problems, in: LATIN, 2008, pp.

423–435, Algorithmica (in press).
[14] G. Kortsarz, Z. Nutov, Approximating minimum-cost connectivity problems, in: T.F. Gonzalez (Ed.), Approximation Algorithms and Metaheuristics,

Chapman & Hall/CRC, 2007 (Chapter 58).

2512 Z. Nutov / Theoretical Computer Science 411 (2010) 2502–2512

[15] Y. Lando, Z. Nutov, On minimum power connectivity problems, Journal on Discrete Algorithms 8 (2010) 164–173. Preliminary version in ESA 2007,
pp. 87–98.

[16] Z. Nutov, Approximating minimum power covers of intersecting families and directed connectivity problems, in: APPROX, 2006, pp. 236–247.
[17] Z. Nutov, Approximating minimum power k-connectivity, in: ADHOC-NOW, 2008, pp. 86–93.
[18] Z. Nutov, Approximating Steiner networks with node weights, in: LATIN, 2008, pp. 411–422.
[19] R. Raz, S. Safra, A sub-constant error-probability low-degree test and a sub-constant error-probability PCP characterization of NP, in: STOC, 1997,

pp. 475–484.

	Approximating minimum power covers of intersecting families and directed edge-connectivity problems
	Introduction and preliminaries
	Decomposition of covers of intersecting families
	Covering intersecting families (Proof of Theorem 1.3)
	Proof of Theorem 1.2
	Acknowledgement
	References

