Total domination excellent trees ${ }^{2}$

Michael A. Henning
School of Mathematics, Statistics and Information Technology, University of Natal, Private Bay X01, Pietermaritzburg 3209, South Africa

Received 6 February 2001; received in revised form 25 February 2002; accepted 11 March 2002

Abstract

A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S (other than itself). The graph G is called total domination excellent if every vertex belongs to some total dominating set of G of minimum cardinality. We provide a constructive characterization of total domination excellent trees. (c) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Total domination; Tree

1. Introduction

Let G be a graph without isolated vertices, and let v be a vertex of G. A set $S \subseteq V(G)$ is a total dominating set if every vertex in $V(G)$ is adjacent to a vertex in S. Every graph without isolated vertices has a total dominating set, since $S=V(G)$ is such a set. The total domination number of G, denoted by $\gamma_{\mathrm{t}}(G)$, is the minimum cardinality of a total dominating set. A total dominating set of cardinality $\gamma_{t}(G)$ will be called a $\gamma_{\mathrm{t}}(G)$-set.

Total domination in graphs was introduced by Cockayne et al. [1] and is now well studied in graph theory (see, for example, [2,7]). The literature on this subject has been surveyed and detailed in the two books by Haynes et al. [4,5].

Fricke et al. [3] defined a graph G to be γ_{t}-excellent if every vertex of G belongs to some $\gamma_{\mathrm{t}}(G)$-set. They showed that the family of γ-excellent trees (trees where every vertex is in some minimum dominating set) is properly contained in the set of

[^0]i-excellent trees (trees where every vertex is in some minimum independent dominating set). The γ-excellent trees have been characterized by Sumner [8], while the i-excellent trees have been characterized in [6] where it is shown that any such tree of order at least three can be constructed using a double-star as a base tree and recursively applying one of two operations.

In this paper, we provide a constructive characterization of γ_{t}-excellent trees. We use a similar technique to that employed in [6] (we use a different base tree and recursively apply one of four operations, instead of two operations, to build the γ_{t}-excellent trees). For this purpose, we introduce some additional notation.

We define the total domination number of G relative to v, denoted $\gamma_{\mathrm{t}}^{v}(G)$, as the minimum cardinality of a total dominating set in G that contains v. A total dominating set of cardinality $\gamma_{\mathrm{t}}^{v}(G)$ containing v we call a $\gamma_{\mathrm{t}}^{v}(G)$-set. Hence, the graph G is $\gamma_{\mathrm{t}^{-}}$ excellent if $\gamma_{\mathrm{t}}^{v}(G)=\gamma_{\mathrm{t}}(G)$ for every vertex v of G.

A vertex v is said to be totally dominated by a set $S \subseteq V(G)$ if it is adjacent to a vertex of S (other than itself). We define an almost total dominating set of G relative to v as a set of vertices of G that totally dominates all vertices of G, except possibly for v. The almost total domination number of G relative to v, denoted $\gamma_{\mathrm{t}}^{v}(G ; v)$, is the minimum cardinality of an almost total dominating set of G relative to v. An almost total dominating set of G relative to v of cardinality $\gamma_{\mathrm{t}}^{v}(G ; v)$ we call a $\gamma_{\mathrm{t}}^{v}(G ; v)$-set. (Note that it is possible for v to belong to a $\gamma_{\mathrm{t}}^{v}(G ; v)$-set although v itself may not be totally dominated.)

A subset $U \subseteq V(G)$ is totally dominated by a set $S \subseteq V(G)$ if every vertex of U is totally dominated by S. We define a total dominating set of U in G as a set of vertices in G that totally dominates U. The total domination number of U in G, denoted $\gamma_{\mathrm{t}}(G ; U)$, is the minimum cardinality of a total dominating set of U in G. A total dominating set of U in G of cardinality $\gamma_{\mathrm{t}}(G ; U)$ we call a $\gamma_{\mathrm{t}}(G ; U)$-set.

For notation and graph theory terminology we, in general, follow [4]. Specifically, let $G=(V, E)$ be a graph with vertex set V of order n and edge set E, and let v be a vertex in V. The open neighborhood of v is $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N[v]=\{v\} \cup N(v)$. For a set $S \subseteq V$, its open neighborhood $N(S)=\bigcup_{v \in S} N(v)$ and its closed neighborhood $N[S]=N(S) \cup S$. The private neighborhood $\mathrm{pn}(v, S)$ of $v \in S$ is defined by $\operatorname{pn}(v, S)=N[v]-N[S-\{v\}]$.

For ease of presentation, we mostly consider rooted trees. For a vertex v in a (rooted) tree T, we let $C(v)$ and $D(v)$ denote the set of children and descendants, respectively, of v, and we define $D[v]=D(v) \cup\{v\}$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}. A leaf of T is a vertex of degree 1 , while a support vertex of T is a vertex adjacent to a leaf. A strong support vertex is adjacent to at least two leaves.

2. The family \mathscr{T}

Let \mathscr{T} be the family of trees T that can be obtained from a sequence $T_{1}, \ldots, T_{j}(j \geqslant 1)$ of trees such that T_{1} is a star $K_{1, r}$ for $r \geqslant 1$ and $T=T_{j}$, and, if $j \geqslant 2, T_{i+1}$ can be obtained recursively from T_{i} by one of the four operations $\mathscr{T}_{1}, \mathscr{T}_{2}, \mathscr{T}_{3}$ and \mathscr{T}_{4} listed below.

We define the status of a vertex v, denoted $\operatorname{sta}(v)$, to be A, B or C where initially if $T_{1}=K_{2}$, then $\operatorname{sta}(v)=A$ for each vertex v of T_{1}, and if $T_{1}=K_{1, r}$ with $r \geqslant 2$, then $\operatorname{sta}(v)=A$ for the central vertex of $T_{1}, \operatorname{sta}(v)=B$ for every leaf v of T_{1}, except for one leaf, and $\operatorname{sta}(v)=C$ for the remaining leaf of T_{1}. Once a vertex is assigned a status, this status remains unchanged as the tree T is recursively constructed except possibly for a vertex of status C whose status may change to status A. (As soon as the neighbor of a vertex c of status C is no longer a strong support vertex, we change the status of c from status C to status A.) Intuitively, if a vertex v has status A or B in a γ_{t}-excellent tree, then using one of the four operations we construct a new γ_{t}-excellent tree by adding certain paths, stars, or subdivided stars and joining a specified vertex to v.
Operation \mathscr{T}_{1}. The tree T_{i+1} is obtained from T_{i} by adding a path u, w^{\prime}, w, z and the edge $u y$ where $y \in V\left(T_{i}\right)$ and $\operatorname{sta}(y)=A$, and letting $\operatorname{sta}(u)=\operatorname{sta}\left(w^{\prime}\right)=B$ and $\operatorname{sta}(w)=$ $\operatorname{sta}(z)=A$.

$\mathcal{T}_{1}:$

Operation \mathscr{T}_{2}. The tree T_{i+1} is obtained from T_{i} by adding a star $K_{1, t}$ for $t \geqslant 3$ with center w, subdivided one edge $u w$ once, and then adding the edge $u y$ where $y \in V\left(T_{i}\right)$ and $\operatorname{sta}(y)=A$. Let $\operatorname{sta}(w)=A$ and let $\operatorname{sta}(z)=C$ for exactly one leaf z adjacent to w, and let $\operatorname{sta}(v)=B$ for each remaining vertex v that was added to T_{i}.

Operation \mathscr{T}_{3}. The tree T_{i+1} is obtained from T_{i} by adding a path u, w, z and the edge $u y$ where $y \in V\left(T_{i}\right)$ and $\operatorname{sta}(y)=B$, and letting $\operatorname{sta}(u)=B$ and $\operatorname{sta}(w)=\operatorname{sta}(z)=A$. If the vertex y^{\prime} of status A adjacent to y is adjacent to a vertex c of status C, and if y^{\prime} is not a strong support vertex in T_{i+1}, then we change the status of the vertex c from status C to status A (we remark that the existence and uniqueness of y^{\prime} follows from Observation 2(ii)).

Operation \mathscr{T}_{4}. The tree T_{i+1} is obtained from T_{i} by adding a star $K_{1, t}$ for $t \geqslant 3$ with center w and adding the edge $u y$ where $y \in V\left(T_{i}\right)$ and $\operatorname{sta}(y)=B$ and u is a vertex adjacent to w. Let $\operatorname{sta}(w)=A$, let $\operatorname{sta}(z)=C$ for exactly one leaf $z(\neq u)$ adjacent to w, and let $\operatorname{sta}(v)=B$ for each remaining vertex v that was added to T_{i}. If the vertex y^{\prime} of status A adjacent to y is adjacent to a vertex c of status C, and if y^{\prime} is not a strong support vertex in T_{i+1}, then we change the status of the vertex c from status C to status A.

$\mathcal{T}_{4}:$

If $T \in \mathscr{T}$, and T is obtained from a sequence T_{1}, \ldots, T_{m} of trees where T_{1} is a star $K_{1, r}$ with $r \geqslant 1$ and $T=T_{m}$, and, if $m \geqslant 2, T_{i+1}$ can be obtained from T_{i} by operation $\mathscr{T}_{1}, \mathscr{T}_{2}, \mathscr{T}_{3}$ or \mathscr{T}_{4} for $i=1, \ldots, m-1$, then we say that T has length m in \mathscr{T}. Since the length of T_{i+1} is one more than the length of T_{i} for $i=1, \ldots, m-1$, and since T_{i+1} has exactly two additional vertices of status A or C than does T_{i}, we have the following observation.

Observation 1. If $T \in \mathscr{T}$, then the total number of vertices of status A or C is twice the length of T.

The following two observations follow readily from the way in which each tree in the family \mathscr{T} is constructed.

Observation 2. Let $T \in \mathscr{T}$ and let v be a vertex of T.
(i) If $\operatorname{sta}(v)=C$, then v is a leaf of T and is adjacent to a strong support vertex of status A;
(ii) If $\operatorname{sta}(v)=B$, then v is adjacent to a unique vertex of status A;
(iii) If $\operatorname{sta}(v)=A$, then all but one neighbor of v has status B;
(iv) Every support vertex has status A.

Observation 3. If T is a nontrivial tree and v is a vertex of T, then

$$
\gamma_{\mathrm{t}}^{v}(T ; v) \leqslant \gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}^{v}(T ; v)+1 .
$$

Proof. Every $\gamma_{\mathrm{t}}(T)$-set is an almost total dominating set of G relative to v, and so $\gamma_{\mathrm{t}}^{v}(T ; v) \leqslant \gamma_{\mathrm{t}}(T)$. Let S be an $\gamma_{\mathrm{t}}^{v}(T ; v)$-set. If S is a total dominating set of T, then $\gamma_{\mathrm{t}}(T) \leqslant|S|$. On the other hand, if v is not totally dominated by the set S, then, $S \cup\left\{v^{\prime}\right\}$ is a total dominating set of T where v^{\prime} is any neighbor of v, irrespective of whether $v \in S$ or $v \notin S$, and so $\gamma_{\mathrm{t}}(T) \leqslant|S|+1$. In any case, $\gamma_{\mathrm{t}}(T) \leqslant|S|+1=$ $\gamma_{\mathrm{t}}^{v}(T ; v)+1$.

We now present our main result of this section.
Theorem 1. Let $T \in \mathscr{T}$ have length m in \mathscr{T} and let v be a vertex of T. Let U denote the set of vertices of T of status A or status C. Then
(i) T is a γ_{t}-excellent tree and $\gamma_{\mathrm{t}}(T)=2 m$;
(ii) if $\operatorname{sta}(v)=A$, then $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)+1$;
(iii) $\gamma_{\mathrm{t}}(T ; U)=\gamma_{\mathrm{t}}(T)$;
(iv) if $\operatorname{sta}(v)=B$ or C, then $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)$;
(v) if $\operatorname{sta}(v)=A$, then no leaf is at distance 2 or 3 from v.

Proof. Since T has length m in \mathscr{T}, T can be obtained from a sequence T_{1}, \ldots, T_{m} of trees where T_{1} is a star $K_{1, r}$ with $r \geqslant 1$ and $T=T_{m}$, and, if $m \geqslant 2, T_{i+1}$ can be obtained from T_{i} by operation $\mathscr{T}_{1}, \mathscr{T}_{2}, \mathscr{T}_{3}$ or \mathscr{T}_{4} for $i=1, \ldots, m-1$. To prove the desired result, we proceed by induction on the length m of the sequence of trees needed to construct the tree T.

Suppose $m=1$. Then T is a star $K_{1, r}$ for some $r \geqslant 1$. Thus, T is γ_{t}-excellent and $\gamma_{\mathrm{t}}(T)=2$. Let v be a vertex of T with $\operatorname{sta}(v)=A$. Then, $\gamma_{\mathrm{t}}^{v}(T ; v)=|\{v\}|$, and so $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)+1$. If $r=1$, then T has two vertices of status A, while if $r \geqslant 2$, then T has one vertex of status A and one of status C. Hence, $|U|=2$ and $\gamma_{\mathrm{t}}(T ; U)=2=\gamma_{\mathrm{t}}(T)$. Let v be a vertex of T with $\operatorname{sta}(v)=B$ or C. Then, $r \geqslant 2$ and v is a leaf of T, and so $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)=2$. If $\operatorname{sta}(v)=A$, then no leaf is at distance 2 or 3 from v. Thus if $m=1$, then conditions (i)-(v) all hold.

Assume, then, that the result holds for all trees in \mathscr{T} of length less than m in \mathscr{T}, where $m \geqslant 2$. Let T be a tree of length m in \mathscr{T}. Thus, $T \in \mathscr{T}$ can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{m}$ of m trees. For notational convenience, we denote T_{m-1} simply by T^{\prime}. Applying the inductive hypothesis to $T^{\prime} \in \mathscr{T}$, conditions (i)-(v) hold for the tree T^{\prime}. We now consider four possibilities depending on whether T is obtained from T^{\prime} by operation $\mathscr{T}_{1}, \mathscr{T}_{2}, \mathscr{T}_{3}$ or \mathscr{T}_{4}.

Case 1: T is obtained from T^{\prime} by operation \mathscr{T}_{1}.
Suppose T is obtained from T^{\prime} by adding a path u, w^{\prime}, w, z and the edge $u y$ where $y \in V\left(T^{\prime}\right)$ and $\operatorname{sta}(y)=A$. Hence, $\operatorname{sta}(u)=\operatorname{sta}\left(w^{\prime}\right)=B$ and $\operatorname{sta}(w)=\operatorname{sta}(z)=A$.

We show firstly that $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+2$. Any $\gamma_{\mathrm{t}}\left(T^{\prime}\right)$-set can be extended to a total dominating set of T by adding the set $\left\{w^{\prime}, w\right\}$, and so $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}\left(T^{\prime}\right)+2$. Now let S be a $\gamma_{\mathrm{t}}(T)$-set, and let $S^{\prime}=S \cap V\left(T^{\prime}\right)$. We may assume that $w, w^{\prime} \in S$. If $u \notin S$, then S^{\prime} is a total dominating set of T^{\prime}, and so $\gamma_{\mathrm{t}}\left(T^{\prime}\right) \leqslant\left|S^{\prime}\right|=|S|-2=\gamma_{\mathrm{t}}(T)-2$. On the other hand, suppose $u \in S$. Then, S^{\prime} is an almost total dominating set of T relative to y, and so $\gamma_{\mathrm{t}}^{y}\left(T^{\prime} ; y\right) \leqslant\left|S^{\prime}\right|=|S|-3$. Since T^{\prime} satisfies condition (ii), $\gamma_{\mathrm{t}}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}^{y}\left(T^{\prime} ; y\right)+$ $1 \leqslant|S|-2=\gamma_{\mathrm{t}}(T)-2$. Hence, irrespective of whether $u \in S$ or $u \notin S, \gamma_{\mathrm{t}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{t}}(T)-2$. Consequently, $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+2$. Since T^{\prime} satisfies condition (i), $\gamma_{\mathrm{t}}\left(T^{\prime}\right)=2(m-1)$, and so $\gamma_{\mathrm{t}}(T)=2 m$.

Suppose $x \in V\left(T^{\prime}\right)$. Since T^{\prime} is γ_{t}-excellent, $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}\left(T^{\prime}\right)$. Now, any $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)$-set can be extended to a total dominating set of T by adding the set $\left\{w^{\prime}, w\right\}$, and so $\gamma_{\mathrm{t}}^{x}(T) \leqslant \gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)+2=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+2=\gamma_{\mathrm{t}}(T)$. Suppose $x \in V(T)-V\left(T^{\prime}\right)$. Any $\gamma_{\mathrm{t}}^{y}\left(T^{\prime}\right)$-set can be extended to a total dominating set of T by adding the vertex w and any neighbor of w, and so $\gamma_{\mathrm{t}}^{x}(T) \leqslant \gamma_{\mathrm{t}}^{y}\left(T^{\prime}\right)+2=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+2=\gamma_{\mathrm{t}}(T)$ if $x \in N[w]$. Let S^{\prime} be a $\gamma_{\mathrm{t}}^{y}\left(T^{\prime} ; y\right)$-set. Since $\operatorname{sta}(y)=A$ and T^{\prime} satisfies condition (ii), $\left|S^{\prime}\right|=\gamma_{\mathrm{t}}^{y}\left(T^{\prime} ; y\right)=\gamma_{\mathrm{t}}\left(T^{\prime}\right)-1$. Now, S^{\prime} can be extended to a total dominating set of T by adding the set $\left\{u, w^{\prime}, w\right\}$, and so $\gamma_{\mathrm{t}}^{u}(T) \leqslant\left|S^{\prime}\right|+3=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+2=\gamma_{\mathrm{t}}(T)$. It follows that $\gamma_{\mathrm{t}}^{x}(T) \leqslant \gamma_{\mathrm{t}}(T)$ for every vertex x of T. Consequently, $\gamma_{\mathrm{t}}^{x}(T)=\gamma_{\mathrm{t}}(T)$ for every vertex x of T. Hence, T is γ_{t}-excellent and $\gamma_{\mathrm{t}}(T)=2 m$, i.e., condition (i) holds for the tree T.

Suppose v is a vertex of T with $\operatorname{sta}(v)=A$. Suppose $v \in V\left(T^{\prime}\right)$. Then any $\gamma_{\mathrm{t}}^{v}\left(T^{\prime} ; v\right)$ set can be extended to an almost total dominating set of T relative to v by adding the
set $\left\{w^{\prime}, w\right\}$, and so $\gamma_{\mathrm{t}}^{v}(T ; v) \leqslant \gamma_{\mathrm{t}}^{v}\left(T^{\prime} ; v\right)+2=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+1=\gamma_{\mathrm{t}}(T)-1$. Any $\gamma_{\mathrm{t}}^{y}\left(T^{\prime}\right)$-set can be extended to an almost total dominating set of T relative to w by adding the vertex w, and so $\gamma_{\mathrm{t}}^{w}(T ; w) \leqslant \gamma_{\mathrm{t}}^{y}\left(T^{\prime}\right)+1=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+1=\gamma_{\mathrm{t}}(T)-1$. Any $\gamma_{\mathrm{t}}^{y}\left(T^{\prime} ; y\right)$-set can be extended to an almost total dominating set of T relative to z by adding the set $\left\{u, w^{\prime}\right\}$, and so $\gamma_{\mathrm{t}}^{z}(T ; z) \leqslant \gamma_{\mathrm{t}}^{y}\left(T^{\prime} ; y\right)+2=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+1=\gamma_{\mathrm{t}}(T)-1$. Hence, $\gamma_{\mathrm{t}}^{v}(T ; v) \leqslant \gamma_{\mathrm{t}}(T)-1$ for every vertex of T of status A. By Observation $3, \gamma_{\mathrm{t}}^{v}(T ; v) \geqslant \gamma_{\mathrm{t}}(T)-1$ for every vertex v of T. Consequently, $\gamma_{\mathrm{t}}^{v}(T ; v)=\gamma_{\mathrm{t}}(T)-1$ for every vertex of T of status A. Hence, condition (ii) holds for the tree T.

Any $\gamma_{\mathrm{t}}(T)$-set is a total dominating set of U in T, and so $\gamma_{\mathrm{t}}(T ; U) \leqslant \gamma_{\mathrm{t}}(T)=2 m$. We show that $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}(T ; U)$. Let S be a $\gamma_{\mathrm{t}}(T ; U)$-set. Since $\operatorname{sta}(z)=A$, the vertex z must be totally dominated by S, and so $w \in S$. Since $\operatorname{sta}(w)=A$, the vertex w must be totally dominated by S, and so we may assume that $w^{\prime} \in S$. Let $S^{\prime}=S \cap V\left(T^{\prime}\right)$. If $u \in S$, then replacing u by any neighbor of y in T^{\prime} produces a total dominating set of U in T of cardinality S. Hence, we may assume that $u \notin S$. Let $U^{\prime}=U-\{w, z\}$. Then, S^{\prime} is a total dominating set of U^{\prime} in T^{\prime}. Since T^{\prime} satisfies condition (iii), $2(m-1)=\gamma_{\mathrm{t}}\left(T^{\prime} ; U^{\prime}\right) \leqslant\left|S^{\prime}\right|$, and so $\gamma_{\mathrm{t}}(T ; U)=|S|=\left|S^{\prime}\right|+2 \geqslant 2 m=\gamma_{\mathrm{t}}(T)$. Consequently, $\gamma_{\mathrm{t}}(T ; U)=\gamma_{\mathrm{t}}(T)$. Hence, condition (iii) holds for the tree T.

By Observation 3, $\gamma_{\mathrm{t}}^{v}(T ; v) \leqslant \gamma_{\mathrm{t}}(T)$ for every vertex v of T. Suppose v is a vertex of T with $\operatorname{sta}(v)=B$ or C. We show that $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}^{v}(T ; v)$. Let S be a $\gamma_{\mathrm{t}}^{v}(T ; v)$-set.

Suppose $\operatorname{sta}(v)=C$. Then, by Observation 2, v is a leaf of T and is adjacent to a strong support vertex v^{\prime} of status A. Let z^{\prime} be a leaf of v^{\prime} different from v. Since z^{\prime} is totally dominated by $S, v^{\prime} \in S$. Thus, v is totally dominated by S. Hence, if $\operatorname{sta}(v)=C$, then S is a total dominating set of T, and so $\gamma_{\mathrm{t}}(T) \leqslant|S|=\gamma_{\mathrm{t}}^{v}(T ; v)$. Consequently, $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)$ if $\operatorname{sta}(v)=C$.

Suppose $\operatorname{sta}(v)=B$. If S is a total dominating set of T, then $\gamma_{\mathrm{t}}(T) \leqslant|S|=\gamma_{\mathrm{t}}^{v}(T ; v)$. Hence we may assume that S is an almost total dominating set of T relative to v and that v is not totally dominated by S. Since $\operatorname{sta}(z)=A$, the vertex z must be totally dominated by S, and so $w \in S$. Since $\operatorname{sta}(w)=A$, the vertex w must be totally dominated by S, and so we may assume that $w^{\prime} \in S$. Hence both u and w^{\prime} are totally dominated by S, and so $v \in V\left(T^{\prime}\right)$. Let $S^{\prime}=S \cap V\left(T^{\prime}\right)$. If $u \in S$, then replacing u by the neighbor of y in T^{\prime} of status A or C produces an almost total dominating set of T relative to v. Hence, we may assume that $u \notin S$. But then S^{\prime} is an almost total dominating set of T^{\prime} relative to v, and so $\gamma_{\mathrm{t}}(T)-2=\gamma_{\mathrm{t}}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}^{v}\left(T^{\prime} ; v\right) \leqslant\left|S^{\prime}\right|=|S|-2=\gamma_{\mathrm{t}}^{v}(T ; v)-2$. Thus, $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}^{v}(T ; v)$. Consequently, $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)$ if $\operatorname{sta}(v)=B$. Hence, condition (iv) holds for the tree T.

Suppose $\operatorname{sta}(v)=A$. If $v \in\{w, z\}$, then no leaf is at distance 2 or 3 from v. On the other hand, if $v \in V\left(T^{\prime}\right)$, then, by the inductive hypothesis, no leaf is at distance 2 or 3 from v in T^{\prime} and therefore also in T. Hence, condition (v) holds for the tree T.

Case 2: T is obtained from T^{\prime} by operation \mathscr{T}_{2}.
Suppose T is obtained from T^{\prime} by adding a star $K_{1, t}, t \geqslant 3$, with center w, by subdividing one edge $u w$ once, and then adding the edge $u y$ where $y \in V\left(T^{\prime}\right)$ and $\operatorname{sta}(y)=A$. Let w^{\prime} denote the vertex adjacent to u and w, and let z denote the leaf adjacent to w with $\operatorname{sta}(z)=C$.

Proceeding as in Case 1, we can show that $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+2=2 m$ and that conditions (i), (ii) and (v) hold for the tree T.

Let S be a $\gamma_{\mathrm{t}}(T ; U)$-set. Since $\operatorname{sta}(z)=C$, the vertex z must be totally dominated by S, and so $w \in S$. Hence, proceeding as in Case 1, we can show that T satisfies condition (iii).

Let v be a vertex of T. If $\operatorname{sta}(v)=C$, then, as in Case 1 , we can show that $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)$. Suppose that $\operatorname{sta}(v)=B$. By Observation $3, \gamma_{\mathrm{t}}^{v}(T ; v) \leqslant \gamma_{\mathrm{t}}(T)$. We show that $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}^{v}(T ; v)$. Let S be an $\gamma_{\mathrm{t}}^{v}(T ; v)$-set. If S is a total dominating set of T, then $\gamma_{\mathrm{t}}(T) \leqslant|S|=\gamma_{\mathrm{t}}^{v}(T ; v)$. Hence we may assume that S is an almost total dominating set of T relative to v and that v is not totally dominated by S. Let z^{\prime} be a leaf adjacent to w that is distinct from z. Since at least one of z and z^{\prime} must be totally dominated by $S, w \in S$. Hence every leaf adjacent to w is totally dominated by S, and so v is not a leaf of T adjacent to w. Since $\operatorname{sta}(w)=A$, the vertex w must be totally dominated by S, and so we may assume that $w^{\prime} \in S$. Proceeding now as in Case 1 , we can show that $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)$. Hence, condition (iv) holds for the tree T.

Case 3: T is obtained from T^{\prime} by operation \mathscr{T}_{3}.
Suppose T is obtained from T^{\prime} by adding a path u, w, z and the edge $u y$ where $y \in V\left(T^{\prime}\right)$ and $\operatorname{sta}(y)=B$, and letting $\operatorname{sta}(u)=B$ and $\operatorname{sta}(w)=\operatorname{sta}(z)=A$.

We show firstly that $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+2$. Any $\gamma_{\mathrm{t}}\left(T^{\prime}\right)$-set can be extended to a total dominating set of T by adding the set $\{u, w\}$, and so $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}\left(T^{\prime}\right)+2$. Now let S be a $\gamma_{\mathrm{t}}(T)$-set, and let $S^{\prime}=S \cap V\left(T^{\prime}\right)$. We may assume that $u, w \in S$. Hence, S^{\prime} is an almost total dominating set of T relative to y. Since $\operatorname{sta}(y)=B$, and since condition (iv) holds for the tree $T^{\prime}, \gamma_{\mathrm{t}}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}^{y}\left(T^{\prime} ; y\right) \leqslant\left|S^{\prime}\right|=|S|-2=\gamma_{\mathrm{t}}(T)-2$. In any event, $\gamma_{\mathrm{t}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{t}}(T)-2$. Consequently, $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+2$. Since T^{\prime} satisfies condition (i), $\gamma_{\mathrm{t}}\left(T^{\prime}\right)=2(m-1)$, and so $\gamma_{\mathrm{t}}(T)=2 m$.

Suppose $x \in V\left(T^{\prime}\right)$. Since T^{\prime} is γ_{t}-excellent, $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}\left(T^{\prime}\right)$. Now, any $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)$-set can be extended to a total dominating set of T by adding the set $\{u, w\}$, and so $\gamma_{\mathrm{t}}^{x}(T) \leqslant \gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)+2=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+2=\gamma_{\mathrm{t}}(T)$. Any $\gamma_{\mathrm{t}}\left(T^{\prime}\right)$-set can be extended to a total dominating set of T by adding the vertex w and any neighbor of w, and so $\gamma_{\mathrm{t}}^{x}(T) \leqslant \gamma_{\mathrm{t}}\left(T^{\prime}\right)+$ $2=\gamma_{\mathrm{t}}(T)$ if $x \in N[w]$. Consequently, $\gamma_{\mathrm{t}}^{x}(T)=\gamma_{\mathrm{t}}(T)$ for every vertex x of T. Hence, T is γ_{t}-excellent and $\gamma_{\mathrm{t}}(T)=2 m$., i.e., condition (i) holds for the tree T.

Suppose v is a vertex of T with $\operatorname{sta}(v)=A$. Suppose $v \in V\left(T^{\prime}\right)$. Then any $\gamma_{\mathrm{t}}^{v}\left(T^{\prime} ; v\right)$-set can be extended to an almost total dominating set of T relative to v by adding the set $\{u, w\}$, and so $\gamma_{\mathrm{t}}^{v}(T ; v) \leqslant \gamma_{\mathrm{t}}^{v}\left(T^{\prime} ; v\right)+2=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+1=\gamma_{\mathrm{t}}(T)-1$. Any $\gamma_{\mathrm{t}}^{y}\left(T^{\prime}\right)$-set can be extended to an almost total dominating set of T relative to w by adding the vertex w, and so $\gamma_{\mathrm{t}}^{w}(T ; w) \leqslant \gamma_{\mathrm{t}}^{y}\left(T^{\prime}\right)+1=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+1=\gamma_{\mathrm{t}}(T)-1$. Any $\gamma_{\mathrm{t}}^{y}\left(T^{\prime}\right)$-set can be extended to an almost total dominating set of T relative to z by adding the vertex u, and so $\gamma_{\mathrm{t}}^{z}(T ; z) \leqslant \gamma_{\mathrm{t}}^{y}\left(T^{\prime}\right)+1=\gamma_{\mathrm{t}}(T)-1$. Hence, $\gamma_{\mathrm{t}}^{v}(T ; v) \leqslant \gamma_{\mathrm{t}}(T)-1$ for every vertex of T of status A. By Observation $3, \gamma_{\mathrm{t}}^{v}(T ; v) \geqslant \gamma_{\mathrm{t}}(T)-1$ for every vertex v of T. Consequently, $\gamma_{\mathrm{t}}^{v}(T ; v)=\gamma_{\mathrm{t}}(T)-1$ for every vertex of T of status A. Hence, condition (ii) holds for the tree T.

Any $\gamma_{\mathrm{t}}(T)$-set is a total dominating set of U in T, and so $\gamma_{\mathrm{t}}(T ; U) \leqslant \gamma_{\mathrm{t}}(T)=2 m$. We show that $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}(T ; U)$. Let S be a $\gamma_{\mathrm{t}}(T ; U)$-set. Since $\operatorname{sta}(z)=A$, the vertex z must be totally dominated by S, and so $w \in S$. Since $\operatorname{sta}(w)=A$, the vertex w must be totally dominated by S, and so we may assume that $u \in S$. Let $S^{\prime}=S \cap V\left(T^{\prime}\right)$ and let $U^{\prime}=U-\{w, z\}$. Since $\operatorname{sta}(y)=B, S^{\prime}$ is a total dominating set of U^{\prime} in T^{\prime}. Since T^{\prime} satisfies condition (iii), $2(m-1)=\gamma_{\mathrm{t}}\left(T^{\prime} ; U^{\prime}\right) \leqslant\left|S^{\prime}\right|$, and so $\gamma_{\mathrm{t}}(T ; U)=|S|=$
$\left|S^{\prime}\right|+2 \geqslant 2 m=\gamma_{\mathrm{t}}(T)$. Consequently, $\gamma_{\mathrm{t}}(T ; U)=\gamma_{\mathrm{t}}(T)$. Hence, condition (iii) holds for the tree T.

By Observation 3, $\gamma_{\mathrm{t}}^{v}(T ; v) \leqslant \gamma_{\mathrm{t}}(T)$ for every vertex v of T. Suppose v is a vertex of T with $\operatorname{sta}(v)=B$ or C. We show that $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}^{v}(T ; v)$. Let S be an $\gamma_{\mathrm{t}}^{v}(T ; v)$-set. If $\operatorname{sta}(v)=C$, then, as in Case 1, we can show that $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)$. Hence we may assume that $\operatorname{sta}(v)=B$. If S is a total dominating set of T, then $\gamma_{\mathrm{t}}(T) \leqslant|S|=\gamma_{\mathrm{t}}^{v}(T ; v)$. Hence we may assume that S is an almost total dominating set of T relative to v and that v is not totally dominated by S. Since $\operatorname{sta}(z)=A$, the vertex z must be totally dominated by S, and so $w \in S$. Since $\operatorname{sta}(w)=A$, the vertex w must be totally dominated by S, and so we may assume that $u \in S$. Let $S^{\prime}=S \cap V\left(T^{\prime}\right)$ and let $U^{\prime}=U-\{w, z\}$. Since $\operatorname{sta}(y)=B, S^{\prime}$ is a total dominating set of U^{\prime} in T^{\prime}. Since T^{\prime} satisfies condition (iii), $2(m-1)=\gamma_{\mathrm{t}}\left(T^{\prime} ; U^{\prime}\right) \leqslant\left|S^{\prime}\right|$, and so $\gamma_{\mathrm{t}}^{v}(T ; v)=|S|=\left|S^{\prime}\right|+$ $2 \geqslant 2 m=\gamma_{\mathrm{t}}(T)$. Consequently, $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)$. Hence, condition (iv) holds for the tree T.

Suppose $\operatorname{sta}(v)=A$. By Observation 2, the vertex y is not a support vertex of T^{\prime}. Hence, if $v=w$ or if $v=z$, then no leaf is at distance 2 or 3 from v. On the other hand, if $v \in V\left(T^{\prime}\right)$, then, by the inductive hypothesis, no leaf is at distance 2 or 3 from v in T^{\prime} and therefore also in T. Hence, condition (v) holds for the tree T.

Case 4: T is obtained from T^{\prime} by operation \mathscr{T}_{4}.
Suppose T is obtained from T^{\prime} by adding a star $K_{1, t}$ for $t \geqslant 3$ with center w and the edge $u y$ where $y \in V\left(T^{\prime}\right)$ and $\operatorname{sta}(y)=B$ and u is a vertex adjacent to w. Let z denote the leaf adjacent to w with $\operatorname{sta}(z)=C$. Then, $\operatorname{sta}(w)=A$ and $\operatorname{sta}(v)=B$ for each remaining vertex v that was added to T^{\prime}.

Proceeding as in Case 3, we can show that $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}\left(T^{\prime}\right)+2=2 m$ and that conditions (i), (ii) and (v) hold for the tree T.

Let S be a $\gamma_{\mathrm{t}}(T ; U)$-set. Since $\operatorname{sta}(z)=C$, the vertex z must be totally dominated by S, and so $w \in S$. Hence, proceeding as in Case 1 , we can show that T satisfies condition (iii).

It remains to show that T satisfies condition (iv). Let v be a vertex of T. If $\operatorname{sta}(v)=C$, then, as in Case 1, we can show that $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)$. Suppose that sta (v) $=B$. By Observation 3, $\gamma_{\mathrm{t}}^{v}(T ; v) \leqslant \gamma_{\mathrm{t}}(T)$. We show that $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}^{v}(T ; v)$. Let S be an $\gamma_{\mathrm{t}}^{v}(T ; v)$-set. If S is a total dominating set of T, then $\gamma_{\mathrm{t}}(T) \leqslant|S|=\gamma_{\mathrm{t}}^{v}(T ; v)$. Hence we may assume that S is an almost total dominating set of T relative to v and that v is not totally dominated by S. Let z^{\prime} be a leaf adjacent to w that is distinct from z. Since at least one of z and z^{\prime} must be totally dominated by S, we must have $w \in S$. Hence every leaf adjacent to w is totally dominated by S, and so v is not a leaf of T adjacent to w. Since $\operatorname{sta}(w)=A$, the vertex w must be totally dominated by S, and so we may assume that $u \in S$. Proceeding now as in Case 3, we can show that $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)$. Hence, condition (iv) holds for the tree T.

This completes the proof of Theorem 1.
As an immediate consequence of Theorem 1, we have the following results.
Corollary 2. If $T \in \mathscr{T}$, then $\operatorname{sta}(v)=A$ if and only if $\gamma_{\mathrm{t}}(T)=\gamma_{\mathrm{t}}^{v}(T ; v)+1$.

Corollary 3. If $T \in \mathscr{T}$ and v is a vertex of T at distance 2 or 3 from a leaf satisfying $\operatorname{deg} v \geqslant 2$, then $\operatorname{sta}(v)=B$.

3. Main result

In this section, we provide a constructive characterization of γ_{t}-excellent trees. We shall prove:

Theorem 4. A nontrivial tree T is γ_{t}-excellent if and only if $T \in \mathscr{T}$.
Proof. The sufficiency follows from Theorem 1. To prove the necessity, we proceed by induction on the order n of a γ_{t}-excellent tree T. If $\operatorname{diam}(T)=1$, then $T=K_{2} \in \mathscr{T}$. If $\operatorname{diam}(T)=2$, then T is a star $K_{1, r}$ with $r \geqslant 2$, and so $T \in \mathscr{T}$. Hence we may assume that $\operatorname{diam}(T) \geqslant 3$. Since no double-star is γ_{t}-excellent, $\operatorname{diam}(T) \geqslant 4$. Let T be rooted at an end-vertex r of a longest path. Let u be a vertex at distance $\operatorname{diam}(T)-2$ from r on a longest path starting at r, and let v be the child of u on this path. Let w denote the parent of u, and let y denote the parent of w. Before proceeding further, we list three observations.

Observation 4. No child of u is a leaf.
Proof. Suppose u has a child z which is a leaf. Since T is a γ_{t}-excellent tree, $\gamma_{\mathrm{t}}^{z}(T)=$ $\gamma_{\mathrm{t}}(T)$. Let S be a $\gamma_{\mathrm{t}}^{z}(T)$-set. Then, $\{u, v\} \subset S$, and so $S-\{z\}$ is a total dominating set of T. Hence, $\gamma_{\mathrm{t}}(T) \leqslant|S|-1<\gamma_{\mathrm{t}}^{z}(T)$, a contradiction.

Observation 5. $\operatorname{deg} u=2$.
Proof. Suppose $\operatorname{deg} u \geqslant 3$. Let $v_{1} \in C(u)-\{v\}$. By Observation 4, v_{1} is not a leaf and is therefore a support vertex. Let z be a child of v, and let S be a $\gamma_{\mathrm{t}}^{z}(T)$-set. Since every support vertex belongs to $S, C(u) \subset S$. In particular, $v_{1} \in S$. We may assume that $u \in S$ (otherwise we replace the child of v_{1} in S with u.) But then $S-\{z\}$ is a total dominating set of T. Hence, $\gamma_{\mathrm{t}}(T) \leqslant|S|-1<\gamma_{\mathrm{t}}^{z}(T)$, a contradiction.

Observation 6. No child of w is a leaf.
Proof. Suppose w has a child z which is a leaf. Let S be a $\gamma_{\mathrm{t}}^{z}(T)$-set. Since every support vertex is in $S,\{v, w\} \subset S$. We may assume that $u \in S$ (otherwise we replace the child of v in S with u). But then $S-\{z\}$ is a total dominating set of T. Hence, $\gamma_{\mathrm{t}}(T) \leqslant|S|-1<\gamma_{\mathrm{t}}^{z}(T)$, a contradiction.

We now consider two possibilities depending on whether or not w has a child that is a support vertex.

Case 1: Suppose a child of w is a support vertex.
Let $T^{\prime}=T-V\left(T_{u}\right)$, i.e., $T^{\prime}=T-N[v]$.

Claim 1. $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}(T)-2$ for every $x \in V\left(T^{\prime}\right)$.
Proof. Let $x \in V\left(T^{\prime}\right)$. Any $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)$-set can be extended to a total dominating set containing x by adding the set $\{u, v\}$, and so $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)+2$. Now let S_{x} be an $\gamma_{\mathrm{t}}^{x}(T)$-set, and let $S_{x}^{\prime}=S_{x} \cap V\left(T^{\prime}\right)$. Since T is γ_{t} excellent, $\left|S_{x}\right|=\gamma_{\mathrm{t}}(T)$. We may assume that $\{u, v\} \subset S_{x}$. Since S_{x} must contain every support vertex of T, and since w has a child that is a support vertex, it follows that S_{x}^{\prime} is a total dominating set of T^{\prime} containing x. Hence, $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right) \leqslant\left|S_{x}^{\prime}\right|=\left|S_{x}\right|-2=\gamma_{\mathrm{t}}^{x}(T)-2$. Consequently, $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}(T)-2$.

By Claim 1 applied to a vertex in a minimum total dominating set of T^{\prime}, T^{\prime} is a γ_{t}-excellent tree. Applying the inductive hypothesis to $T^{\prime}, T^{\prime} \in \mathscr{T}$. Hence, T^{\prime} can be obtained from a sequence T_{1}, \ldots, T_{m} of trees where T_{1} is a star $K_{1, r}$ with $r \geqslant 1$ and $T^{\prime}=T_{m}$, and, if $m \geqslant 2, T_{i+1}$ can be obtained from T_{i} by operation $\mathscr{T}_{1}, \mathscr{T}_{2}, \mathscr{T}_{3}$ or \mathscr{T}_{4} for $i=1, \ldots, m-1$.

Since $\operatorname{diam}(T) \geqslant 4$, we know that w cannot be the root of T, and so $\operatorname{deg}_{T}, w \geqslant 2$. By assumption, w is at distance 2 from a leaf in T^{\prime}. Hence, by Corollary 3, $\operatorname{sta}(w)=B$.

Now let $T=T_{m+1}$ be the tree obtained from $T^{\prime} \cup T_{u}$ by adding the edge $u w$. Then, T can be obtained from T^{\prime} by operation \mathscr{T}_{3} or \mathscr{T}_{4}. Hence, $T \in \mathscr{T}$.

Case 2: No child of w is a support vertex and $\operatorname{deg} w \geqslant 3$.
As shown in Observation 5, each child of w has degree 2. Let u_{1} be a child of w distinct from u, and let v_{1} the child of u_{1}. Let $T^{\prime}=T-V\left(T_{u}\right)$, i.e., $T^{\prime}=T-N[v]$.

Claim 2. $\gamma_{\mathrm{t}}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}(T)-2$.
Proof. Any $\gamma_{\mathrm{t}}\left(T^{\prime}\right)$-set can be extended to a total dominating set of T by adding the set $\{u, v\}$, and so $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}\left(T^{\prime}\right)+2$. Now let S be a $\gamma_{\mathrm{t}}(T)$-set, and let $S^{\prime}=S \cap V\left(T^{\prime}\right)$. Since T is γ_{t}-excellent, $|S|=\gamma_{\mathrm{t}}(T)$. Since every support vertex of T belongs to S, all descendants at distance 2 from w belong to S. We may assume that every child of w belongs to S. Hence, S^{\prime} is a total dominating set of T^{\prime}, and so $\gamma_{\mathrm{t}}\left(T^{\prime}\right) \leqslant\left|S^{\prime}\right|=|S|-2=\gamma_{\mathrm{t}}(T)-2$. Consequently, $\gamma_{\mathrm{t}}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}(T)-2$.

Claim 3. $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}(T)-2$ for every $x \in V\left(T^{\prime}\right)$.
Proof. Let $x \in V\left(T^{\prime}\right)$. Any $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)$-set can be extended to a total dominating set containing x by adding the set $\{u, v\}$, and so $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)+2$. For each $x \in V\left(T^{\prime}\right)$, we let S_{x} be a $\gamma_{\mathrm{t}}^{x}(T)$-set, and let $S_{x}^{\prime}=S_{x} \cap V\left(T^{\prime}\right)$. Since T is γ_{t}-excellent, $\left|S_{x}\right|=\gamma_{\mathrm{t}}(T)$. Since every support vertex belongs to S_{x}, all descendants at distance 2 from w belong to S_{x}. In particular, $\left\{v, v_{1}\right\} \subset S_{x}$. We may assume that $u \in S_{x}$.

Suppose x is a child of v_{1}. Consider the set S_{y}, where y is the parent of w. We may assume that $x \in S_{y}$ (if $u_{1} \in S_{y}$, then simply replace u_{1} by x), and so S_{y} is a total dominating set of T^{\prime} containing x and y. Hence, $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{t}}^{y}\left(T^{\prime}\right) \leqslant\left|S_{y}^{\prime}\right|=\left|S_{y}\right|$ $-2=\gamma_{\mathrm{t}}^{y}(T)-2=\gamma_{\mathrm{t}}(T)-2$. Consequently, $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}(T)-2$.

Suppose x is not a child of v_{1}. Then we may assume that $u_{1} \in S_{x}$ (if S_{x} contains a child of v_{1}, then replace this child with u_{1}), and so S_{x} is a total dominating set of
T^{\prime} containing x. Hence, $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right) \leqslant\left|S_{x}^{\prime}\right|=\left|S_{x}\right|-2=\gamma_{\mathrm{t}}^{x}(T)-2=\gamma_{\mathrm{t}}(T)-2$. Consequently, $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}(T)-2$.

By Claim 3, T^{\prime} is a γ_{t}-excellent tree. Applying the inductive hypothesis to $T^{\prime}, T^{\prime} \in \mathscr{T}$. Hence, T^{\prime} can be obtained from a sequence T_{1}, \ldots, T_{m} of trees where T_{1} is a star $K_{1, r}$ with $r \geqslant 1$ and $T^{\prime}=T_{m}$, and, if $m \geqslant 2, T_{i+1}$ can be obtained from T_{i} by operation $\mathscr{T}_{1}, \mathscr{T}_{2}, \mathscr{T}_{3}$ or \mathscr{T}_{4} for $i=1, \ldots, m-1$.

Since $\operatorname{deg}_{T^{\prime}} w \geqslant 2$ and w is at distance 3 from a leaf in T^{\prime}, it follows from Corollary 3 that $\operatorname{sta}(w)=B$.

Now let $T=T_{m+1}$ be the tree obtained from $T^{\prime} \cup T_{u}$ by adding the edge $u w$. Then, T can be obtained from T^{\prime} by operation \mathscr{T}_{3} or \mathscr{T}_{4}. Hence, $T \in \mathscr{T}$.

Case 3: $\operatorname{deg} w=2$.
Let $T^{\prime}=T-V\left(T_{w}\right)$, i.e., $T^{\prime}=T-N[v]-w$. Since T is γ_{t}-excellent, y cannot be the root of T, and so T^{\prime} is a nontrivial tree.

Claim 4. $\gamma_{\mathrm{t}}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}(T)-2$.
Proof. Any $\gamma_{\mathrm{t}}\left(T^{\prime}\right)$-set can be extended to a total dominating set of T by adding the set $\{u, v\}$, and so $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}\left(T^{\prime}\right)+2$. Now let S be a $\gamma_{\mathrm{t}}(T)$-set, and let $S^{\prime}=S \cap V\left(T^{\prime}\right)$. Since T is γ_{t} excellent, $|S|=\gamma_{\mathrm{t}}(T)$. We may assume that $\{u, v\} \subset S$. If $w \in S$, then $\mathrm{pn}(w, S)=\{y\}$ and $(S-\{w\}) \cup\left\{y^{\prime}\right\}$ is a $\gamma_{\mathrm{t}}(T)$-set, where $y^{\prime} \in N(y)-\{w\}$. Thus we may assume that $w \notin S$. Hence, S^{\prime} is a total dominating set of T^{\prime}, and so $\gamma_{\mathrm{t}}\left(T^{\prime}\right) \leqslant\left|S^{\prime}\right|=$ $|S|-2=\gamma_{\mathrm{t}}(T)-2$. Consequently, $\gamma_{\mathrm{t}}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}(T)-2$.

Claim 5. $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}(T)-2$ for every $x \in V\left(T^{\prime}\right)$.
Proof. Let $x \in V\left(T^{\prime}\right)$. Any $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)$-set can be extended to a total dominating set containing x by adding the set $\{u, v\}$, and so $\gamma_{\mathrm{t}}(T) \leqslant \gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)+2$. For each $x \in V\left(T^{\prime}\right)$, we let S_{x} be a $\gamma_{\mathrm{t}}^{x}(T)$-set, and let $S_{x}^{\prime}=S_{x} \cap V\left(T^{\prime}\right)$. Since T is γ_{t}-excellent, $\left|S_{x}\right|=\gamma_{\mathrm{t}}(T)$. We may assume that $\{u, v\} \subset S_{x}$. If $w \in S$, then $\operatorname{pn}(w, S)=\{y\}$ and $(S-\{w\}) \cup\left\{y^{\prime}\right\}$ is a $\gamma_{\mathrm{t}}(T)$-set, where $y^{\prime} \in N(y)-\{w\}$. Thus we may assume that $w \notin S$. Hence, S_{x}^{\prime} is a total dominating set of T^{\prime} containing x, and so $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right) \leqslant\left|S_{x}^{\prime}\right|=\left|S_{x}\right|-2=\gamma_{\mathrm{t}}(T)-2$. Consequently, $\gamma_{\mathrm{t}}^{x}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}(T)-2$.

Claim 6. $\gamma_{\mathrm{t}}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}^{y}\left(T^{\prime} ; y\right)+1$.
Proof. Let S_{w} be a $\gamma_{\mathrm{t}}^{w}(T)$-set, and let $S_{w}^{\prime}=S_{w} \cap V\left(T^{\prime}\right)$. Since T is γ_{t}-excellent, $\left|S_{w}\right|=$ $\gamma_{\mathrm{t}}(T)$. We may assume that $\{u, v\} \subset S_{w}$. Now S_{w}^{\prime} is an almost total dominating set of T^{\prime} relative to y, and so $\gamma_{\mathrm{t}}^{y}\left(T^{\prime} ; y\right) \leqslant\left|S_{w}^{\prime}\right|=\left|S_{w}\right|-3=\gamma_{\mathrm{t}}(T)-3=\gamma_{\mathrm{t}}\left(T^{\prime}\right)-1$. However, by Observation $3, \gamma_{\mathrm{t}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{t}}^{y}\left(T^{\prime} ; y\right)+1$. Consequently, $\gamma_{\mathrm{t}}\left(T^{\prime}\right)=\gamma_{\mathrm{t}}^{y}\left(T^{\prime} ; y\right)+1$.

By Claim 5, T^{\prime} is a γ_{t}-excellent tree. Applying the inductive hypothesis to $T^{\prime}, T^{\prime} \in \mathscr{T}$. Hence, T^{\prime} can be obtained from a sequence T_{1}, \ldots, T_{m} of trees where T_{1} is a star $K_{1, r}$ with $r \geqslant 1$ and $T^{\prime}=T_{m}$, and, if $m \geqslant 2, T_{i+1}$ can be obtained from T_{i} by operation $\mathscr{T}_{1}, \mathscr{T}_{2}, \mathscr{T}_{3}$ or \mathscr{T}_{4} for $i=1, \ldots, m-1$.

Since $T^{\prime} \in \mathscr{T}$, it follows from Corollary 2 and Claim 6 that $\operatorname{sta}(y)=A$. Hence, T can be obtained from $T^{\prime} \cup T_{w}$ by adding the edge $w y$. Thus, T can be obtained from T^{\prime} by operation \mathscr{T}_{1} or \mathscr{T}_{2}. Hence, $T \in \mathscr{T}$.

This completes the proof of Theorem 4.

References

[1] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219.
[2] O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34(1) (2000) 9-19.
[3] G.H. Fricke, T.W. Haynes, S.S. Hedetniemi, S.T. Hedetniemi, R.C. Laskar, Excellent trees, Bulletin of ICA 34 (2002) 27-38.
[4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds), Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[6] T.W. Haynes, M.A. Henning, A characterization of i-excellent trees, Discrete Math. 248 (2002) 69-77.
[7] M.A. Henning, Graphs with large total domination number, J. Graph Theory 35(1) (2000) 21-45.
[8] D. Sumner, personal communication, May 2000.

[^0]: ${ }^{2}$ Research supported in part by the South African National Research Foundation and the University of Natal.

 E-mail address: henning@nu.ac.za (M.A. Henning).

