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An elementary proof is given of the Hasse-Weil theorem about the number 
of solutions of the hyperelliptic congruence y2 = f(x) (modp), where the 
polynomial f(x) has odd degree. 

1. INTRODUCTION 

Let n > 3 be an odd number, let r be any natural number and p > 9n2 
be a prime number. Let kDr be the Galois field consisting of q = pT 
elements. We shall consider in kDl the equation 

Y2 ==.fw, (1) 

where f(x) = x” + a#-l + ... + a,-,~ + a, is a polynomial with 
integral rational coefficients. 

Let JDV be the number of solutions of the Eq. (1) in kDr . For the case 
r = 1, the estimate 

IJ,-pl <d%zn& 

is proved in [l]. In the present article we prove the following 

THEOREM. Let r > 1. Then 

1 JPr - p7 I < 6 n d$ 

From this theorem a stronger result can be deduced. Namely, the 
following statement is true: 

COROLLARY. For J,? we have the estimate 

/ J,? - p’ / < (n - 1) p’lz. 
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2. LEMMAS 

We divide the elements of kDr into three classes: 

(I) Elements a! E k,, , for whichf(ol) # 0 and the equation y2 = f(a) 
is solvable in k,? . Let J+l be the number of such elements. Note that we 
have for such an element 01 

pi--l 
l-f(a) 2 =o. 

(II) Elements p E k,, for which the equation y2 = f(p) is insolvable 
in k, . Let Jel be the number of such elements. For such an element p 
we have 

& 
1 + f(P) 2 = 0. 

(III) Elements y E kar for whichf(y) = 0. Let J,, be the number of 
such elements. 

It is clear that 

Further, 
J+l + Jo + J-1 = p’. 

J,r = 2J+, + Jo . 

Finally, for any element x E k9, we have 

xpr - x = 0. 

Let D be the differentiation operator 

D=2-& 

and let Z be the ring of integral rational numbers. We shall apply the 
operator D to rational functions of x with coefficients from Z and also to 
rational functions from the field k,(x). Since differentiation in k,(x) 
and differentiation of the rational functions with coefficients from Z are 
the same, modulo p, we shall use the same notation for these differenti- 
ations. 

LEMMA 1. Let rational functions $)(x), i = 1, 2 ,...; j = 1, 2 ,... be 
defined over Z by the recurrent relations 

p 
3 

= &i-l) _ 2j#-') 
3 j+1 

j !  f-1p 
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in terms of initial functions r:“‘(x), r?)(x),... . Then 

where the rational functions G,(x) with coefficients from Z are determined 
by the following relations 

Go== 1, G, = DGt-l - g f -lGt-l , t = 1, 2,... . (3) 

ProoJ: We shall prove Lemma 1 by induction on i. For i = 1 the 
statement is obvious, since 

r!l' = 
3 Dr>’ - 2jrjt\ _ d&f -$.p), j = 1, 2,... . 

Under the inductive assumption 

r!+-l) = Fl ‘gj (-l)s2s ‘jt”,f)! 3 CzB--1C~-,_1GtDi-8-t-1r~~ . 

Then in view of (2) we have 

,/ Di-S-t-$ $-d 
1+S 

i-l i-s-1 

C~-lCit-p-lGtD”-s-tr~‘~ 
s=o t=o 

i-l i-s-l 
+ c c (- l)'*l 2”“l v Cis_lC~..,_lGtDt--S-t-lr~~fl 

s=o t=o 

i-l i-s-l 

= z. z. (-'IS 2 ’ (j 2 T 7) I”! CIS_lC~-,-lGt+lDi-S-t-lr~~ 

i-l i-s-1 

+ c c (-1)“2” (jtL,,‘)! C~-lC~-a-lGtDi-S-tr~~ 
s=o t=o 
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i-l i-s 

= z. p)"2 
9 (j + ' - ')! c~-lc~~~_lGtDi-S-tr~~ 

(j - l)! 

121 

i-l i-s-1 

C;-lC~-,-,GtDi-S-tr~‘S 
s=o t=o 

i-l i-s 

+ c c (-1)’ 2” ‘j(; “, f)! C;:;C;-SGtDi-“-tr~S 
a=1 t=a 

+ (-l)i 2i (j + i - l)! & 
(j - I)! 

= Dir?’ + i (Ci”:; + C,“-,) GtDi-$i(O’ 
t=1 

(CT:-, + C;:;) Di-‘rz8 
.T=l 

+ (+i 2i (j + i - W r!o), 
(j - l)! 3fZ 

and Lemma 1 is proved. 

LEMMA 2. Let rational functions rji)(x), i = 1, 2 ,...; j = 1, 2 ,..., be 
defined by (2) in terms of initial functions r:“(x), r:‘)(x),... . Further let 
ratio&functions t]“‘(x), i = 1,2 ,... ; j = 1, 2 ,... over Z be defined by means 
of the recurrent relations 

(4) 
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in terms of initial functions t:‘)(x), t:‘)(x),... . Then 

CisDi-“tj& 
*=0 

i-l i--s 

where G,(x) is defined by (3). 

Proof. We shall prove Lemma 2 by induction on i. For i = 1 we have 

and therefore Lemma 2 is correct in this case. Under the inductive 
assumption 

t$-') = 5' (-1)" 2” (j + ')! Cis_lDi-S-lt(o) 
3 j! 3+S .S=O 

+ 2 iF1 (- l)s+l 2” (j ;, 'I! C,9_lC~_,_lGtDi-"-t-lr~~+l . 
s=o kl 

Then by (2) and (4) 

i-l 
+ c (-,)s+l 2s+1 (j + ;,+ W 

C~-lDi-S-lt~s+l 
.S=O 

+ zl ‘zj (-ljs+l 2s QA$! c;-lc:-s-l (DG, - -f$-q+) 

x #--s-t--l (0) 
r9+s+l 

$ z ‘$y (- l)‘+l 2’ v Ciq-1C~--s-lGtDi-8-ty~~+1 

i-2 i-s-1 
+ c c (-l)s+~ 28+1 (j + ;,+ l)! CklCF-s-1GtDi-S-t-1rj(O+)8+2 

s=o t=1 
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i-l 

= ,c, (- 1)" 2” y! c;g"-"tj:', 

+ f: (-1)s 25 ii+22 c,s_;'oi-"tj$* 

S=l 

i-l i-s-1 
+ C c (- l)s+l 2” &id! C~-lC~-,lGt+lD'-S-t-l~~~),+l 

s=o t=o j !  

+ y $F1 (-I)*+' zs y C~-lC~_,_lGtD"-s-tr~~+,, 

s=o kl 

i-l 68 

+ c c (-,)s+l 2” iy 
s=l t=1 

x {C;e,(C;,, + C:+l) + C;I;C:-,} G,Di-s-tr~s+l 

+ z (- l)‘+l 2” v (Ci”_, + C;:;) Gi-srjfS+I 

= i. (-1)’ 2” v CisDi-stjfs 

_ il CitGtDi-t$$ + (-l)i2i-i (j + :,- ‘)! Cf-‘GlrjO,)i 

i-2 i-s-1 

+ c c (- l)'+l 2” v CisC~_8GtDi-S-tr~~~+1 
s=l t=1 

+ z (- l)“+l 2” v CisGi~sr~8+l 

= i. (-1)” 2” cy! c,“ptj$ 

i-l i-s 
+ c 1 (-,)‘+l 2” v CiSC;$tDi-s-t~jf+l , 

s=o t-1 

and Lemma 2 is proved. 
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LEMMA 3. Let rational functions G,(x), t = 1,2,... be defined by (3) 
and let f (x) = DE, (x - xi) be the decomposition of the polynomials f (x) 
into linear factors in the algebraic closure of the field of rational numbers. 
Then 

where the att) 31,....jk are given by the recurrent relations 

(1) - 1 a, = 

a9 ap....& = - tl (XL - 1) + 1) &t!.i,-l.....~b, 

Proof. We shall prove the lemma by induction on 
statement is obvious. Under the inductive assumption 

(t-1) 
ai, ,..., $71 S.... j, 

(5) 
t = 2, 3,... 

t. For t = 1 the 

K cx - xi,)il . . . (X - q-1 a.- (x - x3j.s 

Then by (3) 

t-1 t-1 t-1 n 
Gt = -2 ,c, j;l -** j;l ,zl *-. itl il t1 = 1 1 k: j,+.**+j,=t il<ig<-..<ik 

x cx _ xil)il . . . cx - xi,)jl-l . . . (X - ~~35~+1 --- (x - xikp 

(t-1) 
a,, ,..., jr-1 *...* jk 

’ (X - Xil)il *** (x - x1,)+1 -** (x - ,J’* (x - X#,+J ’ 
(6) 

where S,, is Kronecker’s symbol. 
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It is clear that G, may be written in the form 

ajt) 
Gt = il jil .-* jl & ... il (X - &yz.-~~ - &Jk * t7) I j,+...+j,=t il<ip<-..<i* 

If we now in (6) and (7) compare coefficients of the expression 

& *** jl (x - xi,)jl .f . (x - x&p ’ 
ilit*<“.<& 

we get 

Jt) 31,...,iR = - jl cw7 - 1) + 1) 44.!l.r,-l,..., 5k . 

Thus Lemma 3 is proved. 

LEMMA 4. Let 

(t) 
%l.....jk 9 jl + *-* + jk = t; t = 1, 2,... 

be given by relations (5). Then 

aft) 
a..... 5, = (4 j , !  .!i jk! fi lj w, - 4 + 0 

Proof. We shall prove the lemma by induction on t. For t = 1 the 
statement is obvious. Under the inductive assumption 

&l) - (-l)t-’ (t - l)! 
31 ,....I,-1 *...* 56 - 

A! -a- (j, - I)! ***j,! 

Then by (5) 

x fJ Tel t2t.L - 4 + 1) ‘fi’ MA - 7 - 1) + 1). 
7=1 

S#T 

(t) 

ai, . . ..A = c-v g1 j l !  
( t  - l)! k i, 

I-I (j, _ l)! ..m jk! 8Q rG (2(j8 - ‘1 + ‘1 

= (-l>” j,, .t.! j,, . lj fi cws -  4 + 1) .  3 

and thus Lemma 4 is proved. 
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LEMMA 5. Let rational functions F,f’ be given over Z by means of the 
recurrent relations 

$1’ _ 
1 

df f-l 
dx ’ 

J’F) = 2(i _ 1) ~iL-1) + 2’-l(i 
(8) 

r1 - l)! $-1. 

Then the relations 

Fj' = 2$'i3 
kl 

hold for k = 2, 3 ,..., i. 

Proof. We prove Lemma 5 by induction on i. Iterating the last of the 
relations (8) we get 

Ff) = 2e’-li! FF) 

and therefore the statement holds for k = i. In particular, the statement 
of the lemma for i = 2 follows from the last equality. Under the inductive 
assumption, 

f’f-l) = 2(i - 1) f’t@i2’, &1) = 2(i - 1) &h2’. 

Further, 

$&b&l) = DF(i-2) k-l + 2(k - 2) F;:’ + -$-‘Fr;” 

and by (8) 

2(i - 1) F&l) = D2(i - 1) FEJ2’ + 4(i - l)(k - 2) F$ff) 

+ dff-‘z(i - 1) j7’y2’ 
dx kl 

= DFf-1) + 2(k _ 2) &--l) + _ f -++l) df 
dx k 

Hence 

(i) Fk = 2iF&“. 

Thus the lemma is proved. 
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LEMMA 6. Let rational functions FF), k = 1, 2 ,..., i; i = 1,2 ,... be 
de$ned by the recurrent relations (8) and let f(x) = I-I:=, (x - x8) be the 
decomposition of the polynomial f(x) into linear factors in the algebraic 
closure of the field of rational numbers. Then 

where bfi’ 31,...,jk are given by the relations 

b(l) = 1 
1 9 

(9) 
b(i) 

)I ,...I j ,  = f (1 - 20, - 1)) b::"!.i,-I,..., ik - 
T-1 

Proof. We shall prove the lemma by induction on i. For i = 1 the 
statement is obvious, since 

?a 
FP = sg (x -! x,,) * 

Under the inductive assumption, 

b+’ 
31,...&-l....Jk 

Then by (8) we have 

b(j-1’ 
31*...Jr-l*....ik 

x (x - XJl *** (x - x&l * *- (x - x,,p (x - xq+,) ' (10) 
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where a,, is Kronecker’s symbol. It is clear that Ff’ may be written in the 
form 

If we now in (10) and (11) compare coefficients of the expression 

#$, *** il (x - x,,)h .f. (x - x,,p ’ 1 

we get 

Thus Lemma 6 is proved. 

LEMMA 7. Let b!i) + . . . . j, , jl + a** + j, = i; i = 1, 2 ,... be defined by 
the recurrent relariom (9). Then 

,!i) i! 
31,..,& = j , !  . . . j , !  fi fJ (l - 2tjt - 7)). 

Proof. We shall prove the lemma by induction on i. The statement of 
the lemma is obvious for i = 1. Under the inductive assumption, 

x fjl Tfil (1 - Wt - 4) ‘j$ (1 - X6 - 7 - 1)). 
74 

tfr 

Further by (9) we have 

b(i) 
i 

(i - l)! 
91....Jk = fi fi (1 - Wt - 4) 

j 1 a** (j, - I)! *a* jk! t=l 7=1 7-1 1. 

and thus Lemma 7 is proved. 
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LEMMA 8. The expressions Fc’, k = 1,2 ,..., i; i = 1,2 ,... deJined by 
the recurrent relations (8) are rational functions with coeficients from Z 
of the form 

where the degree of the polynomial Pt’ does not exceed 

vt’ = (i - k + l)(n - 1). 

Further, zfrj”‘(x), t:“(x), j = 1, 2,... arepolynomials with coeficientsfrom Z, 
then the expressions r?)(x) and tji’(x), i = 1,2,...; j = 1,2,... defined by (2) 
and (4) are rational functions of the form 

,!i) 
3 

with coeficients from Z. 

Proof. The second part of the statement follows easily from (2) and 
(4). The proof of the first part will be made by induction on i. For i = 1 

(‘I the statement is obvious, since FI = df/dx f -l. In view of (8) the statement 
is also obvious for k = i, i = 1, 2 ,... . Under the inductive assumption, 

where the degrees of the polynomials PF-” and Pf>:-;” do not exceed 
(i - k)(n - 1) and (i - k + l)(n - 1) respectively. But for i # k 

Further, it is clear that 

&i-l’ _ Qt-” 
f i-k+1 

and that the degree of the polynomial Qjj”’ does not exceed 

(i - k + l)(n - 1). 

Hence 

p$i) 
F;‘= f %--k-b1 
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and the degree of polynomial Pp’ does not exceed (i - k + l)(n - 1). 
Lemma 8 is proved. 

LEMMA 9. Let the rutionaZfunctionsFt)(x), rji)(x), t?)(x), k = 1,2,..., i; 
i = 1, 2 ,... ;j = 1,2 ,... be defined by the recurrent relations (2), (4) and (8). 
Let rj(O)(x) and t:“(x), j = 1, 2 ,..., be polynomials with coeficients from Z. 
Then the polynomials Pp)(x), Ry)(x) and T;“(x), which are the numerators 
of F:‘(x), $)(x), and tji’(x) respectively, can be written in the form 

where pt’, l?ji’, and pj:!i) are polynomials with coeficients from Z. 

Proof. First we prove that (2j - 3)!! 29/j! is an integer for all 
j = 2, 3,... . We have 

(2j - 3)!! 2j = 2(2j-2)! 
j! j! (j - l)! . 

On the other side, 

(2j - 3)!! 2j 4(2j - 3) ! 
j! = j!(j-2)! * 

Define 

Az Qj-22)! 

j! (j - 2)! ’ 
B= (2j-3)l 

j!(j- 3)!’ 

It is clear that A and B are integers. Further, we have 

2A 4B A 2B 

-=j-2 Or 
-=-* 

j-l j-l j-2 

Hence A(j - 2) = 2B(j - 1) or A = (A - 2B)(j - 1) and therefore 
Alj - 1 = A - 2B is an integer, so (2j - 3)! !2jlj! is also an integer. 

We prove that R:i) and Tji) can be represented in the form 

R(i) = 2-iii a+) 
3 * 39 

T!i) = 2-ijl ~~) 
3 * 3’ 

In view of Lemmas 1 and 2, it is enough to prove that Gt , t = 1,2,..., 
can be written in the form Gt = Qt/ft and that Ql = 2-*t! &$ , where Qt 
is a polynomial with coefficients from Z. 
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The first statement follows easily from (3). Further, in view of Lemma 3, 
to prove the second statement it is enough to show that 

a?) 
31....,jL 3 j, + -*’ + jk = t; k = 1, 2,..., t; t = 1, 2,... 

can be represented in the form 

where 

(t) 
aj,.....jk = 

2-p! c?!t) 
31.*...& 9 

By Lemma 4, 

$t) 
31,....ja E z. 

Hence 

= (-l)t j,, fl,, (2jl - I)!! '-' (2jk - I)!!. 

a?) 31 ,..., il, = L$. (-1)t 2f1t2j;l; I>!! .., 2%Ti~k~ l)!! , 
. 

and so 

$t) 
31....J& = C-1) 

t 292j, - l)! ! ... @(2j, - I)!! 
jl, 

j k !  

is an integer. 
To finish the proof of the lemma it remains to prove that Pf), k = 

1, 2,..., i; i = 1, 2,... can be represented in the form PF) = 2-Q! @). We 
consider separately the cases k > 1 and k = 1. Let k = 1. In view of 
Lemma 6, it is enough to show that b~f~...,j,, j, + *a* j-j, = i; k = 
1, 2,..., i; i = 1, 2,... can be represented in the form 

b(f) 
31 ,.... & = Pi! 

where @) llS...,ih E Z. By Lemma 7 we have 
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and the last statement follows from the fact that 

(-l)i 
292j, - 3) ! ! . . . 2j”(2j, - 3)! ! 

.A! .h ! 

is an integer. 
Let now k 3 2. In this case we shall prove the statement of the lemma 

by induction on i. For i = 1 the statement is obvious. Under the inductive 
assumption for k 3 2 

,~-l) = 2-i+l(i _ I), p(i-l) 
* k . 

Moreover, 

and all 
Lemma 
Lemma 

pji-1) = 2-i+l(i _ l)r ~(i-1) 
. 1 

@-l) k = 1 2 i - 1, have integer rational coefficients. By 
5 we’have F$‘=‘2iF&:) for k = 2, 3,... , i. Hence in view of 
8 Pf) = 2iPfft), and so P,$) = 2-ii! pf). The lemma is proved. 

3. BASIC CONSTRUCTION 

Let m < pr/2 be a natural number. We consider the polynomial 

S,(x) = (1 + f+) F rj’o’(x)(xP’ - x)$-l + 2f $)(x)(x” - xy, 
j=l j=l 

where r?‘(x), t:“(x) are polynomials with coefficients from Z. 
Define Si(x), i = 1,2,..., in the following way: 

&(x) = Dv30(x). 

We shall say that the expression S,(x) has “necessary form” if it can be 
written as 

$(x) = (1 + f Y ) 2f rf’(X)(XP’ - q-1 
j=l 

+ “c” rj’i’(x)(xp’ - x)j + P’UdX), 
j=l 

where rj(*)(x), ty’(x), Vi(x) are rational functions with coefficients from 
the ring Z. 
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LEMMA 10. Let S&c) have “necessary form”. Then for the expression 
Si(x) to have “necessary form” it is su$icient that the relation 

2t;i-“(x) - f-*r’i-“(x) df 
dx ’ 

holds. 
In that case, the rational functions rji)(x), tit)(x) are dejined by relations 

(2) and (4) respectively, and moreover, 

i-l 

Vi(X) = 1 IY-k-'&(x), 
k=O 

(12) 

where 

H,(X) = “El (2j( 1 + f +) xp’-lr$ + f* s rjL)) (xP’ - x)5-1 

+f -Y df rkG(xg _ x)2m-l 

-22 
+ 2x”“l E jtj(qX9’ _ ,)5-l 

j=l 

Proof. We have 

'PI-1 

W) = (1 + f”) 

( 

2m 

x C (Drf-l’)( XP’ _ x)5-* - 2 F (j - 1) rj(iwl)(xPr - 4G-Z 
j=l j=l 1 

-f 
9’--1 df --1 277Z 
2 dx f C ri(i-l)(xP’ _ x>j-1 + F (I)t?-l))(x”’ - x)j 

j=l j=l 

- 2 F jt:'-*)(XP~ - q-1 + 24 1 + f ?) x9=1 :$I (j - 1) 
j=l 

X rj(iml)(xP' - 9-2 + p?f "c" rp-*)(xP~ _ x)i-l 

34 

+ 2pr~9r-1 F jtj(i-‘)(x” - x)j-l + p7DU,-,(x). 
j-1 

We add and subtract the expression 

gf -1 T  $-qx" _ x)+-1 

j=l 
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in the right-hand side of the last equality. Then S,(x) can be written in the 
form 

W) = (1 + f G) (E (&w)(xP~ - x)j--l 

- 2 z (j - 1) p)(xP~ _ ,y-2 
j=l 

- gf-1 z1 ry(xPr - x)+l) 

+ gf-1 zf $-'yXPr - -#-I + r (&i'i-")(x"' - X)j 

j=l j=l 

- 2 zf jp)(Xp’ - xy + p’H,-l(X) + pT DU&1(X) 
j=l 

=Uff +) [El (&w’ - 2j4y - -g f -fy) &“’ - X)+1 

+ (&” _ gf-l&l’) (@I _ -p-l) 

+ 'El (D$-1) - qj + 1) t&l) + g f -$&l)) cxpr _ # 

+ (&;))(xPr - 93 + g f --‘$-I) - 2$-l) + P’Ui(X). 

The statement of the lemma follows from this in an obvious way. 

LEMMA 11. Let Ft’, k = 1, 2 ,..., i; i = 1, 2 ,... be defined by recurrent 
relations (8). In order that the expression S,(x), i = 1,2,..., 2m - 1 have 
“necessary form,” it is suficient that the relations 

22iti(0) = i $$iQol, i = 1, 2 ,..., 2m - 1, (14) 
k=l 

hold, where @’ are defined by the equalities 

Ff) = z-ii! pf). (15) 

Proof. We shall prove Lemma 11 by induction on i. For i = 1 the 
statement follows from Lemma 10. Let the statement hold for i = j - 1, 
We prove it for i = j. Consider the j relations 

k=l 

i = 1, 2 ,..., j. (16) 



AN ELEMENTARY PROOF 135 

From these relations it follows for j = I that 

@' _ 4f p/o 

dx ’ 

and hence the expression S,(X) has “necessary form.” Moreover, for 
i = 1, the relations (2) hold. By (8) and (I 5), 

$y = 2 (Dg-1’ + 2(k _ 1)&y + gf-1p), 

k = 1, 2 ,..., i - 1, 

$?F) = 2 
( 

2(j - 1) flET1) + 22(i-1) gf-'). 

Hence for i = 2, 3 ,..., j, we have 

22”@’ = 2 '2 (,,-1) + 2(k _ 1) @<l' i 

k=l 

j- f-l~~-l)) $' 

+ 2 (2(i - 1) Jyy + p--1) gf-1) $) 

i-l i-l 

= 2 1 (&i-l'> (0) rk + 2 c 2kpf1’r& 
k=l k=l 

+ 2gf-l i&-lp' + p-lg~-lrjo~, 

k=l 

We add and subtract the sum 

i-l 
2 c flf-1) D$' 

k=l 

in the right-hand side of the last equality. Then we have 

i-l 
2Ziitlo) = 2 C (D~~'-l)) r~' + 2 ~~ ~~-1) Dry' 

k=l k=l 

i-l i-l 
- 2 c p2-l) Drf” + 2 c 2k@-l’rf$ 

k=l k=l 

+ +-1 a$prp + 22i-ldff-lrjo) 

k=l dx 
i-l 

= 20 C I;f-l),t) _ 2 '2 j7t-1) (Dr:' - '&t21 _ ~f-'r~' 

k=l k=l > 

df + 222-1 dx f --lrjO’. 
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Whence by (2) 

i-l 
22iiti(o) = 20 1 pf-drjO) _ 2 '2 Jdki-l)r~) 

k=l k=l 

Apply the condition 

i-l 
22(i--l+t$ = c pp$.y 

k=l 

and obtain 

22iitj0) = 22i-1 D$$ _ 2 $2 j$i-')$) 

k=l 

+ 22i-lgf-lrjo)* 

Hence in view of (2) we have 

i-l 
226lpi = c jy$i-l)$), 

k=l 
i = 2, 3 ,..., j. 

By the hypothesis of induction, the validity of the last relations is 
sufficient to insure that the expressions S,(x),..., &(x) have “necessary 
form,” hence the validity of the relations (16) is sufficient to insure that 
we, ~2W,..., &(x) have “necessary form.” The lemma is proved. 

LEMMA 12. Let g(x) be a polynomial, not identically zero, from the ring 
K&l. Further let 

g”(4 g(g = a$ = 2r = . . . Pm () =-=. 
i! 

Then 01 is a root of the polynomial g(x) of order at least i + 1. 

Proof. We suppose that 01 is a root of g(x) of orderj and thatj < i + 1. 
Then 

g(x) = (x - @h(x), h(4 f 0, 

and we have 

g(j)(x) 
- = h(x) + 4-4(x - 4 

j! j! ’ 

Under condition g(“(ol)/j! = 0 and hence h(ol) = 0. But, by assumption, 
h(or) # 0, and this contradiction proves the lemma. 
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LEMMA 13. For any natural number m < dp’/3n there exists a 
polynomial S,(x), not identically zero, in the ring k&l, of degree at most 

p’ - 1 
,-n+(m- l)p’+(n-l)m2+n 

such that all elements of the second class are roots of S,,(x) of order at 
least 2m. 

Proof. We shall try to find the polynomial S,(x) in the form 

d-1 Tn 
So(x) = (1 + f 2 ) 1 rj’O’(x)(xP’ - x>j-l + f @‘(x)(x”’ - x)’ 

j=l j=l 

with indeterminate polynomial-valued coefficients rj(‘)(x) and t,‘“)(x). We 
shall consider S,(x) as a polynomial over the ring Z. However, we must 
avoid having all of the polynomials rj”)(x),j = 1, 2,..., m, identically zero 
modulo p. 

Let pf’ be defined by equalities @’ = 2-5! @’ where the Ff) are given 
by (8). If we choose rj”) and tj”) so that the following relations over Z 
hold: 

22i$) = i gi'$), i = 1, 2 ,..., m, (17) 
k=l 

i = m f l,..., 2m - 1, (18) 
k=l 

then by Lemma 11 all the expressions S,(x), i = 0, l,..., 2m - 1, have 
“necessary form”. 

Find a nontrivial solution over k, of the system (18) in polynomials 
r-i’). It follows from Lemmas 8 and 9 that the rational functions pjj’ can 
be written in the form 

(19) 

where pf) are polynomials with integral rational coefficients, and the 
degree of pf) does not exceed ~2) = (i - k + l)(n - 1). Write 

rk 
(0) =fm-k+lrk . (20) 

It is clear from (19) that in this case the system (18) is equivalent to the 
system 

2 pf’rk = 0, i = m + l,..., 2m - 1, (21) 
k=l 
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with polynomial coefficients Pf). Let 

i = m + l,..., 2m - 1; k = 1, 2 ,..., m. 

We write pk = (m2 - m + k)(n - 1) and look for rk in the form 

CL 

rk = c bd,kxl. 
l=O 

Then system (21) can be written in the form 

“2’ ( zl j;eg a/,kk) xq = 0, i = m f I,..., 2m - 1. 
g=o 

In this case the following equalities 

q = 0, I ,‘.‘, /.Lk + v$ , i = m + l,..., 2m - 1, (22) 

must hold. In the last system there are M = ~~=, &k + 1) variables 
bCBk and N < C:y$ I&~ + VP) + 1) equations. We have 

A4 = (n - 1) 2 (k + m2 - m> -I- m 
k=l 

= (n - 1) m3 - + m2 + !+L m, 

m-1 

N < (n - 1) C (j + m2 + In) + m - 1 
j=l 

=(n- ])m3-!..+.Lm2+JZ!$m-~n. 

Thus M - N > In and system (22) has a nontrivial solution in elements 
blsk of the ring Z, where bl,k can be chosen so that not all of them are 
zero in k, . 

Further, let t!‘)(x), j = 1, 2 ,..., m be defined by (17). From (19) and 
(20) it is clear that all the fj’“’ are polynomials. 

Let rational function Pj”) and 4’) be defined by the equalities 
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Then by Lemmas 8 and 9, ?ji) and fji) can be written in the form 

where 8ja), Ti’r) are polynomials with coefficients from Z. 
In this case all the expressions 2i[Si(X)/i!], i = 0, l,..., 2m -- 1, can be 

written in the form 

2i &Cx) 
p”--lm 

-=U-tf i! 
2 ) ,F; ?y(x)(x”r - x)i-l 

+ 5 fjqx)(x”’ - xy + 
j=l 

z$ Ui(X), 

where Vi(x) are defined by (12) and (13). In view of Lemmas 8 and 9 
and relation (13) it is clear that Hk(x) are rational functions of the form 

Hk = 2-“k! .& 
f” ’ (24) 

where &k(x) are polynomials with coefficients from Z . 
We shall find an upper bound for the exponent of the highest power of 

the prime number p that divides i!/k!(i - k - l)!, i = 1,2,..., 2m - 1; 
k = 1,2,..., i - 1. Let v(i) be the exponent ofp in i!. It is obvious that 

u(i) = [i] + [-$I + *** + [-$-1. 

But m < l/p’/% and so i < ~‘12. Hence we may write 

. . 
u(i) = ; + --+ + . . . + -+ - ey, 

4k) = ; + $ + . . . + $ - el”‘, 

u(i - k - 1) = i-k-l + i-k-l 
P 

p2 + . . . + i -;s- ’ _ @-k-l), 

where 0 < 0:) < s, 0 < Qk) -=c S, 0 d &J-“--‘) < s and s < r/2. It 
follows that 

u(i) - v(k) - v(i - k - 1) 

= 0:) + ey-k-1) - e!) + f + $ + . . . +$ 

6411412-3 
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from which 

v(i) - v(k) - v(i - k - 1) < 2s + (1 - p-9 
p-l . 

Since 2s < r, for integers r and s we have 2s < r - 1 and 

v(i)--v(k)-v(i-k-l)<r. 

In this case it follows from (12) and (14) that (2ip’/i!)U&c) are rational 
functions of the form 

(25) 

where V,(x) are polynomials with coefficients from Z. 
Now we consider the expressions 2i(Si(x)/i!), i = 0, l,..., 2m - 1, in 

the field k,(x). It follows from (25) that in this case 

2i sic4 pv-1 nl 

-=(lff 
i! 

") c Q'(x)(xP' - x)j-1 + 2 fi'*'(x)(x"' - $. 

j=l j=l (26) 

Note that 2$Y,(x)/i!) differs from #)(x)/i! only by a nonzero constant 
factor in k, . Further, in view of (23) and (26) it is clear that all elements 
of the second class are zeros of the expressions 2i(S,(x)/i!), i = 0, l,..., 
2m - 1, and hence also zeros of #)(x)/i!. 

We show that the polynomial S,,(x) is not identically zero. Note that 
not all polynomials rj(O)(x) are zero in K&X]. Denote the degree of the 
polynomial I-F)(x) by al, and the degree of the polynomial tj’)(x) by yi . 
Since the degree of the polynomial rk does not exceed (m2 - m + k)(n - 1) 
we get from (20) that 6, < m2(n - 1) + m + n - k. Further, by Lemma 8 
and by (17) we have yi < m2(n - 1) + m + 12 - i - 1. But p’ > 9n2 
and m < dpT/3n, so that 

6,+i$m2(n-l)+m+$--k<$, k = 1, 2 ,..., m, 

(27) 
y,+g<m2(n-l)+m+$--i-115, i = 1, 2 ,..., m. 

The degree of the polynomial (1 +f(e’-l)/2) rT)(xp’ - x)*-l is equal to 
pk = (n/2)p’ - (n/2) + 6, + p’(k - 1) and the degree of the polynomial 
Qyx~’ - x)i is equal to wi = yi + p?. Since n is odd, it follows from (27) 
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that pk # wi for any i, k = 1,2 ,..., m. Moreover, pj > pk, wi > wk for 
j > k. Hence the terms 

& d-1 9r-1 

(1 + f 2 ) $), (1 + f”) ‘z(o)(X”P - X),..., (1 +f 2 ) rz)(Xp’ - q+l, 

f,(0)(XP7 - x), tp(Xp7 - x)“,..., f$)(XP - x)” 

in the polynomial S,(x) cannot cancel out. Then by Lemma 12 all elements 
of the second class are roots of the polynomial S,(x) of order at least 2m. 

Finally, we estimate the degree of S,(x). The degrees of the polynomials 

97_1 

(1 -t-f 2 ) ri(0)(XP’ - x)i-l, j = 1, 2 ,..., m, 

do not exceed 

p’ - 1 
---n+(m- l)p’+(n- l)m2+n. 

2 

The degrees of the polynomials tj(o)(xp’ - x)j,j = 1,2,..., m, do not exceed 

mp7 + (n - 1) m2 + n - 1. 

Hence the degree of the polynomial S,(x) is at most 

p’ - 1 
Tn+(m- l)p’+(n- l)m2+n. 

Lemma 13 is proved. 

LEMMA 14. For any natural number m < l/pr/h there exists a 
polynomial T,(x), not identically zero in the ring k,[x], of degree at most 

pT - 1 
-n+(m- l)p’+(n-- 1)m2+n 

2 

such that all elements of thejirst class are roots of T,(x) of order at least 2m. 

Proof. The proof of this lemma is analogous to the proof of Lemma 13, 
with the difference that we now try to find the polynomial T,(x) in the 
form 

9'-1 m  

To(x) = (1 - f “) c Sj’D’(x)(xP’ - ,y-1 + -f ~i’o’(X)(X”’ - x)i. 
j=l j=l 



142 STEPANOV 

4. PROOF OF THE THEOREM 

The number of roots of a polynomial does not exceed its degree. So by 
Lemma 13, 

2mJ-, < ‘q n + (m - 1) p’ + (n - 1) m2 + n, 

or 

2m(p’ - J+l - JoI < p+n+(m-I)pT+(n-l)mz+n. 

Therefore, 

2m(p’-$L+)&+ n + (m - 1) p’ + (n - 1) m2 + n. 

But J,, < II. Hence, 

2m(pr-$L;) <PC+ n + (m - 1) pr + (n - 1) m2 + n. 

Thus we get 

JPr 3 pr + 2 - (n - 1) m - i - ‘G n. 

By Lemma 14, 

2m J,r - Jo < pr - 1 
2 

,---n+(m- l)p’+(n- 1)m2+n, 
2 

or 
pr + 1 

JPr < pr - f + (n - 1) m + n + x ” 

Take 

m= M 1 $. 
Then by (28) and (29), 

JPr >, p* - ~6% n dE JDr < pr + 6 n v% 

Hence 

(29) 

The theorem is proved. 
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Finally let us show how the corollary follows from the theorem. By 
the theory of zeta-functions of fields of algebraic functions [2, p. 3211, 

(30) 

where w1 ,..., wZIl are roots of the zeta-functions of the field k,(x, v’fm); 
in this case, 2g = n - 1. Hence for any natural r 

From here it follows by elementary arguments [3, p. 1381 that 1 wj 1 < dj 
so that from (30) we obtain 

/ J,? - pr 1 < (n - 1) p”‘. 
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