

Discrete Mathematics 263 (2003) 93-104

www.elsevier.com/locate/disc

Total domination excellent trees [☆]

Michael A. Henning

School of Mathematics, Statistics and Information Technology, University of Natal, Private Bay X01, Pietermaritzburg 3209, South Africa

Received 6 February 2001; received in revised form 25 February 2002; accepted 11 March 2002

Abstract

A set *S* of vertices in a graph *G* is a total dominating set of *G* if every vertex of *G* is adjacent to some vertex in *S* (other than itself). The graph *G* is called total domination excellent if every vertex belongs to some total dominating set of *G* of minimum cardinality. We provide a constructive characterization of total domination excellent trees. (© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Total domination; Tree

1. Introduction

Let G be a graph without isolated vertices, and let v be a vertex of G. A set $S \subseteq V(G)$ is a *total dominating set* if every vertex in V(G) is adjacent to a vertex in S. Every graph without isolated vertices has a total dominating set, since S = V(G) is such a set. The *total domination number* of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set. A total dominating set of cardinality $\gamma_t(G)$ will be called a $\gamma_t(G)$ -set.

Total domination in graphs was introduced by Cockayne et al. [1] and is now well studied in graph theory (see, for example, [2,7]). The literature on this subject has been surveyed and detailed in the two books by Haynes et al. [4,5].

Fricke et al. [3] defined a graph G to be γ_t -excellent if every vertex of G belongs to some $\gamma_t(G)$ -set. They showed that the family of γ -excellent trees (trees where every vertex is in some minimum dominating set) is properly contained in the set of

 $[\]stackrel{\text{tr}}{\sim}$ Research supported in part by the South African National Research Foundation and the University of Natal.

E-mail address: henning@nu.ac.za (M.A. Henning).

⁰⁰¹²⁻³⁶⁵X/03/\$ - see front matter C 2002 Elsevier Science B.V. All rights reserved. PII: \$0012-365X(02)00572-1

i-excellent trees (trees where every vertex is in some minimum independent dominating set). The γ -excellent trees have been characterized by Sumner [8], while the *i*-excellent trees have been characterized in [6] where it is shown that any such tree of order at least three can be constructed using a double-star as a base tree and recursively applying one of two operations.

In this paper, we provide a constructive characterization of γ_t -excellent trees. We use a similar technique to that employed in [6] (we use a different base tree and recursively apply one of four operations, instead of two operations, to build the γ_t -excellent trees). For this purpose, we introduce some additional notation.

We define the *total domination number of G relative to v*, denoted $\gamma_t^v(G)$, as the minimum cardinality of a total dominating set in *G* that contains *v*. A total dominating set of cardinality $\gamma_t^v(G)$ containing *v* we call a $\gamma_t^v(G)$ -set. Hence, the graph *G* is γ_t -*excellent* if $\gamma_t^v(G) = \gamma_t(G)$ for every vertex *v* of *G*.

A vertex v is said to be *totally dominated* by a set $S \subseteq V(G)$ if it is adjacent to a vertex of S (other than itself). We define an *almost total dominating set of G relative to v* as a set of vertices of G that totally dominates all vertices of G, except possibly for v. The *almost total domination number of G relative to v*, denoted $\gamma_t^v(G; v)$, is the minimum cardinality of an almost total dominating set of G relative to v. An almost total dominating set of G relative to v of cardinality $\gamma_t^v(G; v)$ we call a $\gamma_t^v(G; v)$ -set. (Note that it is possible for v to belong to a $\gamma_t^v(G; v)$ -set although v itself may not be totally dominated.)

A subset $U \subseteq V(G)$ is *totally dominated* by a set $S \subseteq V(G)$ if every vertex of U is totally dominated by S. We define a *total dominating set of* U in G as a set of vertices in G that totally dominates U. The *total domination number of* U in G, denoted $\gamma_t(G; U)$, is the minimum cardinality of a total dominating set of U in G. A total dominating set of U in G of cardinality $\gamma_t(G; U)$ we call a $\gamma_t(G; U)$ -set.

For notation and graph theory terminology we, in general, follow [4]. Specifically, let G = (V, E) be a graph with vertex set V of order n and edge set E, and let v be a vertex in V. The open neighborhood of v is $N(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood of v is $N[v] = \{v\} \cup N(v)$. For a set $S \subseteq V$, its open neighborhood $N(S) = \bigcup_{v \in S} N(v)$ and its closed neighborhood $N[S] = N(S) \cup S$. The private neighborhood pn(v, S) of $v \in S$ is defined by $pn(v, S) = N[v] - N[S - \{v\}]$.

For ease of presentation, we mostly consider *rooted trees*. For a vertex v in a (rooted) tree T, we let C(v) and D(v) denote the set of children and descendants, respectively, of v, and we define $D[v] = D(v) \cup \{v\}$. The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v . A *leaf* of T is a vertex of degree 1, while a *support vertex* of T is a vertex adjacent to a leaf. A *strong support vertex* is adjacent to at least two leaves.

2. The family \mathcal{T}

Let \mathscr{T} be the family of trees T that can be obtained from a sequence T_1, \ldots, T_j $(j \ge 1)$ of trees such that T_1 is a star $K_{1,r}$ for $r \ge 1$ and $T = T_j$, and, if $j \ge 2$, T_{i+1} can be obtained recursively from T_i by one of the four operations \mathscr{T}_1 , \mathscr{T}_2 , \mathscr{T}_3 and \mathscr{T}_4 listed below.

We define the *status* of a vertex v, denoted $\operatorname{sta}(v)$, to be A, B or C where initially if $T_1 = K_2$, then $\operatorname{sta}(v) = A$ for each vertex v of T_1 , and if $T_1 = K_{1,r}$ with $r \ge 2$, then $\operatorname{sta}(v) = A$ for the central vertex of T_1 , $\operatorname{sta}(v) = B$ for every leaf v of T_1 , except for one leaf, and $\operatorname{sta}(v) = C$ for the remaining leaf of T_1 . Once a vertex is assigned a status, this status remains unchanged as the tree T is recursively constructed except possibly for a vertex of status C whose status may change to status A. (As soon as the neighbor of a vertex c of status C is no longer a strong support vertex, we change the status of c from status C to status A.) Intuitively, if a vertex v has status A or B in a γ_t -excellent tree, then using one of the four operations we construct a new γ_t -excellent tree by adding certain paths, stars, or subdivided stars and joining a specified vertex to v.

Operation \mathcal{T}_1 . The tree T_{i+1} is obtained from T_i by adding a path u, w', w, z and the edge uy where $y \in V(T_i)$ and $\operatorname{sta}(y) = A$, and letting $\operatorname{sta}(u) = \operatorname{sta}(w') = B$ and $\operatorname{sta}(w) = \operatorname{sta}(z) = A$.

Operation \mathscr{T}_2 . The tree T_{i+1} is obtained from T_i by adding a star $K_{1,t}$ for $t \ge 3$ with center w, subdivided one edge uw once, and then adding the edge uy where $y \in V(T_i)$ and $\operatorname{sta}(y) = A$. Let $\operatorname{sta}(w) = A$ and let $\operatorname{sta}(z) = C$ for exactly one leaf z adjacent to w, and let $\operatorname{sta}(v) = B$ for each remaining vertex v that was added to T_i .

Operation \mathscr{T}_3 . The tree T_{i+1} is obtained from T_i by adding a path u, w, z and the edge uy where $y \in V(T_i)$ and $\operatorname{sta}(y) = B$, and letting $\operatorname{sta}(u) = B$ and $\operatorname{sta}(w) = \operatorname{sta}(z) = A$. If the vertex y' of status A adjacent to y is adjacent to a vertex c of status C, and if y' is not a strong support vertex in T_{i+1} , then we change the status of the vertex c from status C to status A (we remark that the existence and uniqueness of y' follows from Observation 2(ii)).

Operation \mathscr{T}_4 . The tree T_{i+1} is obtained from T_i by adding a star $K_{1,t}$ for $t \ge 3$ with center w and adding the edge uy where $y \in V(T_i)$ and $\operatorname{sta}(y) = B$ and u is a vertex adjacent to w. Let $\operatorname{sta}(w) = A$, let $\operatorname{sta}(z) = C$ for exactly one leaf $z \ (\neq u)$ adjacent to w, and let $\operatorname{sta}(v) = B$ for each remaining vertex v that was added to T_i . If the vertex y' of status A adjacent to y is adjacent to a vertex c of status C, and if y' is not a strong support vertex in T_{i+1} , then we change the status of the vertex c from status C to status A.

If $T \in \mathcal{T}$, and T is obtained from a sequence T_1, \ldots, T_m of trees where T_1 is a star $K_{1,r}$ with $r \ge 1$ and $T = T_m$, and, if $m \ge 2$, T_{i+1} can be obtained from T_i by operation $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ or \mathcal{T}_4 for $i = 1, \ldots, m-1$, then we say that T has *length* m in \mathcal{T} . Since the length of T_{i+1} is one more than the length of T_i for $i = 1, \ldots, m-1$, and since T_{i+1} has exactly two additional vertices of status A or C than does T_i , we have the following observation.

Observation 1. If $T \in \mathcal{T}$, then the total number of vertices of status A or C is twice the length of T.

The following two observations follow readily from the way in which each tree in the family \mathcal{T} is constructed.

Observation 2. Let $T \in \mathcal{T}$ and let v be a vertex of T.

- (i) If sta(v) = C, then v is a leaf of T and is adjacent to a strong support vertex of status A;
- (ii) If sta(v) = B, then v is adjacent to a unique vertex of status A;
- (iii) If sta(v) = A, then all but one neighbor of v has status B;
- (iv) Every support vertex has status A.

Observation 3. If T is a nontrivial tree and v is a vertex of T, then

 $\gamma_t^v(T;v) \leq \gamma_t(T) \leq \gamma_t^v(T;v) + 1.$

Proof. Every $\gamma_t(T)$ -set is an almost total dominating set of G relative to v, and so $\gamma_t^v(T; v) \leq \gamma_t(T)$. Let S be an $\gamma_t^v(T; v)$ -set. If S is a total dominating set of T, then $\gamma_t(T) \leq |S|$. On the other hand, if v is not totally dominated by the set S, then, $S \cup \{v'\}$ is a total dominating set of T where v' is any neighbor of v, irrespective of whether $v \in S$ or $v \notin S$, and so $\gamma_t(T) \leq |S| + 1$. In any case, $\gamma_t(T) \leq |S| + 1 = \gamma_t^v(T; v) + 1$. \Box

We now present our main result of this section.

Theorem 1. Let $T \in \mathcal{T}$ have length *m* in \mathcal{T} and let *v* be a vertex of *T*. Let *U* denote the set of vertices of *T* of status *A* or status *C*. Then

- (i) T is a γ_t -excellent tree and $\gamma_t(T) = 2m$;
- (ii) if $\operatorname{sta}(v) = A$, then $\gamma_t(T) = \gamma_t^v(T; v) + 1$;
- (iii) $\gamma_t(T; U) = \gamma_t(T);$

(iv) if $\operatorname{sta}(v) = B$ or C, then $\gamma_t(T) = \gamma_t^v(T; v)$; (v) if $\operatorname{sta}(v) = A$, then no leaf is at distance 2 or 3 from v.

Proof. Since *T* has length *m* in \mathscr{T} , *T* can be obtained from a sequence T_1, \ldots, T_m of trees where T_1 is a star $K_{1,r}$ with $r \ge 1$ and $T = T_m$, and, if $m \ge 2$, T_{i+1} can be obtained from T_i by operation \mathscr{T}_1 , \mathscr{T}_2 , \mathscr{T}_3 or \mathscr{T}_4 for $i = 1, \ldots, m-1$. To prove the desired result, we proceed by induction on the length *m* of the sequence of trees needed to construct the tree *T*.

Suppose m = 1. Then *T* is a star $K_{1,r}$ for some $r \ge 1$. Thus, *T* is γ_t -excellent and $\gamma_t(T) = 2$. Let *v* be a vertex of *T* with $\operatorname{sta}(v) = A$. Then, $\gamma_t^v(T; v) = |\{v\}|$, and so $\gamma_t(T) = \gamma_t^v(T; v) + 1$. If r = 1, then *T* has two vertices of status *A*, while if $r \ge 2$, then *T* has one vertex of status *A* and one of status *C*. Hence, |U| = 2 and $\gamma_t(T; U) = 2 = \gamma_t(T)$. Let *v* be a vertex of *T* with $\operatorname{sta}(v) = B$ or *C*. Then, $r \ge 2$ and *v* is a leaf of *T*, and so $\gamma_t(T) = \gamma_t^v(T; v) = 2$. If $\operatorname{sta}(v) = A$, then no leaf is at distance 2 or 3 from *v*. Thus if m = 1, then conditions (i)–(v) all hold.

Assume, then, that the result holds for all trees in \mathscr{T} of length less than m in \mathscr{T} , where $m \ge 2$. Let T be a tree of length m in \mathscr{T} . Thus, $T \in \mathscr{T}$ can be obtained from a sequence T_1, T_2, \ldots, T_m of m trees. For notational convenience, we denote T_{m-1} simply by T'. Applying the inductive hypothesis to $T' \in \mathscr{T}$, conditions (i)–(v) hold for the tree T'. We now consider four possibilities depending on whether T is obtained from T' by operation $\mathscr{T}_1, \mathscr{T}_2, \mathscr{T}_3$ or \mathscr{T}_4 .

Case 1: *T* is obtained from *T'* by operation \mathcal{T}_1 .

Suppose T is obtained from T' by adding a path u, w', w, z and the edge uy where $y \in V(T')$ and $\operatorname{sta}(y) = A$. Hence, $\operatorname{sta}(u) = \operatorname{sta}(w') = B$ and $\operatorname{sta}(w) = \operatorname{sta}(z) = A$.

We show firstly that $\gamma_t(T) = \gamma_t(T') + 2$. Any $\gamma_t(T')$ -set can be extended to a total dominating set of T by adding the set $\{w', w\}$, and so $\gamma_t(T) \leq \gamma_t(T') + 2$. Now let S be a $\gamma_t(T)$ -set, and let $S' = S \cap V(T')$. We may assume that $w, w' \in S$. If $u \notin S$, then S' is a total dominating set of T', and so $\gamma_t(T') \leq |S'| = |S| - 2 = \gamma_t(T) - 2$. On the other hand, suppose $u \in S$. Then, S' is an almost total dominating set of T relative to y, and so $\gamma_t^y(T'; y) \leq |S'| = |S| - 3$. Since T' satisfies condition (ii), $\gamma_t(T') = \gamma_t^y(T'; y) + 1 \leq |S| - 2 = \gamma_t(T) - 2$. Hence, irrespective of whether $u \in S$ or $u \notin S$, $\gamma_t(T') \leq \gamma_t(T) - 2$. Consequently, $\gamma_t(T) = \gamma_t(T') + 2$. Since T' satisfies condition (i), $\gamma_t(T') = 2(m-1)$, and so $\gamma_t(T) = 2m$.

Suppose $x \in V(T')$. Since T' is γ_t -excellent, $\gamma_t^x(T') = \gamma_t(T')$. Now, any $\gamma_t^x(T')$ -set can be extended to a total dominating set of T by adding the set $\{w', w\}$, and so $\gamma_t^x(T) \leq \gamma_t^x(T') + 2 = \gamma_t(T') + 2 = \gamma_t(T)$. Suppose $x \in V(T) - V(T')$. Any $\gamma_t^y(T')$ -set can be extended to a total dominating set of T by adding the vertex w and any neighbor of w, and so $\gamma_t^x(T) \leq \gamma_t^y(T') + 2 = \gamma_t(T') + 2 = \gamma_t(T)$ if $x \in N[w]$. Let S' be a $\gamma_t^y(T'; y)$ -set. Since sta(y) = A and T' satisfies condition (ii), $|S'| = \gamma_t^y(T'; y) = \gamma_t(T') - 1$. Now, S'can be extended to a total dominating set of T by adding the set $\{u, w', w\}$, and so $\gamma_t^u(T) \leq |S'| + 3 = \gamma_t(T') + 2 = \gamma_t(T)$. It follows that $\gamma_t^x(T) \leq \gamma_t(T)$ for every vertex xof T. Consequently, $\gamma_t^x(T) = \gamma_t(T)$ for every vertex x of T. Hence, T is γ_t -excellent and $\gamma_t(T) = 2m$, i.e., condition (i) holds for the tree T.

Suppose v is a vertex of T with sta(v) = A. Suppose $v \in V(T')$. Then any $\gamma_t^v(T'; v)$ -set can be extended to an almost total dominating set of T relative to v by adding the

set $\{w', w\}$, and so $\gamma_t^v(T; v) \leq \gamma_t^v(T'; v) + 2 = \gamma_t(T') + 1 = \gamma_t(T) - 1$. Any $\gamma_t^v(T')$ -set can be extended to an almost total dominating set of T relative to w by adding the vertex w, and so $\gamma_t^w(T; w) \leq \gamma_t^v(T') + 1 = \gamma_t(T') + 1 = \gamma_t(T) - 1$. Any $\gamma_t^v(T'; y)$ -set can be extended to an almost total dominating set of T relative to z by adding the set $\{u, w'\}$, and so $\gamma_t^z(T; z) \leq \gamma_t^v(T'; y) + 2 = \gamma_t(T') + 1 = \gamma_t(T) - 1$. Hence, $\gamma_t^v(T; v) \leq \gamma_t(T) - 1$ for every vertex of T of status A. By Observation 3, $\gamma_t^v(T; v) \geq \gamma_t(T) - 1$ for every vertex v of T. Consequently, $\gamma_t^v(T; v) = \gamma_t(T) - 1$ for every vertex of T of status A. Hence, condition (ii) holds for the tree T.

Any $\gamma_t(T)$ -set is a total dominating set of U in T, and so $\gamma_t(T; U) \leq \gamma_t(T) = 2m$. We show that $\gamma_t(T) \leq \gamma_t(T; U)$. Let S be a $\gamma_t(T; U)$ -set. Since $\operatorname{sta}(z) = A$, the vertex z must be totally dominated by S, and so $w \in S$. Since $\operatorname{sta}(w) = A$, the vertex w must be totally dominated by S, and so we may assume that $w' \in S$. Let $S' = S \cap V(T')$. If $u \in S$, then replacing u by any neighbor of y in T' produces a total dominating set of U in T of cardinality S. Hence, we may assume that $u \notin S$. Let $U' = U - \{w, z\}$. Then, S' is a total dominating set of U' in T'. Since T' satisfies condition (iii), $2(m-1) = \gamma_t(T'; U') \leq |S'|$, and so $\gamma_t(T; U) = |S| = |S'| + 2 \geq 2m = \gamma_t(T)$. Consequently, $\gamma_t(T; U) = \gamma_t(T)$. Hence, condition (iii) holds for the tree T.

By Observation 3, $\gamma_t^v(T; v) \leq \gamma_t(T)$ for every vertex v of T. Suppose v is a vertex of T with sta(v) = B or C. We show that $\gamma_t(T) \leq \gamma_t^v(T; v)$. Let S be a $\gamma_t^v(T; v)$ -set.

Suppose $\operatorname{sta}(v) = C$. Then, by Observation 2, v is a leaf of T and is adjacent to a strong support vertex v' of status A. Let z' be a leaf of v' different from v. Since z' is totally dominated by S, $v' \in S$. Thus, v is totally dominated by S. Hence, if $\operatorname{sta}(v) = C$, then S is a total dominating set of T, and so $\gamma_t(T) \leq |S| = \gamma_t^v(T; v)$. Consequently, $\gamma_t(T) = \gamma_t^v(T; v)$ if $\operatorname{sta}(v) = C$.

Suppose $\operatorname{sta}(v) = B$. If *S* is a total dominating set of *T*, then $\gamma_t(T) \leq |S| = \gamma_t^v(T; v)$. Hence we may assume that *S* is an almost total dominating set of *T* relative to *v* and that *v* is not totally dominated by *S*. Since $\operatorname{sta}(z) = A$, the vertex *z* must be totally dominated by *S*, and so $w \in S$. Since $\operatorname{sta}(w) = A$, the vertex *w* must be totally dominated by *S*, and so we may assume that $w' \in S$. Hence both *u* and w' are totally dominated by *S*, and so $v \in V(T')$. Let $S' = S \cap V(T')$. If $u \in S$, then replacing *u* by the neighbor of *y* in *T'* of status *A* or *C* produces an almost total dominating set of *T* relative to *v*. Hence, we may assume that $u \notin S$. But then *S'* is an almost total dominating set of *T* relative to *v*. Hence, we may assume that $u \notin S$. But then *S'* is an almost total dominating set of *T* relative to *v*. Hence, we may assume that $u \notin S$. But then *S'* is an almost total dominating set of *T* relative to *v*. Hence, we may assume that $u \notin S$. But then *S'* is an almost total dominating set of *T* relative to *v*, and so $\gamma_t(T) - 2 = \gamma_t(T') = \gamma_t^v(T'; v) \leq |S'| = |S| - 2 = \gamma_t^v(T; v) - 2$. Thus, $\gamma_t(T) \leq \gamma_t^v(T; v)$. Consequently, $\gamma_t(T) = \gamma_t^v(T; v)$ if $\operatorname{sta}(v) = B$. Hence, condition (iv) holds for the tree *T*.

Suppose sta(v) = A. If $v \in \{w, z\}$, then no leaf is at distance 2 or 3 from v. On the other hand, if $v \in V(T')$, then, by the inductive hypothesis, no leaf is at distance 2 or 3 from v in T' and therefore also in T. Hence, condition (v) holds for the tree T.

Case 2: T is obtained from T' by operation \mathcal{T}_2 .

Suppose *T* is obtained from *T'* by adding a star $K_{1,t}$, $t \ge 3$, with center *w*, by subdividing one edge *uw* once, and then adding the edge *uy* where $y \in V(T')$ and $\operatorname{sta}(y) = A$. Let *w'* denote the vertex adjacent to *u* and *w*, and let *z* denote the leaf adjacent to *w* with $\operatorname{sta}(z) = C$.

Proceeding as in Case 1, we can show that $\gamma_t(T) = \gamma_t(T') + 2 = 2m$ and that conditions (i), (ii) and (v) hold for the tree T.

Let S be a $\gamma_t(T; U)$ -set. Since $\operatorname{sta}(z) = C$, the vertex z must be totally dominated by S, and so $w \in S$. Hence, proceeding as in Case 1, we can show that T satisfies condition (iii).

Let v be a vertex of T. If $\operatorname{sta}(v) = C$, then, as in Case 1, we can show that $\gamma_t(T) = \gamma_t^v(T; v)$. Suppose that $\operatorname{sta}(v) = B$. By Observation 3, $\gamma_t^v(T; v) \leq \gamma_t(T)$. We show that $\gamma_t(T) \leq \gamma_t^v(T; v)$. Let S be an $\gamma_t^v(T; v)$ -set. If S is a total dominating set of T, then $\gamma_t(T) \leq |S| = \gamma_t^v(T; v)$. Hence we may assume that S is an almost total dominating set of T relative to v and that v is not totally dominated by S. Let z' be a leaf adjacent to w that is distinct from z. Since at least one of z and z' must be totally dominated by S, $w \in S$. Hence every leaf adjacent to w is totally dominated by S, and so v is not a leaf of T adjacent to w. Since $\operatorname{sta}(w) = A$, the vertex w must be totally dominated by S, and so we may assume that $w' \in S$. Proceeding now as in Case 1, we can show that $\gamma_t(T) = \gamma_t^v(T; v)$. Hence, condition (iv) holds for the tree T.

Case 3: T is obtained from T' by operation \mathcal{T}_3 .

Suppose T is obtained from T' by adding a path u, w, z and the edge uy where $y \in V(T')$ and $\operatorname{sta}(y) = B$, and letting $\operatorname{sta}(u) = B$ and $\operatorname{sta}(w) = \operatorname{sta}(z) = A$.

We show firstly that $\gamma_t(T) = \gamma_t(T') + 2$. Any $\gamma_t(T')$ -set can be extended to a total dominating set of T by adding the set $\{u, w\}$, and so $\gamma_t(T) \leq \gamma_t(T') + 2$. Now let S be a $\gamma_t(T)$ -set, and let $S' = S \cap V(T')$. We may assume that $u, w \in S$. Hence, S' is an almost total dominating set of T relative to y. Since $\operatorname{sta}(y) = B$, and since condition (iv) holds for the tree T', $\gamma_t(T') = \gamma_t^y(T'; y) \leq |S'| = |S| - 2 = \gamma_t(T) - 2$. In any event, $\gamma_t(T') \leq \gamma_t(T) - 2$. Consequently, $\gamma_t(T) = \gamma_t(T') + 2$. Since T' satisfies condition (i), $\gamma_t(T') = 2(m-1)$, and so $\gamma_t(T) = 2m$.

Suppose $x \in V(T')$. Since T' is γ_t -excellent, $\gamma_t^x(T') = \gamma_t(T')$. Now, any $\gamma_t^x(T')$ -set can be extended to a total dominating set of T by adding the set $\{u, w\}$, and so $\gamma_t^x(T) \leq \gamma_t^x(T') + 2 = \gamma_t(T') + 2 = \gamma_t(T)$. Any $\gamma_t(T')$ -set can be extended to a total dominating set of T by adding the vertex w and any neighbor of w, and so $\gamma_t^x(T) \leq \gamma_t(T') + 2 = \gamma_t(T)$ if $x \in N[w]$. Consequently, $\gamma_t^x(T) = \gamma_t(T)$ for every vertex x of T. Hence, T is γ_t -excellent and $\gamma_t(T) = 2m$, i.e., condition (i) holds for the tree T.

Suppose *v* is a vertex of *T* with $\operatorname{sta}(v) = A$. Suppose $v \in V(T')$. Then any $\gamma_t^v(T'; v)$ -set can be extended to an almost total dominating set of *T* relative to *v* by adding the set $\{u, w\}$, and so $\gamma_t^v(T; v) \leq \gamma_t^v(T'; v) + 2 = \gamma_t(T') + 1 = \gamma_t(T) - 1$. Any $\gamma_t^v(T')$ -set can be extended to an almost total dominating set of *T* relative to *w* by adding the vertex *w*, and so $\gamma_t^w(T; w) \leq \gamma_t^v(T') + 1 = \gamma_t(T') - 1$. Any $\gamma_t^v(T')$ -set can be extended to an almost total dominating set of *T* relative to *x* by adding the vertex *w*, and so $\gamma_t^w(T; w) \leq \gamma_t^v(T') + 1 = \gamma_t(T') + 1 = \gamma_t(T) - 1$. Any $\gamma_t^v(T')$ -set can be extended to an almost total dominating set of *T* relative to *z* by adding the vertex *u*, and so $\gamma_t^z(T; z) \leq \gamma_t^v(T') + 1 = \gamma_t(T) - 1$. Hence, $\gamma_t^v(T; v) \leq \gamma_t(T) - 1$ for every vertex of *T* of status *A*. By Observation 3, $\gamma_t^v(T; v) \geq \gamma_t(T) - 1$ for every vertex *v* of *T*. Consequently, $\gamma_t^v(T; v) = \gamma_t(T) - 1$ for every vertex of *T* of status *A*. Hence, condition (ii) holds for the tree *T*.

Any $\gamma_t(T)$ -set is a total dominating set of U in T, and so $\gamma_t(T; U) \leq \gamma_t(T) = 2m$. We show that $\gamma_t(T) \leq \gamma_t(T; U)$. Let S be a $\gamma_t(T; U)$ -set. Since $\operatorname{sta}(z) = A$, the vertex z must be totally dominated by S, and so $w \in S$. Since $\operatorname{sta}(w) = A$, the vertex w must be totally dominated by S, and so we may assume that $u \in S$. Let $S' = S \cap V(T')$ and let $U' = U - \{w, z\}$. Since $\operatorname{sta}(y) = B$, S' is a total dominating set of U' in T'. Since T' satisfies condition (iii), $2(m-1) = \gamma_t(T'; U') \leq |S'|$, and so $\gamma_t(T; U) = |S| =$ $|S'| + 2 \ge 2m = \gamma_t(T)$. Consequently, $\gamma_t(T; U) = \gamma_t(T)$. Hence, condition (iii) holds for the tree *T*.

By Observation 3, $\gamma_t^v(T; v) \leq \gamma_t(T)$ for every vertex v of T. Suppose v is a vertex of T with $\operatorname{sta}(v) = B$ or C. We show that $\gamma_t(T) \leq \gamma_t^v(T; v)$. Let S be an $\gamma_t^v(T; v)$ -set. If $\operatorname{sta}(v) = C$, then, as in Case 1, we can show that $\gamma_t(T) = \gamma_t^v(T; v)$. Hence we may assume that $\operatorname{sta}(v) = B$. If S is a total dominating set of T, then $\gamma_t(T) \leq |S| = \gamma_t^v(T; v)$. Hence we may assume that S is an almost total dominating set of T relative to vand that v is not totally dominated by S. Since $\operatorname{sta}(z) = A$, the vertex z must be totally dominated by S, and so $w \in S$. Since $\operatorname{sta}(w) = A$, the vertex w must be totally dominated by S, and so we may assume that $u \in S$. Let $S' = S \cap V(T')$ and let $U' = U - \{w, z\}$. Since $\operatorname{sta}(y) = B$, S' is a total dominating set of U' in T'. Since T' satisfies condition (iii), $2(m-1) = \gamma_t(T'; U') \leq |S'|$, and so $\gamma_t^v(T; v) = |S| = |S'| + 2 \geq 2m = \gamma_t(T)$. Consequently, $\gamma_t(T) = \gamma_t^v(T; v)$. Hence, condition (iv) holds for the tree T.

Suppose $\operatorname{sta}(v) = A$. By Observation 2, the vertex y is not a support vertex of T'. Hence, if v = w or if v = z, then no leaf is at distance 2 or 3 from v. On the other hand, if $v \in V(T')$, then, by the inductive hypothesis, no leaf is at distance 2 or 3 from v in T' and therefore also in T. Hence, condition (v) holds for the tree T.

Case 4: T is obtained from T' by operation \mathcal{T}_4 .

Suppose T is obtained from T' by adding a star $K_{1,t}$ for $t \ge 3$ with center w and the edge uy where $y \in V(T')$ and $\operatorname{sta}(y) = B$ and u is a vertex adjacent to w. Let z denote the leaf adjacent to w with $\operatorname{sta}(z) = C$. Then, $\operatorname{sta}(w) = A$ and $\operatorname{sta}(v) = B$ for each remaining vertex v that was added to T'.

Proceeding as in Case 3, we can show that $\gamma_t(T) = \gamma_t(T') + 2 = 2m$ and that conditions (i), (ii) and (v) hold for the tree *T*.

Let S be a $\gamma_t(T; U)$ -set. Since $\operatorname{sta}(z) = C$, the vertex z must be totally dominated by S, and so $w \in S$. Hence, proceeding as in Case 1, we can show that T satisfies condition (iii).

It remains to show that T satisfies condition (iv). Let v be a vertex of T. If $\operatorname{sta}(v) = C$, then, as in Case 1, we can show that $\gamma_t(T) = \gamma_t^v(T; v)$. Suppose that $\operatorname{sta}(v) = B$. By Observation 3, $\gamma_t^v(T; v) \leq \gamma_t(T)$. We show that $\gamma_t(T) \leq \gamma_t^v(T; v)$. Let S be an $\gamma_t^v(T; v)$ -set. If S is a total dominating set of T, then $\gamma_t(T) \leq |S| = \gamma_t^v(T; v)$. Hence we may assume that S is an almost total dominating set of T relative to v and that v is not totally dominated by S. Let z' be a leaf adjacent to w that is distinct from z. Since at least one of z and z' must be totally dominated by S, we must have $w \in S$. Hence every leaf adjacent to w is totally dominated by S, and so v is not a leaf of T adjacent to w. Since $\operatorname{sta}(w) = A$, the vertex w must be totally dominated by S, and so we may assume that $u \in S$. Proceeding now as in Case 3, we can show that $\gamma_t(T) = \gamma_t^v(T; v)$.

This completes the proof of Theorem 1. \Box

As an immediate consequence of Theorem 1, we have the following results.

Corollary 2. If $T \in \mathcal{T}$, then $\operatorname{sta}(v) = A$ if and only if $\gamma_t(T) = \gamma_t^v(T; v) + 1$.

Corollary 3. If $T \in \mathcal{T}$ and v is a vertex of T at distance 2 or 3 from a leaf satisfying deg $v \ge 2$, then sta(v) = B.

3. Main result

In this section, we provide a constructive characterization of γ_t -excellent trees. We shall prove:

Theorem 4. A nontrivial tree T is γ_t -excellent if and only if $T \in \mathcal{T}$.

Proof. The sufficiency follows from Theorem 1. To prove the necessity, we proceed by induction on the order *n* of a γ_t -excellent tree *T*. If diam(T) = 1, then $T = K_2 \in \mathscr{T}$. If diam(T) = 2, then *T* is a star $K_{1,r}$ with $r \ge 2$, and so $T \in \mathscr{T}$. Hence we may assume that diam $(T) \ge 3$. Since no double-star is γ_t -excellent, diam $(T) \ge 4$. Let *T* be rooted at an end-vertex *r* of a longest path. Let *u* be a vertex at distance diam(T) - 2 from *r* on a longest path starting at *r*, and let *v* be the child of *u* on this path. Let *w* denote the parent of *u*, and let *y* denote the parent of *w*. Before proceeding further, we list three observations. \Box

Observation 4. No child of u is a leaf.

Proof. Suppose *u* has a child *z* which is a leaf. Since *T* is a γ_t -excellent tree, $\gamma_t^z(T) = \gamma_t(T)$. Let *S* be a $\gamma_t^z(T)$ -set. Then, $\{u, v\} \subset S$, and so $S - \{z\}$ is a total dominating set of *T*. Hence, $\gamma_t(T) \leq |S| - 1 < \gamma_t^z(T)$, a contradiction. \Box

Observation 5. deg u = 2.

Proof. Suppose deg $u \ge 3$. Let $v_1 \in C(u) - \{v\}$. By Observation 4, v_1 is not a leaf and is therefore a support vertex. Let z be a child of v, and let S be a $\gamma_t^z(T)$ -set. Since every support vertex belongs to S, $C(u) \subset S$. In particular, $v_1 \in S$. We may assume that $u \in S$ (otherwise we replace the child of v_1 in S with u.) But then $S - \{z\}$ is a total dominating set of T. Hence, $\gamma_t(T) \le |S| - 1 < \gamma_t^z(T)$, a contradiction. \Box

Observation 6. No child of w is a leaf.

Proof. Suppose w has a child z which is a leaf. Let S be a $\gamma_t^z(T)$ -set. Since every support vertex is in S, $\{v, w\} \subset S$. We may assume that $u \in S$ (otherwise we replace the child of v in S with u). But then $S - \{z\}$ is a total dominating set of T. Hence, $\gamma_t(T) \leq |S| - 1 < \gamma_t^z(T)$, a contradiction. \Box

We now consider two possibilities depending on whether or not w has a child that is a support vertex.

Case 1: Suppose a child of w is a support vertex. Let $T' = T - V(T_u)$, i.e., T' = T - N[v]. **Claim 1.** $\gamma_t^x(T') = \gamma_t(T) - 2$ for every $x \in V(T')$.

Proof. Let $x \in V(T')$. Any $\gamma_t^x(T')$ -set can be extended to a total dominating set containing x by adding the set $\{u, v\}$, and so $\gamma_t(T) \leq \gamma_t^x(T') + 2$. Now let S_x be an $\gamma_t^x(T)$ -set, and let $S'_x = S_x \cap V(T')$. Since T is γ_t -excellent, $|S_x| = \gamma_t(T)$. We may assume that $\{u, v\} \subset S_x$. Since S_x must contain every support vertex of T, and since w has a child that is a support vertex, it follows that S'_x is a total dominating set of T' containing x. Hence, $\gamma_t^x(T') \leq |S'_x| = |S_x| - 2 = \gamma_t^x(T) - 2$. Consequently, $\gamma_t^x(T') = \gamma_t(T) - 2$.

By Claim 1 applied to a vertex in a minimum total dominating set of T', T' is a γ_t -excellent tree. Applying the inductive hypothesis to $T', T' \in \mathcal{T}$. Hence, T' can be obtained from a sequence T_1, \ldots, T_m of trees where T_1 is a star $K_{1,r}$ with $r \ge 1$ and $T' = T_m$, and, if $m \ge 2$, T_{i+1} can be obtained from T_i by operation \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 or \mathcal{T}_4 for $i = 1, \ldots, m - 1$.

Since diam $(T) \ge 4$, we know that w cannot be the root of T, and so deg_{T'} $w \ge 2$. By assumption, w is at distance 2 from a leaf in T'. Hence, by Corollary 3, sta(w) = B.

Now let $T = T_{m+1}$ be the tree obtained from $T' \cup T_u$ by adding the edge *uw*. Then, T can be obtained from T' by operation \mathscr{T}_3 or \mathscr{T}_4 . Hence, $T \in \mathscr{T}$.

Case 2: No child of w is a support vertex and deg $w \ge 3$.

As shown in Observation 5, each child of w has degree 2. Let u_1 be a child of w distinct from u, and let v_1 the child of u_1 . Let $T' = T - V(T_u)$, i.e., T' = T - N[v].

Claim 2. $\gamma_t(T') = \gamma_t(T) - 2$.

Proof. Any $\gamma_t(T')$ -set can be extended to a total dominating set of T by adding the set $\{u, v\}$, and so $\gamma_t(T) \leq \gamma_t(T')+2$. Now let S be a $\gamma_t(T)$ -set, and let $S' = S \cap V(T')$. Since T is γ_t -excellent, $|S| = \gamma_t(T)$. Since every support vertex of T belongs to S, all descendants at distance 2 from w belong to S. We may assume that every child of w belongs to S. Hence, S' is a total dominating set of T', and so $\gamma_t(T') \leq |S'| = |S| - 2 = \gamma_t(T) - 2$. Consequently, $\gamma_t(T') = \gamma_t(T) - 2$.

Claim 3. $\gamma_t^x(T') = \gamma_t(T) - 2$ for every $x \in V(T')$.

Proof. Let $x \in V(T')$. Any $\gamma_t^x(T')$ -set can be extended to a total dominating set containing x by adding the set $\{u, v\}$, and so $\gamma_t(T) \leq \gamma_t^x(T') + 2$. For each $x \in V(T')$, we let S_x be a $\gamma_t^x(T)$ -set, and let $S'_x = S_x \cap V(T')$. Since T is γ_t -excellent, $|S_x| = \gamma_t(T)$. Since every support vertex belongs to S_x , all descendants at distance 2 from w belong to S_x . In particular, $\{v, v_1\} \subset S_x$. We may assume that $u \in S_x$.

Suppose x is a child of v_1 . Consider the set S_y , where y is the parent of w. We may assume that $x \in S_y$ (if $u_1 \in S_y$, then simply replace u_1 by x), and so S_y is a total dominating set of T' containing x and y. Hence, $\gamma_t^x(T') \leq \gamma_t^y(T') \leq |S'_y| = |S_y| - 2 = \gamma_t^y(T) - 2 = \gamma_t(T) - 2$. Consequently, $\gamma_t^x(T') = \gamma_t(T) - 2$.

Suppose x is not a child of v_1 . Then we may assume that $u_1 \in S_x$ (if S_x contains a child of v_1 , then replace this child with u_1), and so S_x is a total dominating set of

T' containing x. Hence, $\gamma_t^x(T') \leq |S'_x| = |S_x| - 2 = \gamma_t^x(T) - 2 = \gamma_t(T) - 2$. Consequently, $\gamma_t^x(T') = \gamma_t(T) - 2$. \Box

By Claim 3, T' is a γ_t -excellent tree. Applying the inductive hypothesis to T', $T' \in \mathcal{T}$. Hence, T' can be obtained from a sequence T_1, \ldots, T_m of trees where T_1 is a star $K_{1,r}$ with $r \ge 1$ and $T' = T_m$, and, if $m \ge 2$, T_{i+1} can be obtained from T_i by operation \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 or \mathcal{T}_4 for $i = 1, \ldots, m - 1$.

Since $\deg_{T'} w \ge 2$ and w is at distance 3 from a leaf in T', it follows from Corollary 3 that $\operatorname{sta}(w) = B$.

Now let $T = T_{m+1}$ be the tree obtained from $T' \cup T_u$ by adding the edge uw. Then, T can be obtained from T' by operation \mathscr{T}_3 or \mathscr{T}_4 . Hence, $T \in \mathscr{T}$.

Case 3: deg w = 2.

Let $T' = T - V(T_w)$, i.e., T' = T - N[v] - w. Since T is γ_t -excellent, y cannot be the root of T, and so T' is a nontrivial tree.

Claim 4. $\gamma_t(T') = \gamma_t(T) - 2$.

Proof. Any $\gamma_t(T')$ -set can be extended to a total dominating set of T by adding the set $\{u, v\}$, and so $\gamma_t(T) \leq \gamma_t(T') + 2$. Now let S be a $\gamma_t(T)$ -set, and let $S' = S \cap V(T')$. Since T is γ_t -excellent, $|S| = \gamma_t(T)$. We may assume that $\{u, v\} \subset S$. If $w \in S$, then $pn(w, S) = \{y\}$ and $(S - \{w\}) \cup \{y'\}$ is a $\gamma_t(T)$ -set, where $y' \in N(y) - \{w\}$. Thus we may assume that $w \notin S$. Hence, S' is a total dominating set of T', and so $\gamma_t(T') \leq |S'| = |S| - 2 = \gamma_t(T) - 2$. Consequently, $\gamma_t(T') = \gamma_t(T) - 2$.

Claim 5. $\gamma_t^x(T') = \gamma_t(T) - 2$ for every $x \in V(T')$.

Proof. Let $x \in V(T')$. Any $\gamma_t^x(T')$ -set can be extended to a total dominating set containing x by adding the set $\{u, v\}$, and so $\gamma_t(T) \leq \gamma_t^x(T') + 2$. For each $x \in V(T')$, we let S_x be a $\gamma_t^x(T)$ -set, and let $S'_x = S_x \cap V(T')$. Since T is γ_t -excellent, $|S_x| = \gamma_t(T)$. We may assume that $\{u, v\} \subset S_x$. If $w \in S$, then $pn(w, S) = \{y\}$ and $(S - \{w\}) \cup \{y'\}$ is a $\gamma_t(T)$ -set, where $y' \in N(y) - \{w\}$. Thus we may assume that $w \notin S$. Hence, S'_x is a total dominating set of T' containing x, and so $\gamma_t^x(T') \leq |S'_x| = |S_x| - 2 = \gamma_t(T) - 2$. Consequently, $\gamma_t^x(T') = \gamma_t(T) - 2$. \Box

Claim 6. $\gamma_t(T') = \gamma_t^y(T'; y) + 1.$

Proof. Let S_w be a $\gamma_t^w(T)$ -set, and let $S'_w = S_w \cap V(T')$. Since T is γ_t -excellent, $|S_w| = \gamma_t(T)$. We may assume that $\{u, v\} \subset S_w$. Now S'_w is an almost total dominating set of T' relative to y, and so $\gamma_t^y(T'; y) \leq |S'_w| = |S_w| - 3 = \gamma_t(T) - 3 = \gamma_t(T') - 1$. However, by Observation 3, $\gamma_t(T') \leq \gamma_t^y(T'; y) + 1$. Consequently, $\gamma_t(T') = \gamma_t^y(T'; y) + 1$. \Box

By Claim 5, T' is a γ_t -excellent tree. Applying the inductive hypothesis to T', $T' \in \mathcal{T}$. Hence, T' can be obtained from a sequence T_1, \ldots, T_m of trees where T_1 is a star $K_{1,r}$ with $r \ge 1$ and $T' = T_m$, and, if $m \ge 2$, T_{i+1} can be obtained from T_i by operation \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 or \mathcal{T}_4 for $i = 1, \ldots, m - 1$. Since $T' \in \mathscr{T}$, it follows from Corollary 2 and Claim 6 that $\operatorname{sta}(y) = A$. Hence, T can be obtained from $T' \cup T_w$ by adding the edge wy. Thus, T can be obtained from T' by operation \mathscr{T}_1 or \mathscr{T}_2 . Hence, $T \in \mathscr{T}$.

This completes the proof of Theorem 4. \Box

References

- [1] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219.
- [2] O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34(1) (2000) 9–19.
- [3] G.H. Fricke, T.W. Haynes, S.S. Hedetniemi, S.T. Hedetniemi, R.C. Laskar, Excellent trees, Bulletin of ICA 34 (2002) 27–38.
- [4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds), Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [6] T.W. Haynes, M.A. Henning, A characterization of *i*-excellent trees, Discrete Math. 248 (2002) 69-77.
- [7] M.A. Henning, Graphs with large total domination number, J. Graph Theory 35(1) (2000) 21-45.
- [8] D. Sumner, personal communication, May 2000.