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Abstract

A set S of vertices in a graph G is a total dominating set of G if every vertex of G is
adjacent to some vertex in S (other than itself). The graph G is called total domination excellent
if every vertex belongs to some total dominating set of G of minimum cardinality. We provide
a constructive characterization of total domination excellent trees.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let G be a graph without isolated vertices, and let v be a vertex of G. A set S⊆V (G)
is a total dominating set if every vertex in V (G) is adjacent to a vertex in S. Every
graph without isolated vertices has a total dominating set, since S =V (G) is such a
set. The total domination number of G, denoted by �t(G), is the minimum cardinality
of a total dominating set. A total dominating set of cardinality �t(G) will be called a
�t(G)-set.
Total domination in graphs was introduced by Cockayne et al. [1] and is now well

studied in graph theory (see, for example, [2,7]). The literature on this subject has
been surveyed and detailed in the two books by Haynes et al. [4,5].
Fricke et al. [3] de<ned a graph G to be �t-excellent if every vertex of G belongs

to some �t(G)-set. They showed that the family of �-excellent trees (trees where ev-
ery vertex is in some minimum dominating set) is properly contained in the set of
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i-excellent trees (trees where every vertex is in some minimum independent domi-
nating set). The �-excellent trees have been characterized by Sumner [8], while the
i-excellent trees have been characterized in [6] where it is shown that any such tree of
order at least three can be constructed using a double-star as a base tree and recursively
applying one of two operations.
In this paper, we provide a constructive characterization of �t-excellent trees. We use

a similar technique to that employed in [6] (we use a diGerent base tree and recursively
apply one of four operations, instead of two operations, to build the �t-excellent trees).
For this purpose, we introduce some additional notation.
We de<ne the total domination number of G relative to v, denoted �vt (G), as the

minimum cardinality of a total dominating set in G that contains v. A total dominating
set of cardinality �vt (G) containing v we call a �

v
t (G)-set. Hence, the graph G is �t-

excellent if �vt (G)= �t(G) for every vertex v of G.
A vertex v is said to be totally dominated by a set S⊆V (G) if it is adjacent to a

vertex of S (other than itself). We de<ne an almost total dominating set of G relative
to v as a set of vertices of G that totally dominates all vertices of G, except possibly
for v. The almost total domination number of G relative to v, denoted �vt (G; v), is the
minimum cardinality of an almost total dominating set of G relative to v. An almost
total dominating set of G relative to v of cardinality �vt (G; v) we call a �

v
t (G; v)-set.

(Note that it is possible for v to belong to a �vt (G; v)-set although v itself may not be
totally dominated.)
A subset U⊆V (G) is totally dominated by a set S⊆V (G) if every vertex of U

is totally dominated by S. We de<ne a total dominating set of U in G as a set of
vertices in G that totally dominates U . The total domination number of U in G,
denoted �t(G;U ), is the minimum cardinality of a total dominating set of U in G. A
total dominating set of U in G of cardinality �t(G;U ) we call a �t(G;U )-set.
For notation and graph theory terminology we, in general, follow [4]. Speci<cally,

let G=(V; E) be a graph with vertex set V of order n and edge set E, and let v
be a vertex in V . The open neighborhood of v is N (v)= {u∈V | uv∈E} and the
closed neighborhood of v is N [v] = {v}∪N (v). For a set S⊆V , its open neighbor-
hood N (S)=

⋃
v∈S N (v) and its closed neighborhood N [S] =N (S)∪S. The private

neighborhood pn(v; S) of v∈S is de<ned by pn(v; S)=N [v]− N [S − {v}].
For ease of presentation, we mostly consider rooted trees. For a vertex v in a (rooted)

tree T , we let C(v) and D(v) denote the set of children and descendants, respectively,
of v, and we de<ne D[v] =D(v)∪{v}. The maximal subtree at v is the subtree of T
induced by D[v], and is denoted by Tv. A leaf of T is a vertex of degree 1, while a
support vertex of T is a vertex adjacent to a leaf. A strong support vertex is adjacent
to at least two leaves.

2. The family T

LetT be the family of trees T that can be obtained from a sequence T1; : : : ; Tj ( j¿1)
of trees such that T1 is a star K1; r for r¿1 and T =Tj, and, if j¿2; Ti+1 can be obtained
recursively from Ti by one of the four operations T1; T2; T3 and T4 listed below.
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We de<ne the status of a vertex v, denoted sta(v), to be A; B or C where initially
if T1 =K2, then sta(v)=A for each vertex v of T1, and if T1 =K1; r with r ¿ 2, then
sta(v)=A for the central vertex of T1; sta(v)=B for every leaf v of T1, except for
one leaf, and sta(v)=C for the remaining leaf of T1. Once a vertex is assigned a
status, this status remains unchanged as the tree T is recursively constructed except
possibly for a vertex of status C whose status may change to status A. (As soon as the
neighbor of a vertex c of status C is no longer a strong support vertex, we change the
status of c from status C to status A.) Intuitively, if a vertex v has status A or B in a
�t-excellent tree, then using one of the four operations we construct a new �t-excellent
tree by adding certain paths, stars, or subdivided stars and joining a speci<ed vertex
to v.
Operation T1. The tree Ti+1 is obtained from Ti by adding a path u; w′; w; z and the
edge uy where y∈V (Ti) and sta(y)=A, and letting sta(u)= sta(w′)=B and sta(w)=
sta(z)=A.

Operation T2. The tree Ti+1 is obtained from Ti by adding a star K1; t for t¿3 with
center w, subdivided one edge uw once, and then adding the edge uy where y∈V (Ti)
and sta(y)=A. Let sta(w)=A and let sta(z)=C for exactly one leaf z adjacent to w,
and let sta(v)=B for each remaining vertex v that was added to Ti.

Operation T3. The tree Ti+1 is obtained from Ti by adding a path u; w; z and the edge
uy where y∈V (Ti) and sta(y)=B, and letting sta(u)=B and sta(w)= sta(z)=A. If
the vertex y′ of status A adjacent to y is adjacent to a vertex c of status C, and if y′

is not a strong support vertex in Ti+1, then we change the status of the vertex c from
status C to status A (we remark that the existence and uniqueness of y′ follows from
Observation 2(ii)).

Operation T4. The tree Ti+1 is obtained from Ti by adding a star K1; t for t¿3 with
center w and adding the edge uy where y∈V (Ti) and sta(y)=B and u is a vertex
adjacent to w. Let sta(w)=A, let sta(z)=C for exactly one leaf z (�= u) adjacent to
w, and let sta(v)=B for each remaining vertex v that was added to Ti. If the vertex
y′ of status A adjacent to y is adjacent to a vertex c of status C, and if y′ is not a
strong support vertex in Ti+1, then we change the status of the vertex c from status C
to status A.
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If T ∈T, and T is obtained from a sequence T1; : : : ; Tm of trees where T1 is a star
K1; r with r¿1 and T =Tm, and, if m¿2; Ti+1 can be obtained from Ti by operation
T1; T2; T3 or T4 for i=1; : : : ; m− 1, then we say that T has length m in T. Since
the length of Ti+1 is one more than the length of Ti for i=1; : : : ; m − 1, and since
Ti+1 has exactly two additional vertices of status A or C than does Ti, we have the
following observation.

Observation 1. If T ∈T, then the total number of vertices of status A or C is twice
the length of T .

The following two observations follow readily from the way in which each tree in
the family T is constructed.

Observation 2. Let T ∈T and let v be a vertex of T .

(i) If sta(v)=C, then v is a leaf of T and is adjacent to a strong support vertex
of status A;

(ii) If sta(v)=B, then v is adjacent to a unique vertex of status A;
(iii) If sta(v)=A, then all but one neighbor of v has status B;
(iv) Every support vertex has status A.

Observation 3. If T is a nontrivial tree and v is a vertex of T , then

�vt (T ; v)6�t(T )6�
v
t (T ; v) + 1:

Proof. Every �t(T )-set is an almost total dominating set of G relative to v, and so
�vt (T ; v)6�t(T ). Let S be an �

v
t (T ; v)-set. If S is a total dominating set of T , then

�t(T )6|S|. On the other hand, if v is not totally dominated by the set S, then,
S∪{v′} is a total dominating set of T where v′ is any neighbor of v, irrespective
of whether v∈S or v =∈ S, and so �t(T )6|S| + 1. In any case, �t(T )6|S| + 1=
�vt (T ; v) + 1.

We now present our main result of this section.

Theorem 1. Let T ∈T have length m in T and let v be a vertex of T . Let U denote
the set of vertices of T of status A or status C. Then

(i) T is a �t-excellent tree and �t(T )= 2m;
(ii) if sta(v)=A, then �t(T )= �vt (T ; v) + 1;
(iii) �t(T ;U )= �t(T );
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(iv) if sta(v)=B or C, then �t(T )= �vt (T ; v);
(v) if sta(v)=A, then no leaf is at distance 2 or 3 from v.

Proof. Since T has length m in T; T can be obtained from a sequence T1; : : : ; Tm of
trees where T1 is a star K1; r with r¿1 and T =Tm, and, if m¿2; Ti+1 can be obtained
from Ti by operation T1; T2; T3 or T4 for i=1; : : : ; m−1. To prove the desired result,
we proceed by induction on the length m of the sequence of trees needed to construct
the tree T .
Suppose m=1. Then T is a star K1; r for some r¿1. Thus, T is �t-excellent and

�t(T )= 2. Let v be a vertex of T with sta(v)=A. Then, �vt (T ; v)= |{v}|, and so
�t(T )= �vt (T ; v)+1. If r=1, then T has two vertices of status A, while if r¿2, then T
has one vertex of status A and one of status C. Hence, |U |=2 and �t(T ;U )= 2= �t(T ).
Let v be a vertex of T with sta(v)=B or C. Then, r¿2 and v is a leaf of T , and so
�t(T )= �vt (T ; v)= 2. If sta(v)=A, then no leaf is at distance 2 or 3 from v. Thus if
m=1, then conditions (i)–(v) all hold.
Assume, then, that the result holds for all trees in T of length less than m in T,

where m¿2. Let T be a tree of length m in T. Thus, T ∈T can be obtained from a
sequence T1; T2; : : : ; Tm of m trees. For notational convenience, we denote Tm−1 simply
by T ′. Applying the inductive hypothesis to T ′∈T, conditions (i)–(v) hold for the
tree T ′. We now consider four possibilities depending on whether T is obtained from
T ′ by operation T1; T2; T3 or T4.

Case 1: T is obtained from T ′ by operation T1.
Suppose T is obtained from T ′ by adding a path u; w′; w; z and the edge uy where

y∈V (T ′) and sta(y)=A. Hence, sta(u)= sta(w′)=B and sta(w)= sta(z)=A.
We show <rstly that �t(T )= �t(T ′) + 2. Any �t(T ′)-set can be extended to a total

dominating set of T by adding the set {w′; w}, and so �t(T )6�t(T ′) + 2. Now let S
be a �t(T )-set, and let S ′= S∩V (T ′). We may assume that w; w′∈S. If u =∈ S, then S ′
is a total dominating set of T ′, and so �t(T ′)6|S ′|= |S| − 2= �t(T )− 2. On the other
hand, suppose u∈S. Then, S ′ is an almost total dominating set of T relative to y,
and so �yt (T

′;y)6|S ′|= |S| − 3. Since T ′ satis<es condition (ii), �t(T ′)= �yt (T ′;y) +
16|S|−2= �t(T )−2. Hence, irrespective of whether u∈S or u =∈ S; �t(T ′)6�t(T )−2.
Consequently, �t(T )= �t(T ′) + 2. Since T ′ satis<es condition (i), �t(T ′)= 2(m − 1),
and so �t(T )= 2m.
Suppose x∈V (T ′). Since T ′ is �t-excellent, �xt (T

′)= �t(T ′). Now, any �xt (T
′)-set

can be extended to a total dominating set of T by adding the set {w′; w}, and so
�xt (T )6�

x
t (T

′)+2= �t(T ′)+2= �t(T ). Suppose x∈V (T )−V (T ′). Any �yt (T ′)-set can
be extended to a total dominating set of T by adding the vertex w and any neighbor of
w, and so �xt (T )6�

y
t (T

′)+2= �t(T ′)+2= �t(T ) if x∈N [w]. Let S ′ be a �yt (T ′;y)-set.
Since sta(y)=A and T ′ satis<es condition (ii), |S ′|= �yt (T ′;y)= �t(T ′)− 1. Now, S ′
can be extended to a total dominating set of T by adding the set {u; w′; w}, and so
�ut (T )6|S ′| + 3= �t(T ′) + 2= �t(T ). It follows that �xt (T )6�t(T ) for every vertex x
of T . Consequently, �xt (T )= �t(T ) for every vertex x of T . Hence, T is �t-excellent
and �t(T )= 2m, i.e., condition (i) holds for the tree T .
Suppose v is a vertex of T with sta(v)=A. Suppose v∈V (T ′). Then any �vt (T

′; v)-
set can be extended to an almost total dominating set of T relative to v by adding the
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set {w′; w}, and so �vt (T ; v)6�vt (T ′; v)+2= �t(T ′)+1= �t(T )−1. Any �yt (T ′)-set can
be extended to an almost total dominating set of T relative to w by adding the vertex
w, and so �wt (T ;w)6�

y
t (T

′) + 1= �t(T ′) + 1= �t(T ) − 1. Any �yt (T
′;y)-set can be

extended to an almost total dominating set of T relative to z by adding the set {u; w′},
and so �zt (T ; z)6�

y
t (T

′;y)+2= �t(T ′)+1= �t(T )− 1. Hence, �vt (T ; v)6�t(T )− 1 for
every vertex of T of status A. By Observation 3, �vt (T ; v)¿�t(T )− 1 for every vertex
v of T . Consequently, �vt (T ; v)= �t(T ) − 1 for every vertex of T of status A. Hence,
condition (ii) holds for the tree T .
Any �t(T )-set is a total dominating set of U in T , and so �t(T ;U )6�t(T )= 2m. We

show that �t(T )6�t(T ;U ). Let S be a �t(T ;U )-set. Since sta(z)=A, the vertex z must
be totally dominated by S, and so w∈S. Since sta(w)=A, the vertex w must be totally
dominated by S, and so we may assume that w′∈S. Let S ′= S∩V (T ′). If u∈S, then
replacing u by any neighbor of y in T ′ produces a total dominating set of U in T of
cardinality S. Hence, we may assume that u =∈ S. Let U ′=U−{w; z}. Then, S ′ is a total
dominating set of U ′ in T ′. Since T ′ satis<es condition (iii); 2(m−1)= �t(T ′;U ′)6|S ′|,
and so �t(T ;U )= |S|= |S ′| + 2¿2m= �t(T ). Consequently, �t(T ;U )= �t(T ). Hence,
condition (iii) holds for the tree T .
By Observation 3, �vt (T ; v)6�t(T ) for every vertex v of T . Suppose v is a vertex

of T with sta(v)=B or C. We show that �t(T )6�vt (T ; v). Let S be a �
v
t (T ; v)-set.

Suppose sta(v)=C. Then, by Observation 2, v is a leaf of T and is adjacent to a
strong support vertex v′ of status A. Let z′ be a leaf of v′ diGerent from v. Since z′ is
totally dominated by S; v′∈S. Thus, v is totally dominated by S. Hence, if sta(v)=C,
then S is a total dominating set of T , and so �t(T )6|S|= �vt (T ; v). Consequently,
�t(T )= �vt (T ; v) if sta(v)=C.
Suppose sta(v)=B. If S is a total dominating set of T , then �t(T )6|S|= �vt (T ; v).

Hence we may assume that S is an almost total dominating set of T relative to v
and that v is not totally dominated by S. Since sta(z)=A, the vertex z must be totally
dominated by S, and so w∈S. Since sta(w)=A, the vertex w must be totally dominated
by S, and so we may assume that w′∈S. Hence both u and w′ are totally dominated
by S, and so v∈V (T ′). Let S ′= S∩V (T ′). If u∈S, then replacing u by the neighbor
of y in T ′ of status A or C produces an almost total dominating set of T relative to
v. Hence, we may assume that u =∈ S. But then S ′ is an almost total dominating set
of T ′ relative to v, and so �t(T )− 2= �t(T ′)= �vt (T

′; v)6|S ′|= |S| − 2= �vt (T ; v)− 2.
Thus, �t(T )6�vt (T ; v). Consequently, �t(T )= �

v
t (T ; v) if sta(v)=B. Hence, condition

(iv) holds for the tree T .
Suppose sta(v)=A. If v∈{w; z}, then no leaf is at distance 2 or 3 from v. On the

other hand, if v∈V (T ′), then, by the inductive hypothesis, no leaf is at distance 2 or
3 from v in T ′ and therefore also in T . Hence, condition (v) holds for the tree T .
Case 2: T is obtained from T ′ by operation T2.

Suppose T is obtained from T ′ by adding a star K1; t ; t¿3, with center w, by subdivid-
ing one edge uw once, and then adding the edge uy where y∈V (T ′) and sta(y)=A.
Let w′ denote the vertex adjacent to u and w, and let z denote the leaf adjacent to w
with sta(z)=C.
Proceeding as in Case 1, we can show that �t(T )= �t(T ′)+2=2m and that conditions

(i), (ii) and (v) hold for the tree T .
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Let S be a �t(T ;U )-set. Since sta(z)=C, the vertex z must be totally dominated
by S, and so w∈S. Hence, proceeding as in Case 1, we can show that T satis<es
condition (iii).
Let v be a vertex of T . If sta(v)=C, then, as in Case 1, we can show that

�t(T )= �vt (T ; v). Suppose that sta(v)=B. By Observation 3, �
v
t (T ; v)6�t(T ). We show

that �t(T )6�vt (T ; v). Let S be an �
v
t (T ; v)-set. If S is a total dominating set of T , then

�t(T )6|S|= �vt (T ; v). Hence we may assume that S is an almost total dominating set
of T relative to v and that v is not totally dominated by S. Let z′ be a leaf adjacent
to w that is distinct from z. Since at least one of z and z′ must be totally dominated
by S; w∈S. Hence every leaf adjacent to w is totally dominated by S, and so v is not
a leaf of T adjacent to w. Since sta(w)=A, the vertex w must be totally dominated
by S, and so we may assume that w′∈S. Proceeding now as in Case 1, we can show
that �t(T )= �vt (T ; v). Hence, condition (iv) holds for the tree T .

Case 3: T is obtained from T ′ by operation T3.
Suppose T is obtained from T ′ by adding a path u; w; z and the edge uy where

y∈V (T ′) and sta(y)=B, and letting sta(u)=B and sta(w)= sta(z)=A.
We show <rstly that �t(T )= �t(T ′) + 2. Any �t(T ′)-set can be extended to a total

dominating set of T by adding the set {u; w}, and so �t(T )6�t(T ′) + 2. Now let S
be a �t(T )-set, and let S ′= S∩V (T ′). We may assume that u; w∈S. Hence, S ′ is an
almost total dominating set of T relative to y. Since sta(y)=B, and since condition
(iv) holds for the tree T ′, �t(T ′)= �yt (T ′;y)6|S ′|= |S| − 2= �t(T )− 2. In any event,
�t(T ′)6�t(T ) − 2. Consequently, �t(T )= �t(T ′) + 2. Since T ′ satis<es condition (i),
�t(T ′)= 2(m− 1), and so �t(T )= 2m.
Suppose x∈V (T ′). Since T ′ is �t-excellent, �xt (T

′)= �t(T ′). Now, any �xt (T
′)-set

can be extended to a total dominating set of T by adding the set {u; w}, and so
�xt (T )6�

x
t (T

′)+2= �t(T ′)+2= �t(T ). Any �t(T ′)-set can be extended to a total dom-
inating set of T by adding the vertex w and any neighbor of w, and so �xt (T )6�t(T

′)+
2= �t(T ) if x∈N [w]. Consequently, �xt (T )= �t(T ) for every vertex x of T . Hence, T
is �t-excellent and �t(T )= 2m., i.e., condition (i) holds for the tree T .
Suppose v is a vertex of T with sta(v)=A. Suppose v∈V (T ′). Then any �vt (T

′; v)-set
can be extended to an almost total dominating set of T relative to v by adding the set
{u; w}, and so �vt (T ; v)6�vt (T ′; v) + 2= �t(T ′) + 1= �t(T )− 1. Any �yt (T ′)-set can be
extended to an almost total dominating set of T relative to w by adding the vertex w,
and so �wt (T ;w)6�

y
t (T

′)+1= �t(T ′)+1= �t(T )− 1. Any �yt (T ′)-set can be extended
to an almost total dominating set of T relative to z by adding the vertex u, and so
�zt (T ; z)6�

y
t (T

′) + 1= �t(T )− 1. Hence, �vt (T ; v)6�t(T )− 1 for every vertex of T of
status A. By Observation 3, �vt (T ; v)¿�t(T )−1 for every vertex v of T . Consequently,
�vt (T ; v)= �t(T )− 1 for every vertex of T of status A. Hence, condition (ii) holds for
the tree T .
Any �t(T )-set is a total dominating set of U in T , and so �t(T ;U )6�t(T )= 2m.

We show that �t(T )6�t(T ;U ). Let S be a �t(T ;U )-set. Since sta(z)=A, the ver-
tex z must be totally dominated by S, and so w∈S. Since sta(w)=A, the vertex w
must be totally dominated by S, and so we may assume that u∈S. Let S ′= S∩V (T ′)
and let U ′=U − {w; z}. Since sta(y)=B; S ′ is a total dominating set of U ′ in T ′.
Since T ′ satis<es condition (iii), 2(m − 1)= �t(T ′;U ′)6|S ′|, and so �t(T ;U )= |S|=
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|S ′|+ 2¿2m= �t(T ). Consequently, �t(T ;U )= �t(T ). Hence, condition (iii) holds for
the tree T .
By Observation 3, �vt (T ; v)6�t(T ) for every vertex v of T . Suppose v is a vertex

of T with sta(v)=B or C. We show that �t(T )6�vt (T ; v). Let S be an �
v
t (T ; v)-set.

If sta(v)=C, then, as in Case 1, we can show that �t(T )= �vt (T ; v). Hence we may
assume that sta(v)=B. If S is a total dominating set of T , then �t(T )6|S|= �vt (T ; v).
Hence we may assume that S is an almost total dominating set of T relative to v
and that v is not totally dominated by S. Since sta(z)=A, the vertex z must be
totally dominated by S, and so w∈S. Since sta(w)=A, the vertex w must be to-
tally dominated by S, and so we may assume that u∈S. Let S ′= S∩V (T ′) and let
U ′=U − {w; z}. Since sta(y)=B; S ′ is a total dominating set of U ′ in T ′. Since
T ′ satis<es condition (iii), 2(m − 1)= �t(T ′;U ′)6|S ′|, and so �vt (T ; v)= |S|= |S ′| +
2¿2m= �t(T ). Consequently, �t(T )= �vt (T ; v). Hence, condition (iv) holds for the
tree T .
Suppose sta(v)=A. By Observation 2, the vertex y is not a support vertex of

T ′. Hence, if v=w or if v= z, then no leaf is at distance 2 or 3 from v. On the
other hand, if v∈V (T ′), then, by the inductive hypothesis, no leaf is at distance
2 or 3 from v in T ′ and therefore also in T . Hence, condition (v) holds for the
tree T .
Case 4: T is obtained from T ′ by operation T4.
Suppose T is obtained from T ′ by adding a star K1; t for t¿3 with center w and

the edge uy where y∈V (T ′) and sta(y)=B and u is a vertex adjacent to w. Let z
denote the leaf adjacent to w with sta(z)=C. Then, sta(w)=A and sta(v)=B for each
remaining vertex v that was added to T ′.
Proceeding as in Case 3, we can show that �t(T )= �t(T ′)+2=2m and that conditions

(i), (ii) and (v) hold for the tree T .
Let S be a �t(T ;U )-set. Since sta(z)=C, the vertex z must be totally dominated

by S, and so w∈S. Hence, proceeding as in Case 1, we can show that T satis<es
condition (iii).
It remains to show that T satis<es condition (iv). Let v be a vertex of T . If

sta(v)=C, then, as in Case 1, we can show that �t(T )= �vt (T ; v). Suppose that sta(v)
=B. By Observation 3, �vt (T ; v)6�t(T ). We show that �t(T )6�vt (T ; v). Let S be an
�vt (T ; v)-set. If S is a total dominating set of T , then �t(T )6|S|= �vt (T ; v). Hence we
may assume that S is an almost total dominating set of T relative to v and that v is
not totally dominated by S. Let z′ be a leaf adjacent to w that is distinct from z. Since
at least one of z and z′ must be totally dominated by S, we must have w∈S. Hence
every leaf adjacent to w is totally dominated by S, and so v is not a leaf of T adjacent
to w. Since sta(w)=A, the vertex w must be totally dominated by S, and so we may
assume that u∈S. Proceeding now as in Case 3, we can show that �t(T )= �vt (T ; v).
Hence, condition (iv) holds for the tree T .
This completes the proof of Theorem 1.

As an immediate consequence of Theorem 1, we have the following results.

Corollary 2. If T ∈T, then sta(v)=A if and only if �t(T )= �vt (T ; v) + 1.
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Corollary 3. If T ∈T and v is a vertex of T at distance 2 or 3 from a leaf satisfying
deg v¿2, then sta(v)=B.

3. Main result

In this section, we provide a constructive characterization of �t-excellent trees. We
shall prove:

Theorem 4. A nontrivial tree T is �t-excellent if and only if T ∈T.

Proof. The suJciency follows from Theorem 1. To prove the necessity, we proceed
by induction on the order n of a �t-excellent tree T . If diam(T )= 1, then T =K2∈T.
If diam(T )= 2, then T is a star K1; r with r¿2, and so T ∈T. Hence we may assume
that diam(T )¿3. Since no double-star is �t-excellent, diam(T )¿4. Let T be rooted at
an end-vertex r of a longest path. Let u be a vertex at distance diam(T ) − 2 from r
on a longest path starting at r, and let v be the child of u on this path. Let w denote
the parent of u, and let y denote the parent of w. Before proceeding further, we list
three observations.

Observation 4. No child of u is a leaf.

Proof. Suppose u has a child z which is a leaf. Since T is a �t-excellent tree, �zt (T )=
�t(T ). Let S be a �zt (T )-set. Then, {u; v} ⊂ S, and so S − {z} is a total dominating
set of T . Hence, �t(T )6|S| − 1¡ �zt (T ), a contradiction.

Observation 5. deg u=2.

Proof. Suppose deg u¿3. Let v1∈C(u)− {v}. By Observation 4, v1 is not a leaf and
is therefore a support vertex. Let z be a child of v, and let S be a �zt (T )-set. Since
every support vertex belongs to S, C(u)⊂S. In particular, v1∈S. We may assume that
u∈S (otherwise we replace the child of v1 in S with u.) But then S − {z} is a total
dominating set of T . Hence, �t(T )6|S| − 1¡ �zt (T ), a contradiction.

Observation 6. No child of w is a leaf.

Proof. Suppose w has a child z which is a leaf. Let S be a �zt (T )-set. Since every
support vertex is in S, {v; w}⊂S. We may assume that u∈S (otherwise we replace
the child of v in S with u). But then S − {z} is a total dominating set of T . Hence,
�t(T )6|S| − 1¡ �zt (T ), a contradiction.

We now consider two possibilities depending on whether or not w has a child that
is a support vertex.
Case 1: Suppose a child of w is a support vertex.
Let T ′=T − V (Tu), i.e., T ′=T − N [v].
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Claim 1. �xt (T
′)= �t(T )− 2 for every x∈V (T ′).

Proof. Let x∈V (T ′). Any �xt (T
′)-set can be extended to a total dominating set contain-

ing x by adding the set {u; v}, and so �t(T )6�xt (T ′)+ 2. Now let Sx be an �xt (T )-set,
and let S ′x = Sx∩V (T ′). Since T is �t-excellent, |Sx|= �t(T ). We may assume that
{u; v}⊂Sx. Since Sx must contain every support vertex of T , and since w has a child
that is a support vertex, it follows that S ′x is a total dominating set of T

′ containing
x. Hence, �xt (T

′)6|S ′x|= |Sx| − 2= �xt (T )− 2. Consequently, �xt (T ′)= �t(T )− 2.

By Claim 1 applied to a vertex in a minimum total dominating set of T ′; T ′ is a
�t-excellent tree. Applying the inductive hypothesis to T ′; T ′∈T. Hence, T ′ can be
obtained from a sequence T1; : : : ; Tm of trees where T1 is a star K1; r with r¿1 and
T ′=Tm, and, if m¿2; Ti+1 can be obtained from Ti by operation T1; T2; T3 or T4
for i=1; : : : ; m− 1.
Since diam(T )¿4, we know that w cannot be the root of T , and so degT ′ w¿2.

By assumption, w is at distance 2 from a leaf in T ′. Hence, by Corollary 3,
sta(w)=B.
Now let T =Tm+1 be the tree obtained from T ′∪Tu by adding the edge uw. Then,

T can be obtained from T ′ by operation T3 or T4. Hence, T ∈T.
Case 2: No child of w is a support vertex and degw¿3.
As shown in Observation 5, each child of w has degree 2. Let u1 be a child of w

distinct from u, and let v1 the child of u1. Let T ′=T − V (Tu), i.e., T ′=T − N [v].

Claim 2. �t(T ′)= �t(T )− 2.

Proof. Any �t(T ′)-set can be extended to a total dominating set of T by adding the set
{u; v}, and so �t(T )6�t(T ′)+2. Now let S be a �t(T )-set, and let S ′= S∩V (T ′). Since
T is �t-excellent, |S|= �t(T ). Since every support vertex of T belongs to S, all descen-
dants at distance 2 from w belong to S. We may assume that every child of w belongs
to S. Hence, S ′ is a total dominating set of T ′, and so �t(T ′)6|S ′|= |S|−2= �t(T )−2.
Consequently, �t(T ′)= �t(T )− 2.

Claim 3. �xt (T
′)= �t(T )− 2 for every x∈V (T ′).

Proof. Let x∈V (T ′). Any �xt (T
′)-set can be extended to a total dominating set con-

taining x by adding the set {u; v}, and so �t(T )6�xt (T ′) + 2. For each x∈V (T ′), we
let Sx be a �xt (T )-set, and let S

′
x = Sx∩V (T ′). Since T is �t-excellent, |Sx|= �t(T ).

Since every support vertex belongs to Sx, all descendants at distance 2 from w belong
to Sx. In particular, {v; v1}⊂Sx. We may assume that u∈Sx.
Suppose x is a child of v1. Consider the set Sy, where y is the parent of w. We

may assume that x∈Sy (if u1∈Sy, then simply replace u1 by x), and so Sy is a
total dominating set of T ′ containing x and y. Hence, �xt (T

′)6�yt (T ′)6|S ′y|= |Sy|
− 2= �yt (T )− 2= �t(T )− 2. Consequently, �xt (T ′)= �t(T )− 2.
Suppose x is not a child of v1. Then we may assume that u1∈Sx (if Sx contains

a child of v1, then replace this child with u1), and so Sx is a total dominating set of
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T ′ containing x. Hence, �xt (T
′)6|S ′x|= |Sx| − 2= �xt (T )− 2= �t(T )− 2. Consequently,

�xt (T
′)= �t(T )− 2.

By Claim 3, T ′ is a �t-excellent tree. Applying the inductive hypothesis to T ′; T ′∈T.
Hence, T ′ can be obtained from a sequence T1; : : : ; Tm of trees where T1 is a star K1; r
with r¿1 and T ′=Tm, and, if m¿2; Ti+1 can be obtained from Ti by operation
T1; T2; T3 or T4 for i=1; : : : ; m− 1.
Since degT ′ w¿2 and w is at distance 3 from a leaf in T ′, it follows from Corollary 3

that sta(w)=B.
Now let T =Tm+1 be the tree obtained from T ′∪Tu by adding the edge uw. Then,

T can be obtained from T ′ by operation T3 or T4. Hence, T ∈T.
Case 3: degw=2.
Let T ′=T − V (Tw), i.e., T ′=T − N [v] − w. Since T is �t-excellent, y cannot be

the root of T , and so T ′ is a nontrivial tree.

Claim 4. �t(T ′)= �t(T )− 2.

Proof. Any �t(T ′)-set can be extended to a total dominating set of T by adding the
set {u; v}, and so �t(T )6�t(T ′) + 2. Now let S be a �t(T )-set, and let S ′= S∩V (T ′).
Since T is �t-excellent, |S|= �t(T ). We may assume that {u; v}⊂S. If w∈S, then
pn(w; S)= {y} and (S − {w})∪{y′} is a �t(T )-set, where y′∈N (y)− {w}. Thus we
may assume that w =∈ S. Hence, S ′ is a total dominating set of T ′, and so �t(T ′)6|S ′|=
|S| − 2= �t(T )− 2. Consequently, �t(T ′)= �t(T )− 2.

Claim 5. �xt (T
′)= �t(T )− 2 for every x∈V (T ′).

Proof. Let x∈V (T ′). Any �xt (T
′)-set can be extended to a total dominating set con-

taining x by adding the set {u; v}, and so �t(T )6�xt (T ′) + 2. For each x∈V (T ′), we
let Sx be a �xt (T )-set, and let S

′
x = Sx∩V (T ′). Since T is �t-excellent, |Sx|= �t(T ).

We may assume that {u; v}⊂Sx. If w∈S, then pn(w; S)= {y} and (S − {w})∪{y′}
is a �t(T )-set, where y′∈N (y)− {w}. Thus we may assume that w =∈ S. Hence, S ′x is
a total dominating set of T ′ containing x, and so �xt (T

′)6|S ′x|= |Sx| − 2= �t(T )− 2.
Consequently, �xt (T

′)= �t(T )− 2.

Claim 6. �t(T ′)= �yt (T ′;y) + 1.

Proof. Let Sw be a �wt (T )-set, and let S
′
w = Sw∩V (T ′). Since T is �t-excellent, |Sw|=

�t(T ). We may assume that {u; v} ⊂ Sw. Now S ′w is an almost total dominating set of
T ′ relative to y, and so �yt (T ′;y)6|S ′w|= |Sw| − 3= �t(T )− 3= �t(T ′)− 1. However,
by Observation 3, �t(T ′)6�yt (T ′;y) + 1. Consequently, �t(T ′)= �yt (T ′;y) + 1.

By Claim 5, T ′ is a �t-excellent tree. Applying the inductive hypothesis to T ′; T ′∈T.
Hence, T ′ can be obtained from a sequence T1; : : : ; Tm of trees where T1 is a star K1; r
with r¿1 and T ′=Tm, and, if m¿2; Ti+1 can be obtained from Ti by operation
T1; T2; T3 or T4 for i=1; : : : ; m− 1.
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Since T ′∈T, it follows from Corollary 2 and Claim 6 that sta(y)=A. Hence, T
can be obtained from T ′∪Tw by adding the edge wy. Thus, T can be obtained from
T ′ by operation T1 or T2. Hence, T ∈T.
This completes the proof of Theorem 4.
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