On a Special Case of Hilbert’s Irreducibility Theorem

Marius Cavachi

Faculty of Mathematics, ‘Ovidius’ University of Constanța,
Bd. Mamaia 124, 8700 Constanța, Romania

Communicated by D. Zagier

Received March 31, 1998; revised June 29, 1999; accepted October 1, 1999

We prove that if \(K \) is a finite extension of \(\mathbb{Q} \), \(P \) is the set of prime numbers in \(\mathbb{Z} \) that remain prime in the ring \(R \) of integers of \(K \), \(f, g \in K[X] \) with \(\deg g > \deg f \) and \(f, g \) are relatively prime, then \(f + pg \) is reducible in \(K[X] \) for at most a finite number of primes \(p \in P \). We then extend this property to polynomials in more than one indeterminate. These results are related to Hilbert’s irreducibility theorem.

Throughout this paper, an algebraic number field \(K \) is such that the extension \(\mathbb{Q} \subseteq K \) is normal. We shall denote by \(R \) the ring of algebraic integers of \(K \). It is well-known that the set \(P \) of prime numbers in \(\mathbb{Z} \) that remain prime in \(R \) is infinite (see [2, p. 136]).

If \(f, g \in K[X] \) are relatively prime, by Hilbert’s irreducibility theorem, the irreducible polynomial \(f(X) + Yg(X) \in K[X, Y] \) remains irreducible in \(K[X] \) for infinitely many \(Y = n \in \mathbb{Z} \). We shall make this property more precise in our particular context.

Theorem 1. Let \(K \) be an algebraic number field such that the extension \(\mathbb{Q} \subseteq K \) is normal. Let \(R \) be the ring of algebraic integers of \(K \) and \(P \) the set of prime numbers in \(\mathbb{Z} \) that remain prime in \(R \). Let \(f, g \) be two polynomials in \(K[X] \) having no common root. If \(\deg g > \deg f \), then the polynomial \(f + pg \) is reducible in \(K[X] \) for at most a finite number of primes \(p \in P \).

Proof. Consider the set \(P' = \{ p \in P \mid f + pg \text{ is reducible} \} \) and assume \(P' \) is infinite. We may suppose \(f, g \in R[X] \). Let \(p \in P' \) and \(f + pg = u'_p \cdot v'_p \) in \(K[X] \) with \(\deg u'_p \geq 1 \) and \(\deg v'_p \geq 1 \). Further, we may take \(u'_p = (1/\alpha) u_p \) and \(v'_p = (1/\beta) v_p \), with \(\alpha, \beta \in \mathbb{Z} \) and \(u_p, v_p \in R[X] \). Then \(x f + pg = u_p \cdot v_p \). We choose \(a \in \mathbb{Z}_+ \) as the smallest positive integer for which \(a(f + pg) \) may be non-trivially decomposed over \(R \), i.e.:

\[
a(f + pg) = u_p \cdot v_p, \quad \text{with} \quad v_p, u_p \in R[X].
\]
We shall first prove that p does not divide a. Let α be the degree of the extension $\mathbb{Q} \subseteq K$. We denote by h^* the polynomial obtained from $h \in K[X]$ after applying to its coefficients the \mathbb{Q}-automorphism $\sigma \in G$. We have:

$$a^* \prod_{\sigma \in G} (f + pg)^v = \prod_{\sigma \in G} u_p^\sigma \cdot \prod_{\sigma \in G} v_p^\sigma. \tag{2}$$

If $p \mid a$, then $p \mid \prod_{\sigma \in G} u_p^\sigma \cdot \prod_{\sigma \in G} v_p^\sigma$ in $R[X]$. As p is prime in R, there exists $\sigma_0 \in G$ so that $p \mid u_{\sigma_0}^p$ or $p \mid v_{\sigma_0}^p$. Suppose $p \mid u_{\sigma_0}^p$; by applying σ_0^{-1} we obtain $p \mid u_p$, so that $u_p = p \cdot u_{\sigma_0}^p$, with $u_{\sigma_0}^p \in R[X]$. Then $(a/p)(f + pg) = u_p^p \cdot v_p$ and the minimality of a is contradicted.

Let now m (respectively k, r) be the degree of g (respectively u_p, v_p) and g_m (respectively b_k, c_r) the leading coefficient of g (respectively u_p, v_p). From (1) we derive: $apg_m = b_kc_r$. Thus we may suppose $b_k = pd_k$ in R.

Then, by using the norm N of K over \mathbb{Q} and the relation (1) we get:

$$a^*(p^N(g_m)X^{nm} + \cdots) = (p^N(d_k)X^{nk} + \cdots) \cdot (N(c_r)X^{nr} + \cdots) \tag{3}$$

in $\mathbb{Z}[X]$. Considering the contents of the above polynomials and simplifying with a^*, we obtain:

$$Q_p(X) := \prod_{\sigma \in G} (f + pg)^\sigma = R_p(X) \cdot T_p(X) \tag{4}$$

in $\mathbb{Z}[X]$, where the leading coefficient t_p of T_p divides the integer $N(g_m)$ (since $p \nmid a$).

On the other hand, as $\lim_{z \to \infty} f^*(z)/g^*(z) = 0$ for all $\sigma \in G$, there exists $M > 0$ such that for each $\sigma \in G$ we have $|f^*(z)/g^*(z)| < 1$ if $|z| > M$. The roots of T_p are among those of Q_p, hence their modules are bounded by M, a constant independent on p. Now, observing that t_p can only take a finite number of values and that $\deg T_p < m$, from Viêt’s relations for T_p we deduce that all the coefficients of T_p are bounded (in module) by the same constant M_0, not depending upon p. Finally, $T_p \in \mathbb{Z}[X]$, thus the set $\{T_p \mid p \in \mathbb{P}\}$ is finite. As \mathbb{P} is infinite, there exist $p_1, p_2, \ldots, p_{n+1} \in \mathbb{P}$, mutually distinct, such that $T_{p_1} = T_{p_2} = \cdots = T_{p_{n+1}}$. If we choose a root of T_{p_1}, then z is also a root of $Q_{p_1}, Q_{p_2}, \ldots, Q_{p_{n+1}}$. Hence there exists $\sigma \in G$ and $i \neq j$ such that z is a root of both $(f + p_i g)^\sigma$ and $(f + p_j g)^\sigma$. This means that, extending σ to an automorphism $\bar{\sigma}$ of a normal extension $\mathbb{Q} \subseteq K'$, with $K(z) \subseteq K'$, $\bar{\sigma}^{-1}(z)$ is a common root of f and g, contradicting the hypothesis. The proof is now complete. \[\square\]

Remark 1. The above proof works for any extension K of \mathbb{Q}, but it is non-void only if P is infinite. This happens if $Gal(K, \mathbb{Q})$ contains an element of order $\deg K$ (by Cebotarev density), in particular when $\mathbb{Q} \subseteq K$ is cyclic.
Corollary. If \(f, g \in K[X] \) are relatively prime, \(\deg g \leq \deg f \) and \(f(0) = 0 \), then \(f + pg \) is reducible for at most a finite number of \(p \in P \).

Proof. One only has to change the variable \(x \) into \(1/x \).

We now extend the previous result to more than one indeterminate.

Theorem 2. Let \(K \) be an algebraic number field as in the statement of Theorem 1 and let \(f, g \in K[X_1, X_2, ..., X_m] \), \(m > 1 \), be two relatively prime polynomials. If \(\deg_{X_1} g > \deg_{X_1} f \), then \(f + pg \) is reducible for at most a finite number of \(p \in P \).

Proof. As the leading coefficient of \(g \) (as a polynomial in \(X_1 \)) viewed in \(K[X_2, ..., X_m] \) has a finite number of divisors in this ring, we easily deduce the existence of a finite set \(A \subseteq Z \) such that \(f + ng \) has no divisors of positive degree in \(K[X_2, ..., X_m] \) for \(n \in Z \setminus A \). From the fact that \(f, g \in K[X_2, ..., X_m][X_1] \) have no common factors we deduce that the result \(\text{Res}(f, g) \) is non-null. Hence there exist \(a_2, ..., a_m \in K \) so that \(\text{Res}(f, g)(a_2, ..., a_m) \neq 0 \). From known properties of the resultant we conclude that \(f(X_1, a_2, ..., a_m) \) and \(g(X_1, a_2, ..., a_m) \) are relatively prime in \(K[X_1] \). In addition, changing the variables \(X_1, ..., X_m \) into \(a_2, ..., a_m \) the leading coefficient of \(g \) remains non-null. If \(f + pg \) is irreducible for infinitely many primes in \(P \), then \(f(X_1, a_2, ..., a_m) + pg(X_1, a_2, ..., a_m) \) is irreducible for infinitely many primes in \(P - A \), which contradicts Theorem 1.

Example. The polynomial \(f \in \mathbb{Q}[X], f(X) = X^{n+2} + X^n + pX + p, n \geq 2 \), is reducible for at most a finite number of primes \(p \in Z \). The same polynomial, viewed in \(\mathbb{Q}[i][X] \) is reducible for at most a finite number of prime integers of the form \(4k + 3 \) (just apply the Corollary).

Remark 2. The condition \(f(0) = 0 \) is essential in the Corollary. To see this it is enough to consider \(f(X) = X^2 + 1 \) and \(g(X) = -1 \) in \(\mathbb{Q}[X] \). Then \(f(X) + pg(X) = X^2 - (p - 1) \) is reducible whenever \(p - 1 \) is a perfect square, and there are probably infinitely many such numbers.

ACKNOWLEDGMENT

The author is thankful to the referee for his pertinent observations and for signaling him the papers [1] and [3], related to the theme of this note. He is also thankful to Alexandru Gica for very useful comments.
REFERENCES