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An elementary proof is given of the Hasse-Weil theorem about the number
of solutions of the hyperelliptic congruence y? = f(x) (mod p), where the
polynomial f(x) has odd degree.

1. INTRODUCTION

Let » > 3 be an odd number, let r be any natural number and p > 9n?
be a prime number. Let k. be the Galois field consisting of ¢ = p”
elements. We shall consider in & . the equation

= f(x), (1)

where f(x) =x" +ax" '+ - +a,,x +a, is a polynomial with
integral rational coefficients.

Let J,- be the number of solutions of the Eq. (1) in k- . For the case
r =1, the estimate

lJz)_'pl <\/§n\/§

is proved in [1]. In the present article we prove the following

THEOREM. Letr > 1. Then
[ J— 07| < V3nnvp'.
From this theorem a stronger result can be deduced. Namely, the
following statement is true:
COROLLARY. For J, we have the estimate
e — P < (= 1) prr.
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2. LEMMAS

We divide the elements of k- into three classes:

(I) Elements « € &, , for which f(«) % 0 and the equation y* = f(«)
is solvable in k,- . Let J,; be the number of such elements. Note that we
have for such an element o

21
1 —fla) 2 =0.

(I) Elements B € k- for which the equation y* = f(B) is insolvable
in k,» . Let J_; be the number of such elements. For such an element 8
we have

LSBT =o.

(III) Elements y € k, for which f(y) = 0. Let J, be the number of
such elements.

It is clear that
Jau+Jo+Ja=p"
Further,
Jp =21+ Jy.

Finally, for any element x € k- we have
x?" —x=0.

Let D be the differentiation operator

d
D=2 v
and let Z be the ring of integral rational numbers. We shall apply the
operator D to rational functions of x with coefficients from Z and also to
rational functions from the field k,(x). Since differentiation in k,(x)
and differentiation of the rational functions with coefficients from Z are
the same, modulo p, we shall use the same notation for these differenti-
ations.

Lemma 1. Let rational functions r{(x), i =1,2,..; j=1,2,.. be
defined over Z by the recurrent relations

. y i ar .1 (-
rj(z) — Dr](z 1) 2]r,(§11) _ %f lra(z 1) Q)
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in terms of initial functions r{®(x), r{®(x),... . Then

(z) Z Z ( 1) 28 (] + 5 — 1) C SC: .G Dz-—s—-t J(g_)s ,
s=0 ¢=0 ( )

where the rational functions G(x) with coefficients from Z are determined
by the following relations

GO - 1, Gt - DGt—l - %f‘th—l s = 1, 2,... . (3)

Proof. We shall prove Lemma 1 by induction on i. For / = 1 the
statement is obvious, since

r® — pr® _ 2 df Y O 1.

Under the inductive assumption

=1 f~s5~1
(t—l) z Z ( l)s 28 (] _f" s 1)'1) C:—lczt—s—lG Dz—s—t—l 7(2-)3
s=0 t=0

Then in view of (2) we have

. i—8 i—s—1
=3 ¥ cyrdiislac,, (06, - L)
§=0 =0

% Di_s—t—lrg(g-)s

=1 i=3—1
s -I— s — s s
=1 i~5—1 s . . § ! , A
+3 ¥ (e (-J;j,—) ClaClgaG D=4,
§=0 t=0 .
i-1 §—s—1
3 s(]+s ) 3 P ()

=1 i—s-1 i
+X X 28@-‘———)—CHCf_s_leD”“r,‘i’s

=0 =0 1) !

+ 3 ¥ iy LEE D ener G,

s=1 t=0 )
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i—1 i—s ! .
=1 Ly iaRencrt oo,

8=0 #=1
-1 i—s—1 i

+3 Y cyrdEin e, oo,
$=0 =0
i—1 i—8

+ L Yyl enet oo,
s=1 t=0

iay G+ T— 1

= D' + ) (CiE} + Chy) GO

t=1

i—~1 )
+ 3 o D e e o,

8=1 1)'

i~1 i—s—1 — 1
+ Z Z ( ])s 28 (] ‘Jf' § ')

§=1 t=1 1)

X ACLACEE, + CEy) + CIICL) G D49,

i~1
+ LU, + o6,
§=1

i !
+(—1)'2 if_"{"_l_)_',l_,-]‘(jr)l

— i zis( 1)3 28 (J 45— 1) CsCf sG Dz—s—t (%}

8=0 t=0 ( ) T

and Lemma 1 is proved.

LeMMA 2. Ler rational functions ri(x), i =1,2,..; j = 1,2,.., be
defined by (2) in terms of initial functions r{®(x), rx),... . Further let

rational functions t{(x), i = 1,2,...;7 = 1, 2,... over Z be deﬁned by means
of the recurrent relations

i i . df ;4
1 = Dt — 2G4 1 afi? + Ly @

7+1
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in terms of initial functions t{”(x), t{°(x),... . Then

.7+S

(z) Z (— l)s s T S) (J + s)! sDz s (0)

8=0

i1 s . '
Z Z (_1)3«}-1 28 (] _}" S)~ sCt .G, pi-s—t .7(3—)3+1 ,
t=1 :

where G(x) is defined by (3).

Proof. We shall prove Lemma 2 by induction on i. For i = 1 we have
(0 = D — 27+ 01+ L,

and therefore Lemma 2 is correct in this case. Under the inductive
assumption

(1-—1) Z ( 1) gs 4 T 8): (] + S) Cf__ Dz-s-ltj(g_)s

=2 f—s—1 ; ! . it
+ Z Z (—1yt 2 y —]i-_! ) Cz‘—1cz—s-1G D=t lrﬂ(g—)S‘f'l

=0 =1

Then by (2) and (4)

3 ] s 8 -8
L

s j D! s pi-e-
+ Z (_1)s+1 s+ U -+ S'+ ) D 1 1(2-)54-1
8§=0 *
i—1 i—s~1
+3 3 o8 ac,, (06~ L )
=0 =0
X D* s_t—l"}g—)sﬂ
st s11 5s (J + 5)! + S) P i—s—t,(0)
+ Z Z (=1 2 CiaCio 1GD Fitst1
8=0 i1

-2 {~S—1 s s ; l R et
-+ z Z (—=1)*2 2 (]+++2‘ $-1Cios1 Gy D57 a(g-)s+2

§=0 ¢=1



AN ELEMENTARY PROOF 123

=Zi1( 1)828(.]+s)

§=0

3 -3 ()]
z—lD J +8

+ 3 2 U oy,
=1

i—1 i~s5—1
+3 3% e ect, G,

s=0 =0

i—2 i~s—1 . s iese
+3 3 oo, g,

5=0 =1

i—1 i~s .
+ 3 ¥ oS e 6o,

3=1 t=1

- 3 oz U, — § e + el o,

=0

+ (- 1)’2"1—-———(”; D et + et 6l

-2 i—8-1 . 1
—1 s+1 28 (] + S)-
+ *’;1 tZ=1 (=D T

X {CIa(Clpy + Choy) + CEICE ) G D40,
-2

+ 3 oS + e 6o
— Z( 1)323(]+S) sDz s(o)

7+3
8=0

i— i 4 i
- 3 G0, + (- U= D cog

t=1
=2 {—~s-1 i | .

+2 Y p™ 239—‘].ﬁi)'c,-sc:_sGtD’-s-‘r,‘i’m
8=1 =1 )

i—2
+ 3y, 0,

s=1

— Z ( 1)3 g8 T 2)° (J + S) sDz- J(_l?_)“:

8=0
o s+l As (.] + S) Eyali i—s—t_(0)

+ Z Z (=D 2 C'Ci_G.D Fitss1 s
8=0 i=1

and Lemma 2 is proved.

641/4[2-2
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LemMA 3. Let rational functions G(x), t = 1,2,... be defined by (3)
and let f(x) = [Tiy (x — X;) be the decomposition of the polynomials f(x)
into linear factors in the algebraic closure of the field of rational numbers.
Then

i n n a;i)

’ t i p
e W S e S R €l 79 L (x — X )%’
dybeee iyt 4y <ip<r e <iy

where the ai? , are given by the recurrent relations

a? = —1
a? ]-=—z(2(1,—1)+1) a'® s s =23,

Proof. We shall prove the lemma by induction on 7. For ¢t = 1 the
statement is obvious. Under the inductive assumption

t—1 t—-1 n n k

Gu=3% 3 Y L33

k=1 ;=1  Gp=l i;=1  ip=1r=1
Jyteetig=t 1y <hy< oo <y,

(X — X))t (0 = X Pt (0 — Xy Y

Then by (3)

t—1 i-1 t—1 n n E ok
G==2% 33 ¥ -3¥Y
k=1 j;=1 Jg=1 ¢;=1 =1 r=1 s=1
jl+“'+jk=t i1<ig<"'<ik
( - 87'3) a(t_l) Jr—1...0s ix

X x — xil)jl e (x — xif)],.—l e (x — xi,)j'+1 e (x — Xi, Jx

Y% 5% 5 ¥
I:—L:]. agl dp=1 i;=1 1=l ig,,=1 r=1
dybeetig=t 3 <ig<e <l
(t—1)
. aal,l V=1, ©)
(x = X e (x — X )t (x — X)) (x — x4,,,)

where 8, is Kronecker’s symbol.
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It is clear that G; may be written in the form

G=Y Y3 %Y BE %)

t = :

Bl ig=1  p=l i1 =l (¢ — xg, ) (x — x; )
Gyttt i<y <i

If we now in (6) and (7) compare coefficients of the expression

n n ]
i12=1 z',,2=:1 (x = x; )1 (0 — xg )%
<< <y,
we get
(@) i — 1 1) gtV .
aJ] ..... jk Z ( (JT ) + ) a ..... Je—l...., e "
r=1

Thus Lemma 3 is proved.

LEMMA 4. Let
a§1) e o jl + o+ ]k =1, I = 1’ 2’

be given by relations (5). Then
® t t! ko
4j,...., iy = (—1) Tl e 71 H 1—[ (2(]8 - T) + 1)'
Jit Ut Tt s s

Proof. We shall prove the lemma by induction on ¢. For t = 1 the
statement is obvious. Under the inductive assumption

t— - (e —1n!
a}l,.{?‘f,‘—l ..... i = (_l)t ! ]1' (]r — l)' jk'
x TIIT @G =2+ 1 [T @G~ 7= D+ 1.
SHET
Then by (5)
T STl L 1] [ )
T1reess 22 = Jl (J . 1)' kRt 8
= (— l)t !HIH(Z(ls—T)-i-l)

and thus Lemma 4 is proved.
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LEMMA 5. Let rational functions F{" be given over Z by means of the
recurrent relations

(1) df f-1

F(z) DF(t—l) + 2k — 1 F(z—l) dff—lF(z—l), k= 1,2, i — 1,
®)
F® = 26— D) FEP + 259G — 1) % .

Then the relations
F(l) 21 F(‘t_—ll)
hold for k = 2,3,..., .

Proof. We prove Lemma 5 by induction on i. Iterating the last of the
relations (8) we get

F9 — 21y F(l)
and therefore the statement holds for & = i. In particular, the statement

of the lemma for i = 2 follows from the last equality. Under the inductive
assumption,

R =20~ DFSY, PP =2 — 1) FiP.
Further,
Fis? = DR + 2k — ) B + L g
and by (8)
24— DFE = D2 — D RS + 46 — Dk — 2) FEP
+ %f_lz(i — ) FEP
= DR + 2k — 2) B + &L poapgen
= F{ — 2F&D.
Hence

FP = 2iF&P.

Thus the lemma is proved.



AN ELEMENTARY PROOF 127
LEMMA 6. Let rational functions F®, k = 1,2,...,i; i = 1,2,... be
defined by the recurrent relations (8) and let f(x) = [Toy (x — x,) be the
decomposition of the polynomial f(x) into linear factors in the algebraic
closure of the field of rational numbers. Then

i i @
Z=: z 2 Z bal ..... I

— gy s . i’
=1 =1 sp=1 (x X 31) 1 (.X xsk) ®
11+ =t 81 <8< <8y

Fl(‘l)

I Ms.

where b}, are given by the relations

) __
1 1’ (9)
B = 3 (= 20, — DB
r=1
Proof. We shall prove the lemma by induction on i. For i =1 the
statement is obvious, since
2 1
F(l) .
slz=1 (x - xsl

Under the inductive assumption

_TY..F% % 3
i
R=% 22 XXX
k=1 ji=1 Jp=l 8=1 S=1 r=1
Gyt =t 8 L8y Lr oLy
(3~ )
b i~ cosde=1,000.0%
(x — Xxg)n - (x — Xg e (X — X )
Then by (8) we have
(z) vy

=1 r=1 t=1
71+ =t 31<sz< <8
(i—1)
( - 87‘t) b z..l...h“l ..... ir
(x — xsl)jl ves (x —_ ng).‘],. (x — xst)h+1 ver (x — xsk i
i—1 -1 -1 »

tTy-y 33 %y

Jp=1 8;=1

=1 83 4=1 r=1
Iyt ig=i 8y <8g< <8y
b(z—l)
..... Fe=1seaadp
(x — xsl)fl s (x _ xsr)],.—l oes

O — X (X — x50’ (10)
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where 8,, is Kronecker’s symbol. It is clear that F{¥ may be written in the
form

Flﬁ): o x _ . (11
LYy Z= Skzzl CEE A CEE AT
j1+...+jk=i 31<92<'“<3k

If we now in (10) and (11) compare coefficients of the expression

1
R e R
31<32< <.sk
we get
b = z (A — 20, — DB s

r=1

Thus Lemma 6 is proved.

LeMMmaA 7. Let b“’ Lo it =10 i =1,2,.. be defined by

.....

..... = ,HH(1—2(Jt—T))

At t=1 7=1

Proof. We shall prove the lemma by induction on i. The statement of
the lemma is obvious for i = 1. Under the inductive assumption,

b o (i —1)!
..... Tp=1,....9% jl! v (jr _ 1)! ...J'k!
k d i—1
x TTIT( —2G—=» 1T 4 —2(G, — = — 1))
ttzlr 7=1 =1
Further by (9) we have
bf',) = . (l 1 =2 o
Lreres M 1§1]1‘ (J'r'— 1)' . |t1:[111:_[1( (]t T))
= 1 — 2% —
AR tI;Il H ( e — ™)

and thus Lemma 7 is proved.
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LemMma 8. The expressions F, k = 1,2,...,i; i = 1, 2,... defined by
the recurrent relations (8) are rational functions with coefficients from Z
of the form

F(i) — Pl(cl)
L2 fi—k+1

where the degree of the polynomial P{" does not exceed
W =@ —k+ D@ —1).

Further, if r0(x), t(x),j = 1, 2,... are polynomials with coefficients from Z,
then the expressions r{(x) and t{)(x), i = 1,2,...;j = 1, 2,... defined by (2)
and (4) are rational functions of the form

@ @
b0 _ R} (O T
i i fi

= s

with coefficients from Z.

Proof. The second part of the statement follows easily from (2) and
(4). The proof of the first part will be made by induction on i For i = 1
the statement is obvious, since F{* = df/dx f 1. In view of (8) the statement
is also obvious for k =i, i = 1, 2,... . Under the inductive assumption,

(-1 (i~
F i—1) __ P Icl F(z’—l) - P kl—ll)
k k-1 — fi—k+1 ’

= FoE o

where the degrees of the polynomials P{™™ and P{3" do not exceed
(i —k)n — 1) and (i — k + 1)(n — 1) respectively. But for i # k

F® = DFSD 4 20k — 1) F&= % FIpGD,

Further, it is clear that

(i—1)

-1 _ ¥r
DF; - fi—k+1

and that the degree of the polynomial Q% does not exceed

(i —k + 1)@ —1).

Hence

FO — PY

- fi—k+1
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and the degree of polynomial P& does not exceed (i — k + D(n — 1).
Lemma 8 is proved.

LemMMA 9. Let the rational functions F{)(x), r{(x), t%(x), k = 1, 2,..., i;
i=1,2,..;j=1,2,.. be defined by the recurrent relations (2), (4) and (8).
Let r®(x) and t{"(x), j = 1, 2,..., be polynomials with coefficients from Z.
Then the polynomials P{(x), R%"(x) and T{"(x), which are the numerators
of FX(x), ri(x), and t{(x) respectively, can be written in the form

PP =270t PP, RP=2"RY, 1P =2"0TP,

where P, R, and T\ are polynomials with coefficients from Z.

Proof. First we prove that (2j — 3)!12//j! is an integer for all
j=2,3,... We have

Qj—3NY _ 22— 2)!
J! J1G—Dnt-

On the other side,
Qj—3HpN2Y  42j— 3!

7! NG
Define
_@2i=2! B— 2j — 3!
FG=or G=ar

It is clear that 4 and B are integers. Further, we have

Hence A(j —2) =2B(j —1) or A=(4 —2B)(j — 1) and therefore
Alj — 1 = A — 2B s an integer, so (2j — 3)!12/j! is also an integer.
We prove that R and T}* can be represented in the form

RO =27t RP, 1/’ =27 TP
In view of Lemmas 1 and 2, it is enough to prove that G;, t =1, 2,...,

can be written in the form G, = Q,/f; and that @, = 2! 0, , where 0,
is a polynomial with coefficients from Z.
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The first statement follows easily from (3). Further, in view of Lemma 3,
to prove the second statement it is enough to show that

a sohtFr =t k=128 t=12.

can be represented in the form

a;ﬁ....a‘k = 27" aa('?.....ik R
where
&fi?....,ik eZ
By Lemma 4,
a? = (=1 s n n QU.— 7 + 1)
-] §=1 =1
¢!
= (=Dt —— (2, — DV - 2j, — DI,
=1 Jl,_,,]k!( o= DI @ — 1)
Hence
m._ﬁﬁtﬁ%—m“ﬂ@—wr
aal ..... I T 2t ( 1) ]1! ]k >
and so
~(n W= (=1 225 — DI %25 — I
..... A A

is an integer.

To finish the proof of the lemma it remains to prove that P, k =
1,2,...,i; 1 = 1, 2,... can be represented in the form P{ = 2-%! P{», We
consider separately the cases k > 1 and k = 1. Let k = 1. In view of
Lemma 6, it is enough to show that b0 , , ji 4+ = +je=1i k=
1,2,..,i;i =1, 2,... can be represented in the form

'HH(1—2(Jt—T))

A! =1 71

= (W gy @ — D @ — 3N
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and the last statement follows from the fact that

(=D

225 — )N 22, — )N
! Z

; j Ic!
is an integer.
Let now k& > 2. In this case we shall prove the statement of the lemma

by induction on i. For i = 1 the statement is obvious. Under the inductive
assumption for k > 2

Pl(ci—l) — 2-—i+1(l- — 1) ﬁ]g—n.
Moreover,

P{i—l) — 2-—i+1(i _ 1)' ﬁfi—l)

and all PV, k = 1,2,...,i — 1, have integer rational coefficients. By
Lemma 5 we have F{' = 2iF{"}" for k = 2,3,...,i. Hence in view of
Lemma 8 P{) = 2iP{*}V, and so P{» = 2-ij! P{. The lemma is proved.

3. Basic CONSTRUCTION

Let m < p7/2 be a natural number. We consider the polynomial

p"'-1. 2m
2 )Z

=1

500 = (1457%) $ i@ — 0t + 3 e — v,

where r{(x), {(x) are polynomials with coefficients from Z.
Define Si(x), i = 1, 2,..., in the following way:

Si(x) = D'Sy(x).

We shall say that the expression Sy(x) has “necessary form” if it can be
written as

»’ 1, 2m

S@ = (1+77) ¥ @ — 0
am
+ Y 472067 — %) + prUi),

where r{?(x), t{?(x), Ug(x) are rational functions with coefficients from
the ring Z.
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LeMMA 10. Let S;_1(x) have “necessary form”. Then for the expression
S(x) to have “necessary form” it is sufficient that the relation

holds.

; af 3 G-
2t1(z—1)(x)=d_£f lrl( 1)(x)

In that case, the rational functions r{"(x), t{(x) are defined by relations
(2) and (4) respectively, and moreover,

where

Hy(x) =

) = 3 DiH (),

k=0

ZmZ—I (21(1 +f”;_)xpf_1r(k) +f 2 ji' (k)) x”f

i=1

2m
7T et g § e

dx

j=1

Proof. We have

S =1 +77)

2m R 2m X
x (z (DrfD)eo” — xp3 =2 Y (G — 1) D —
i1 =1

(12)

)j—l

x):i -1

x)"z)

—f 2 df f..l Z r](l——l)(xp' x)?—l + Z (Dt(‘_l))(xp' x Y

2m
—2 % e — ey (14 )xm'-l Z G-1D
j=1

»'~3

2m X
T A S . A R
dx 5

2m i .
+ 2p7x? 1 Y 00" — xp1 4 prDU,y(x).

i=1

We add and subtract the expression

df 1
_f—l riE Ve o x)i-1
dx j; i ( )
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in the right-hand side of the last equality. Then Si(x) can be written in the
form

S@ =+ (2f (DM — -t
-2 jé G—1 rji—l)(xp* — X %fﬂ j_i r;t'—l)(xpr . x)j_l)

2m
+ 3 SV — xy Y (D — 5y
i=1

j=1

2m
—2 Y ji " — x) 4 pTH, \(x) + p7 DU, (%)
j=1

-1 /om-1 (i) y f )
=W+ (0 = 2 = ) - 2y

j=1

+ ( Dr(z-l) df f—l (z—l)) (x?" — )2m—1)
2m—1 - . - d 1 G N .
# 3 (D0 =20+ ) R 4 ) o - vy
ot
(et rp om A 1 G-D) G-1) | 7
4 (Dtg Hx?" — x)*™ + T o™ =267+ pTUL(x).
The statement of the lemma follows from this in an obvious way.

Lemma 11. Let F?, k = 1,2,...,i; i = 1, 2,... be defined by recurrent
relations (8). In order that the expression S{(x), i =1, 2,...,2m — 1 have
“necessary form,” it is sufficient that the relations

200 — Y EF, i=1,2,.,2m— 1, (14)
k=1
hold, where F{") are defined by the equalities
F(z) 2-zl| F(z) (15)

Proof. We shall prove Lemma 11 by induction on i. For i = 1 the
statement follows from Lemma 10. Let the statement hold for i = j — 1.
We prove it for i = j. Consider the j relations

2% Z FpO i =1,2,.,] (16)
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From these relations it follows for j = 1 that

ar .
2w = _d_i_ FH0

and hence the expression S;(x) has “necessary form.” Moreover, for
i = 1, the relations (2) hold. By (8) and (15),

lF(z) =1 (DFI(Cz—l) + 2(k 1) F(z—l) di‘ f—IF,(Ci_l)),
k=1,2,.,i—1,

G . 7D | a26-n 4 e
iF =2 (26— DFE +2 = f )
Hence for i = 2, 3,...,J, we have
i—-1
22”1t,(°) -2 Z (DF,(Z-D + 20 — 1) Fl(ci_—ll) + gdlif—lﬁl(ci—l)) rl(cO)
k=1 x
s (i-1) 2{i-1) _dJ: -1} (@
+2(26— DFE? 42 = f )ri
i-1
=2 Z (DF(z—l)) r(o) +2 z ZkF’?—l)rl(ﬂl
k=1
_di -1 (-1, (0) 21 ﬁ}: ()]
+2dxf kglﬁk ry +2 dxf r; .
We add and subtract the sum

i-1
2 Z F,(cz—l) Dr,(co)

k=1

in the right-hand side of the last equality. Then we have

i—1
22alt(0) 2 Z (DF('E—I)) r(O) +2 Z F,(ci~—1) Dr,(co)

) Z F(z—l) Dr(ﬂ) +2 Z ZkF(t—l) ;(0(21

k=1

4+ 25 df f—1 Z F(z—l) (0 + 92i-1 & df f—1 ©

k=1
i—1 R -1 R

=2Dp ¥ Fi0:0 2 Y Fi (Dr,(c") — 2%r®, — Fdf— f —1,,&0))
) k1 x

i A .0
+ 22’1« 1__f lr.O .
dx ¢
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Whence by (2)
22iit§o) — 9D iil F(i—l)r(ﬂ) ) Z;21136(1—1)"(1) + p2i-1 if_f”lr@
z = k k = k k dx i

Apply the condition

i-1
22(1—1)%@1 — Z F’(:——l)r](co)
k=1

and obtain
i (0 ; © o) i1 4 1
22zl-zi0 — 221—1 Dtigl . 2 z sz—l rkl + 221—17;f—1ri0.
k=1

Hence in view of (2) we have

i—1
20D = TR, =23,
k=1

By the hypothesis of induction, the validity of the last relations is
sufficient to insure that the expressions Sy(x),..., S;(x) have “necessary
form,” hence the validity of the relations (16) is sufficient to insure that
81(x), Sa(x),..., S;(x) have “necessary form.” The lemma is proved.

Lemma 12. Let g(x) be a polynomial, not identically zero, from the ring
K, [x]. Further let

£ _ g _ . _ g% _
g(a) = 1’ = 2—! = = l' == O.
Then o is a root of the polynomial g(x) of order at least i + 1.

Proof. We suppose that « is a root of g(x) of order jand thatj < i + 1.
Then

g(x) = (x — yh(x),  h(x) #0,

and we have

o —
200 _ i 4 K=

Under condition g”(«)/j! = 0 and hence #(x) = 0. But, by assumption,
h(a) 5~ 0, and this contradiction proves the lemma.
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Lemma 13. For any natural number m < Vp"[3n there exists a
polynomial Si(x), not identically zero, in the ring k,[x], of degree at most

C ol nbm— D+~ Dm 4

such that all elements of the second class are roots of Si(x) of order at
least 2m.

Proof. We shall try to find the polynomial Sy(x) in the form

m

p'~1 m
S =0 +f 7)Y i@ — 7+ Y 5@ — xy
i=1 j=1

with indeterminate polynomial-valued coefficients r{”(x) and #{”(x). We
shall consider S¢(x) as a polynomial over the ring Z. However, we must
avoid having all of the polynomials r{”(x), j = 1, 2,..., m, identically zero
modulo p.

Let F{) be defined by equalities F{*" = 2-%! F{) where the F{" are given
by (8). If we choose r{® and #{” so that the following relations over Z
hold:

250 = Y I, i=1,2.,m, !
k=1
0=1Y% FoL 0 i=m++1,..,2m—1, (18)

k=1

1l

then by Lemma 11 all the expressions Sy(x), i =0, 1,..., 2m — 1, have
“necessary form”.

Find a nontrivial solution over k, of the system (18) in polynomials
ri. Tt follows from Lemmas 8 and 9 that the rational functions F{* can
be written in the form

o _ Py

B = == (19)
where P are polynomials with integral rational coefficients, and the
degree of P does not exceed v{? = (i — k + 1)(n — 1). Write

r’io) — f‘m—k+1rk . (20)

It is clear from (19) that in this case the system (18) is equivalent to the
system

Y PPr,=0, i=m+l..,2m—1, Q1)
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with polynomial coefficients P{. Let

lz)

PP — Z aaxty,  i=mA Le,2m—1; k=12..,m
We write p, = (m?* — m + k)(n — 1) and look for 7, in the form

23
ry — Z b],’kxl.
=0

Then system (21) can be written in the form

(1)

12 m p
Y (Z > aj(f,)cb,,k) xt=0, i=m-+ 1,.,2m— 1.

q=0 k=1 j+l=¢

In this case the following equalities

m pg
Z Zaq—lkblk_o

k=1 1=0

=0 Lo, pe +0;  i=m+ 1., 2m— 1, (22)

must hold. In the last system there are M = Y, (u; + 1) variables
b rand N < Z,f; +1 (s + v + 1) equations. We have

M=(n——1)§(k+m2-m)—i—m
k=1

2_*_n—}—lm’

n_
2

= (n — 1) m® —

m—1

N<m—1DY G+m+1n)+m—1
j=1

n—1 n-+1
5 m? + 5 m— n.

=n—1)ms—

Thus M — N 2= 1n and system (22) has a nontrivial solution in elements
b, of the ring Z, where b, can be chosen so that not all of them are
zero in k,, .

Further, let #{%(x), j = 1, 2,..., m be defined by (17). From (19) and
(20) it is clear that all the ¢{* are polynomials.

Let rational function #{) and £ be defined by the equalities

r =27 0 =27,



AN ELEMENTARY PROOF 139

Then by Lemmas 8 and 9, #% and #{” can be written in the form
( ()
0 _ &Y 50— 13
7 f@ ] fz s
where R, T{" are polynomials with coefficients from Z.

In this case all the expressions 2{[S/(x)/i!], i =0, 1,..., 2m — 1, can be
written in the form

@3)

9 S,-i(;X) = +pr_) i ;,]{i)(x)(xpr _ x)i——l

+ ¥ 1900 — ' + 2 ),
i=1 :

where U{x) are defined by (12) and (13). In view of Lemmas 8 and 9
and relation (13) it is clear that H,(x) are rational functions of the form

= 2-kk! ]%c ,

where Oy(x) are polynomials with coefficients from Z .

We shall find an upper bound for the exponent of the highest power of
the prime number p that divides iljk!Gi —k — 1), i =1, 2,...,2m — 1;
k =1,2,..,i — 1. Let v(i) be the exponent of p in i!. It is obvious that

0= [+ [+ -+ 5]

But m < v/p"[3n and so i < p*/2. Hence we may write

24

Wiy="1 4L 4 o o s

P P
k k k ()
k s — 6,
v(k) = p2+ + 2
. —k — i—k—1 i—k—1 Gk
i—k—1)=" e g Imk =1 s
'U( ) p + P2 + + ps s >

where 0 <00 <5, 0<<OP <5, 0O ™D <5 and s<r2. It
follows that

i) —vk) —v(i—k—1)
_ ng) 0§z’—k—1) . egi) l i i
+ totEt ot

641/4/2-3
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from which

W) — vk) — i —k — 1) <25 + L =P
p—1

Since 25 < r, for integers r and s we have 25 <<r — 1 and
(i) — k) —v(i —k —1) <r.

In this case it follows from (12) and (14) that (2/p"/i!)U(x) are rational
functions of the form

2ip" V,
—r Ui=p Foo (25
where V(x) are polynomials with coefficients from Z.

Now we consider the expressions 24(S;(x)/i!), i =0, 1,...,2m — 1, in
the field k,(x). It follows from (25) that in this case

SG) _ (117 T A = 0+ 3 1909 — .

= (26)

21.

Note that 2{(S/(x)/i!) differs from S{’(x)/i! only by a nonzero constant
factor in k, . Further, in view of (23) and (26) it is clear that all elements
of the second class are zeros of the expressions 2{S/(x)/i!), i =0, 1,...,
2m — 1, and hence also zeros of S§(x)/i!.

We show that the polynomial Sy(x) is not identically zero. Note that
not all polynomials r{”(x) are zero in K,[x]. Denote the degree of the
polynomial r{”(x) by 8, and the degree of the polynomial #{”(x) by y; .
Since the degree of the polynomial r;, does not exceed (m* — m + k)n — 1)
we get from (20) that 8, << m?*(n — 1) + m + n — k. Further, by Lemma 8
and by (17) we have y, <m*mn — 1) +m +n—i—1. But p” > 9n®
and m < Vp'[3n, so that
8k+g<m2(n——1)+m+§§—k<%i, k=12,.,m,

27)

no_ e, 3n . oo
y5+2<m(n 1)+m+2 i 1<2, i=1,2,..,m

The degree of the polynomial (1 -+ f*"~1/2) pi®(x?" — x)k-1is equal to
pr = (n2)p" — (n/2) + &, + p'(k — 1) and the degree of the polynomial
t®(x?" — x)tis equal to w; = 7, + p'i. Since n is odd, it follows from (27)
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that p, # w,; for any i, k = 1, 2,..., m. Moreover, p; > p;, w; > w; for
j > k. Hence the terms

-1 m"—l -1
A+ ) A+ )R = 2y A2 )67 — 0™,
1O — %), 190 — x)2.. 10 — Xy
in the polynomial Sg(x) cannot cancel out. Then by Lemma 12 all elements

of the second class are roots of the polynomial So(x) of order at least 2m.
Finally, we estimate the degree of Sy(x). The degrees of the polynomials

p7—1 .
A+ 2 )P —xy,  j=1,2..,m

do not exceed

pr2_1n+(m—1)p’+(n—1)m2+n.

The degrees of the polynomials ¢{”(x?" — x), j = 1, 2,..., m, do not exceed
mp"+m—m?+n—1.

Hence the degree of the polynomial Sy(x) is at most

pr;1n+(m—l)p’+(n—l)m2+n.

Lemma 13 is proved.

LemMA 14. For any natural number m < Vp'[3n there exists a
polynomial T\(x), not identically zero in the ring k,[x), of degree at most

pr—1
2

nt+m—Dp4+m—1)m~+n

such that all elements of the first class are roots of Ty(x) of order at least 2m.

Proof. The proof of this lemma is analogous to the proof of Lemma 13,
with the difference that we now try to find the polynomial Ty(x) in the
form

m

T =1 —15) %S9 — 57 + 3 @ — .

j=1
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4. PROOF OF THE THEOREM

The number of roots of a polynomial does not exceed its degree. So by
Lemma 13,

r—1

2mJ_; < 1d 5

n+(m—Dp -+ @m—1)m?+n,
or

2y —Jog — ) LS = D 0 — Dt 4

Therefore,

2m(p’—%——%—)<p 2_1n+(m—1)p'+(n—1)m2+n.

But J, < n. Hence,

m(p— 2 <t =y + 0 — Dt

Thus we get
n pr+1

Jp,>pr+%——(n—1)m——§— o

n. 28)

By Lemma 14,

2mJ“"2—J°<pr2—1n+(m—1)p'+(n-1)m2+n,

or

r T 1
Ie<pr—Z 4 @-nm+n+ Tl (29)

2m
- P’
m= [\/ r ] .
Then by (28) and (29),

Jp=p —V3nnVp; T, <p +Vnnvp

Take

Hence
‘J,,r_p’rl < v3nn\/p_'.

The theorem is proved.
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Finally let us show how the corollary follows from the theorem. By
the theory of zeta-functions of fields of algebraic functions [2, p. 321],

Jo—p =@ + = + ol (30)

where w; ,..., w,, are roots of the zeta-functions of the field k,(x, V/f(x));
in this case, 2¢ = n — 1. Hence for any natural r

|y + =+ why | < V3nn vV

From here it follows by elementary arguments [3, p. 138] that | w; | < Vp
so that from (30) we obtain

[y —p"| < (n—1)pP2
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