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a b s t r a c t

We find bijections on 2-distant noncrossing partitions, 12312-avoiding partitions,
3-Motzkin paths, UH-free Schröder paths and Schröder pathswithout peaks at even height.
We also give a direct bijection between 2-distant noncrossing partitions and 12312-
avoiding partitions.
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1. Introduction

Noncrossing partitions were first introduced by Kreweras [6] in 1972. Recently, they have received great attention,
and have been generalized in many different ways; for instance, see [1–3,5,7] and the references therein. In this paper,
we consider two variations of noncrossing partitions: k-distant noncrossing partitions and 12 · · · r12-avoiding partitions
introduced by Drake and Kim [3], and Mansour and Severini [7] respectively, where they reduce to noncrossing partitions
when k = 1 and r = 2.

A (set) partition of [n] = {1, 2, . . . , n} is a collection of mutually disjoint nonempty subsets, called blocks, of [n] whose
union is [n].Wewillwrite a partition as a sequence of blocks (B1, B2, . . . , Bk) such thatmin(B1) < min(B2) < · · · < min(Bk).
An edge of a partition is a pair (i, j) of integers contained in the same block that does not contain any integer t with i < t < j.
The standard representation of a partition π of [n] is the diagram having n vertices labeled with 1, 2, . . . , n, where i and j are
connected by an arc if (i, j) is an edge of π ; see Fig. 1. A noncrossing partition is a partition without any two crossing edges,
i.e. (i1, j1) and (i2, j2) such that i1 < i2 < j1 < j2. It is well known that the number of noncrossing partitions of [n] is the
Catalan number 1

n+1


2n
n


.

For a positive integer k, a k-distant noncrossing partition is a partition without any two edges (i1, j1) and (i2, j2) satisfying
i1 < i2 < j1 < j2 and j1 − i2 ≥ k. Note that 1-distant noncrossing partitions are just noncrossing partitions. We denote by
NCk(n) the set of k-distant noncrossing partitions of [n]. Drake and Kim [3] found the following generating function for the
number of 2-distant noncrossing partitions:

−
n≥0

#NC2(n)xn =
3 − 3x −

√
1 − 6x + 5x2

2(1 − x)
. (1)

The canonical word of a partition π = (B1, B2, . . . , Bk) is the word a1a2 · · · an, where ai = j if i ∈ Bj. For instance, the
canonical word of the partition in Fig. 1 is 123124412. In the literature canonical words are also called restricted growth
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Fig. 1. The standard representation of ({1, 4, 8}, {2, 5, 9}, {3}, {6, 7}).

Fig. 2. Main bijections for n ≥ 2.

functions. For a word τ , a partition is called τ -avoiding if its canonical word does not contain a subword which is order-
isomorphic to τ . It is easy to see that a partition is noncrossing if and only if it is 1212-avoiding. We denote by Pτ (n) the set
of τ -avoiding partitions of [n].

Using the kernel method, Mansour and Severini [7] found the generating function for the number of 12 · · · r12-avoiding
partitions of [n]. Interestingly, as a special case of their result, the generating function for the number of 12312-avoiding
partitions of [n] is the same as (1), which implies #NC2(n) = #P12312(n). Moreover, this number also counts several kinds of
lattice paths. The main purpose of this paper is to find bijections between NC2(n) and P12312(n) together with some lattices
paths described below.

A lattice path of length n is a sequence of points in N × N starting at (0, 0) and ending at (n, 0). For a lattice path
L = ((x0, y0), (x1, y1), . . . , (xk, yk)), each Si = (xi − xi−1, yi − yi−1) is called a step of L. The height of the step Si is defined
to be yi−1. Sometimes we will identify a lattice path Lwith the word S1S2 . . . Sk of its steps. Note that the number of steps is
not necessarily equal to the length of the lattice path.

Let U , D and H denote an up step, a down step and a horizontal step respectively, i.e., U = (1, 1), D = (1,−1) and
H = (1, 0).

A Schröder path is a lattice path consisting of steps U , D and H2
= HH = (2, 0). Let L = S1S2 · · · Sk be a Schröder path.

A UH-pair of L is a pair (Si, Si+1) of consecutive steps such that Si = U and Si+1 = H2. We say that L is UH-free if it does
not have a UH-pair. A peak of L is a pair (Si, Si+1) of consecutive steps such that Si = U and Si+1 = D. The height of a peak
(Si, Si+1) is the height of Si+1 = D. We denote by SCHUH(n) the set of UH-free Schröder paths of length 2n, and by SCHeven(n)
(resp. SCHodd(n)) the set of Schröder paths of length 2nwhich have no peaks of even (resp. odd) height.

A labeled step is a step togetherwith an integer label. LetDi (resp.Hi) denote a labeled down step (resp. a labeled horizontal
step) with label i. We denote by CH2(n) the set of lattice paths L = S1S2 · · · Sn of length n consisting of U , D1, D2, H0, H1 and
H2 such that

• if Si = Hℓ or Si = Dℓ, then Si is of height at least ℓ,
• if Si = H2 or Si = D2, then i ≥ 2 and Si−1 ∈ {U,H1,H2}.

A 3-Motzkin path is a lattice path consisting of U , D, H0, H1 and H2. We denote by MOT3(n) the set of 3-Motzkin paths of
length n.

Drake and Kim [3] showed that the well-known bijectionψ between partitions and Charlier diagrams, see [4,5], yields a
bijectionψ : NC2(n) → CH2(n). Yan [10] found a bijection φ : SCHUH(n−1) → P12312(n) and a bijection between SCHUH(n)
and SCHeven(n). Thus all of NC2(n), CH2(n), SCHeven(n − 1), SCHUH(n − 1) and P12312(n) have the same cardinality, which is
counted by sequence A007317 from [8]. In order to find bijections between these objects, we introduce the following sets:

• NC′

2(n) = {π ∈ NC2(n) : n is not a singleton}

• CH′

2(n) = {L ∈ CH2(n) : the last step of L is D1}

• SCH′

even(n) = {L ∈ SCHeven(n) : the first step of L is U}

• SCH′

UH(n) = {L ∈ SCHUH(n) : the first step of L is U}

• P ′

12312(n) = {π ∈ P12312(n) : 1 and 2 are not in the same block}.

Note that we can identify π ∈ NC2(n) with π ′
∈ NC′

2(k), where k is the integer such that j is a singleton for all
j ∈ {k + 1, k + 2, . . . , n} and k is not a singleton in π , and π ′ is the partition obtained from π by deleting integers greater
than k. We can also identify π ∈ P12312(n)with π ∈ P ′

12312(k), where k is the integer such that the number of consecutive 1’s
at the beginning of the canonical word of π is n − k + 1, and π is the partition whose canonical word is obtained from that
of π by deleting the first n − k 1’s. Thus any bijection between NC′

2(n) and P ′

12312(n) naturally induces a bijection between
NC2(n) and P12312(n). Similarly, any bijection between A′(n) and B′(n) naturally induces a bijection between A(n) and B(n)
where A and B are any two of NC2, CH2, SCHeven, SCHUH, and P12312. Thus in order to find a bijection between NC2(n) and
P12312(n), it is enough to find a bijection between NC′

2(n) and P ′

12312(n).
In this paper, we find bijections between these objects. For the overview of our bijections, see Fig. 2, where ψ is the

known bijection between partitions and Charlier diagrams [4,5], and φ is Yan’s bijection [10]. We note that our bijection
g in Fig. 2 is also discovered by Shapiro and Wang [9]. We also provide a direct bijection between NC2(n) and P12312(n) in
Section 3.



J.S. Kim / Discrete Mathematics 311 (2011) 1057–1063 1059

Fig. 3. An example of f0 .

Fig. 4. Definition of f .

2. Bijections

In this section, we find the bijections f , g, h, and ι in Fig. 2.

2.1. The bijection f : CH′

2(n) → MOT3(n − 2)

Recall that CH′

2(n) is the set of lattice paths L = S1S2 · · · Sn of length n consisting of U,D1,D2,H0,H1 and H2 such that

• if Si = Hℓ or Si = Dℓ, then Si is of height at least ℓ,
• if Si = H2 or Si = D2, then i ≥ 2 and Si−1 ∈ {U,H1,H2},
• Sn = D1.

The second condition above is equivalent to the condition that the lattice path consists of the following combined steps for
any k ≥ 0:

UHk
2,UH

k
2D2,H1Hk

2,H1Hk
2D2,H0,D1. (2)

Let A(n) denote the set of lattice paths of length n consisting of the combined steps in Eq. (2) such that H2 does not touch
the x-axis. Let B(n) denote the set of 3-Motzkin paths of length n such that each H2 touching the x-axis must occur after D,
H0 or H2.

We define f0 : A(n) → B(n) as follows. Let L ∈ A(n). Then f0(L) is defined to be the lattice path obtained from L by
changing UHk

2D2 to H0Hk+1
2 , H1Hk

2D2 to DHk+1
2 and D1 to D. It is easy to see that f0(L) ∈ B and f0 is invertible; see Fig. 3.

Now we define f : CH′

2(n) → MOT3(n − 2) as follows. Let L ∈ CH′

2(n). Then L is decomposed uniquely as

Hk1
0 (UL1D1)H

k2
0 (UL2D1) · · ·H

kr
0 (ULrD1),

where Li ∈ A(ni) for some ki, ni ≥ 0 and r ≥ 1. Then define f (L) to be

Hk1
2 f0(L1)(H1H

k2+1
2 f0(L2))(H1H

k3+1
2 f0(L3)) · · · (H1H

kr+1
2 f0(Lr)).

See Fig. 4.

Theorem 2.1. The map f : CH′

2(n) → MOT3(n − 2) is a bijection.

Proof. Each L ∈ MOT3(n − 2) is uniquely decomposed as

Hk1
2 L1(H1H

k2+1
2 L2)(H1H

k3+1
2 L3) · · · (H1H

kr+1
2 Lr),

where Li ∈ B(ni) for some ki, ni ≥ 0 and r ≥ 1. Thus we have the inverse f −1(L)which is decomposed as

Hk1
0 (Uf

−1
0 (L1)D1)H

k2
0 (Uf

−1
0 (L2)D1) · · ·H

kr
0 (Uf

−1
0 (Lr)D1). �
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Fig. 5. An example of g . Odd peaks are circled. The horizontal steps of even height are dashed and colored blue. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. The essence of h0 . Red (resp. dashed blue) color is for UH-pairs whose horizontal step is of odd (resp. even) height. Odd peaks are circled. The lattice
path L′ is not empty. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.2. The bijection g : MOT3(n) → SCHodd(n + 1)

We define g : MOT3(n) → SCHodd(n + 1) as follows. Let L ∈ MOT3(n). Then g(L) is the lattice path obtained from L by
doing the following.
1. Change U to UU , D to DD, H0 to H2, H1 to DU , and H2 to UD.
2. Add U at the beginning and D at the end.
3. Change all the consecutive steps UDwhich form a peak of odd height to H2.

See Fig. 5 for an example of g .

Theorem 2.2. The map g : MOT3(n) → SCHodd(n + 1) is a bijection.

Proof. Clearly the first and the second steps in the construction of g are invertible. The third step is also invertible because
every step H2 of even height always comes from a peak of odd height. Thus g is invertible. �

2.3. The bijection h : SCHodd(n) → SCH′

UH(n)

Let L = S1S2 · · · Sk be a Schröder path. For any up step Si = U of L, there is a unique down step Sj = D such that i < j and
Si+1Si+2 · · · Sj−1 is a (possibly empty) lattice path. We call such Sj the down step corresponding to Si. We also call Si the up step
corresponding to Sj.

For a UH-pair (Si, Si+1), i.e. Si = U and Si+1 = H2, we define the function ξ as follows.

ξ(Si, Si+1) =


i, if Si+1 is of even height;
j, if Si+1 is of odd height,

where j is the integer such that Sj is the down step corresponding to Si. If L is not UH-free, we define the ξ -maximal UH-pair
of L to be the UH-pair (Si, Si+1)with the largest ξ value.
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Fig. 7. An example of h. Red (resp. dashed blue) color is for UH-pairs whose horizontal step is of odd (resp. even) height. Odd peaks are circled. Dashed
arrows indicate the down steps corresponding to the up steps. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Now let L = S1S2 · · · Sk ∈ SCHodd(n). If L is not UH-free, we define h0(L) as follows. Suppose (Si, Si+1) is the ξ -maximal
UH-pair of L, and Sj is the down step corresponding to Si.

1. If Si+1 is of even height, then h0(L) is the lattice path obtained from L by replacing SiSi+1 with UUD.
2. If Si+1 is of odd height, then let L′

= Si+2Si+3 · · · Sj−1.
(a) If L′ is empty, i.e., j = i + 2, then h0(L) is the lattice path obtained from L by replacing SiSi+1Si+2 with H2UD.
(b) If L′ is not empty, then h0(L) is the lattice path obtained from L by replacing SiSi+1 · · · Sj with UL′DUD.

See Fig. 6.
Now we define h : SCHodd(n) → SCH′

UH(n) as follows. Let L ∈ SCHodd(n) and L0 = L. Then we define Li = h0(Li−1) for
i ≥ 1 if Li−1 is not UH-free. Since the number of UH-free pairs of Li is one less than that of Li−1, or they are the same and

ξ(the maximal UH-pair of Li) < ξ(the maximal UH-pair of Li−1),

we always get Lr which is UH-free for some r .We define h(L) to be Lr if Lr does not start withH2, and the lattice path obtained
from Lr by replacing H2 with UD otherwise. For an example, see Fig. 7.

Theorem 2.3. The map h : SCHodd(n) → SCH′

UH(n) is a bijection.

Proof. In the procedure of h, the odd peaks are constructed from right to left. Since h0 is invertible, so is h.
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Fig. 8. The map ι.

2.4. The bijection ι : SCHodd(n) → SCH′

even(n)

For L = S1S2 · · · Sk ∈ SCHodd(n), we define ι(L) as follows.

1. If Sk = H2, then ι(L) = US1 · · · Sk−1D.
2. If Sk = D, then let Si be the up step corresponding to Sk and we define ι(L) = US1 · · · Si−1DSi+1 · · · Sk−1.

See Fig. 8.
Then ι(L) ∈ SCH′

even(n). Clearly, ι : SCHodd(n) → SCH′

even(n) is a bijection.

3. A direct bijection between NC2(n) and P12312(n)

Now we have a bijection φ ◦ h ◦ g ◦ f ◦ ψ : NC′

2(n) → P ′

12312(n); see Fig. 2. As noted in the introduction, this induces a
bijection between NC2(n) and P12312(n). Since both NC2(n) and P12312(n) are partitions with some conditions, it is natural to
ask a direct bijection between them. In this section we find such a direct bijection.

From now on, we will identify a partition in P12312(n)with its canonical word.
A marked partition is a partition in which each part may be marked. Similarly a marked word is a word in which each

letter may be marked.
Let π ∈ NC2(n). For i ∈ [n], let Ti be themarked partition of [i] obtained from π by removing all the integers greater than

i and by marking integers which are connected to an integer greater than i. Using the sequence ∅ = T0, T1, T2, . . . , Tn = π
of marked partitions, we define a sequence of marked wordsw0,w1,w2, . . . ,wn as follows. Here, if (i, j) is an edge we say
that j is connected to i.

Letw0 be the empty word. For 1 ≤ i ≤ n, wi is defined as follows.

1. If i is not connected to any integer in Ti, thenwi = wi−1m, wherem = max(wi−1)+1. Otherwise, i is connected to either
the largest marked integer or the second largest marked integer of Ti−1.
• If i is connected to the largest marked integer of Ti−1, then letwi = wi−1a1, where a1 is the rightmost marked letter of

wi−1. And then we make the marked letter a1 unmarked.
• If i is connected to the second largest marked integer of Ti−1, then let wi = wi−1a2, where a2 is the second rightmost

marked letter ofwi−1. The second rightmost marked letter ofwi−1 remains marked; however, we make the rightmost
marked letter ofwi−1 unmarked inwi.

2. If i is marked in Ti, then we find the largest letters inwi and make the leftmost letter among them marked.

For an example, see Fig. 9.

Lemma 3.1. The wordwn obtained above is 12312-avoiding.

Proof. Suppose wn has a subsequence abcab where a < b < c. When the second b is added the first b must have been
marked. Moreover, the first b must have been marked before adding the second a because an unmarked integer becomes
marked only if it is the largest integer (in this case at least c) in the sequence. Thus when the second a is added, the first
a and b have been marked. Since the first a is the second rightmost marked integer at this moment, we must unmark the
rightmost marked integer, the first b, and mark the largest integer which is at least c. Thus after this process, b cannot be
marked and we cannot have the second b, which is a contradiction. �

If we knowwn, we can reverse this procedure. For 1 ≤ i ≤ n,wi−1 is obtained fromwi as follows. Supposem = max(wi)
and t is the last letter ofwi.

1. If the leftmostm is marked inwi, then make it unmarked.
2. If t appears only once in wi (equivalently t is greater than any other letters in wi), then we simply remove t . Otherwise,

find the leftmost t in wi.
• If the leftmost t is unmarked, then we remove the last letter t and make the leftmost t marked.
• If the leftmost t is marked, then we must have t < m since we have made the leftmost m unmarked. In this case we

remove the last t , and make the leftmost t still marked and the leftmostm marked.
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Fig. 9. Ti ’s and correspondingwi ’s. Marked integers and marked letters are circled.

Now we construct T0, T1, . . . , Tn as follows. Let T0 = ∅. For 1 ≤ i ≤ n, Ti is obtained as follows.

1. First, let Ti be the marked partition obtained from Ti−1 by adding i.
2. If the last letter of wi is equal to the rightmost (resp. the second rightmost) marked letter of wi−1, then connect i to the

largest (resp. the second largest) marked integer, say j, of Ti−1, and make j unmarked.
3. Letm = max(wi). If the leftmostm is marked inwi, then make imarked in Ti.

It is easy to check that this is the inverse map. Thus we get the following theorem.

Theorem 3.2. For π ∈ NC2(n), the map π → wn is a bijection from NC2(n) to P12312(n).

The bijection π → wn is different from the composition φ ◦h◦g ◦ f ◦ψ . For instance, if π = ({1, 3}, {2}), thenw3 = 121
but (φ ◦ h ◦ g ◦ f ◦ ψ)(π) = 112.

Note that both NC2(n) and P12312(n) contain noncrossing partitions. It would be interesting to find a bijection between
NC2(n) and P12312(n)which sends noncrossing partitions to noncrossing partitions.
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