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Abstract

This paper gives a transition system over continuous time-space, which is a system of functions of
continuous time-space into descrete states. This system is situated between the cellular automata
and the partial differential equations. This paper shows the reasonable sufficient condition of the
uniquness of the solution.
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1 Introduction

1.1 Motivation

The time development is described as a function φ : X × T → A in general,
where the set X represents the space, or the degree of freedom, T is the set
of the time, and A is the set of attributes. The laws of time development is
described with some constraint of such functions φ : X × T → A.

According to the purpose of each application, the set X is a discrete set of a
few elements which represents a small degree of freedom of the system, a set of
lots of elements which represents a grid of the space, or a continuous space R.
Similarly, the set T is sometimes Z or sometimes R. The set of attributes A is
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sometimes a discrete set of states Q = {q1, q2, .., qn}, or sometimes continuous
R which represents the displacement of a wave.

As for discrete time T = Z, a symbolic dynamics is an example of {·} ×
Z → Q. A cellular automaton [1] is for Z × Z → Q, a map dynamics is for
{·} × Z → R, and a map dynamics of higher dimension is for X × Z → R for
some X ⊂ Z. One of the examples of R × Z → R is a map dynamics over a
functional space [5,6].

As for continuous time T = R, an ordinary differential equation describes a
system of {·}×R → R, an ordinary differential equation with higher dimension
describes a system of X × R → R for some X ⊂ Z, and a partial differential
equation describes a system of R × R → R. It is known that a non-linear
partial differential equation simulates a kind of cellular automata [2,3,4].

This work studies transition systems over continuous time-space, which
are systems of R

n × R → Q. This system is situated between the cellular
automata and the partial differential equations.

1.2 Determinism and Zeno’s paradox

We are interested in a deterministic system of R
n × R → Q. That is be-

cause, in usual, non-deterministic systems include deterministic systems as
the special case and deterministic systems are considered to be simpler than
non-deterministic systems. A definition of non-deterministic systems is not
intersting unless the definition can describe both determinism and proper non-
determinism.

The simplest example of dynamics with higher degree of freedom is a pro-
gressive wave. As for a cellular automaton, we define the transition rules for
φ : Z × {0, 1, 2, ...} → {0, 1} as:

– φ(x, t) = 1 if either φ(x−1, t−1) = 1, φ(x, t−1) = 1 or φ(x+1, t−1) = 1,

– φ(x, t) = 0, otherwise

and the initial condition is:

φ(0, 0) = 1, and φ(x, 0) = 0 for x �= 0.

Then the solution is:

φ(x, t) = 1 if −t ≤ x ≤ t, and φ(x, t) = 0 otherwise.

This φ denotes the waves progressing both to left and to right.

As for partial differential equation, put the equation of the wave function
φ : R × R → R as:

∂2φ

∂t2
= −∂2φ

∂x2
.

Then the solution is φ(x, t) = φ+(x− t) + φ−(x + t), which is a summation of
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two wave; one progresses to left and the other progresses to right.

The näıve translation of that cellular automaton above into the system
of R × R → {0, 1} would be as the following. The näıve transition rules for
φ : [0,∞) × R → {0, 1} is written as:

• φ(x, t) = 1 if, for any ε > 0, there exists (x′, t′) such that t − ε < t′ < t,
|x′ − x| < t − t′ and φ(x′, t′) = 1,

• φ(x, t) = 0, otherwise

and the initial condition is:

φ(0, 0) = 1, and φ(x, 0) = 0 for x �= 0.

Then one of its solutions is:

φ1(x, t) = 1 if −t ≤ x ≤ t, and φ1(x, t) = 0 otherwise.

This is the solution which we expect. However, unfortunately, any functions of
the following form for 0 < v < 1 also satisfy the rules and the initial condition
above:

φv(x, t) = 1 if −vt ≤ x ≤ vt, and φv(x, t) = 0 otherwise.

That is because the rules above cannot write the lower bound of the speed of
the wave.

This difficulty looks similar to Zeno’s paradox of the flying arrow. Why
φv(1, 1) �= 1? Because φv(ξ, ξ) �= 1 for 1/2 ≤ ξ < 1. Why φv(1/2, 1/2) �= 1?
Because φv(ξ, ξ) �= 1 for 1/4 ≤ ξ < 1/2. Why φv(1/2n, 1/2n) �= 1? Because
φv(ξ, ξ) �= 1 for 1/2n+1 ≤ ξ < 1/2n. And so forth. In order to escape this
difficulty, we write the lower bound v of the speed of the wave in the rule.
Actually, we write the rule as:

• If (x, t) satisfies the condition p, then there exists ε > 0 such that, for any
points (x′, t′) such that t ≤ t′ < t + ε and |x′ − x| ≤ v(t′ − t), it holds that
φ(x′, t′) = q.

instead of the näıve form:

• If (x, t) satisfies the condition p, then φ(x, t) = q.

Therefore, we write a transition system for progressing waves as follows.

Example 1.1 The transition rules and the initial condition of φ : R× [0,∞)
→ {0, 1} are the followings.

Transition rules:

• If ∀δ > 0. ∃(x′, t′). t − δ < t′ < t, |x′ − x| < t − t′, φ(x′, t′) = 1,
then ∃ε > 0. ∀(x′, t′). t ≤ t′ < t + ε, |x′ − x| < t′ − t ⇒ φ(x′, t′) = 1.

• Otherwise, ∃ε > 0. ∀(x′, t′). t ≤ t′ < t + ε, |x′ − x| < t′ − t ⇒ φ(x′, t′) = 0.

Initial condition:
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φ(0, 0) = 1, and φ(x, 0) = 0 for x �= 0.

Actually, the function φ1 above satisfies these conditions, and the function
φv above for v < 1 does not.

There is another difficulty on define a deterministic system. We have to
keep the development form starting the wave without any cause. Unfortu-
nately, the following φ′ also satisfies Example 1.1:

φ′(x, t) = 1 if 0 < t or x = 0, and φ′(x, 0) = 0 for x �= 0.

We regard the function as a wave, that is, the wave exists where φ′(x, t) = 1.
At the beginning time t = 0, the wave exists only at x = 0. But the wave
exists everywhere after the beginning time, that is, t > 0. This difficulty seems
the inverse of Zeno’s paradox. Why does the wave exists without the cause?
That is because the wave at t = 1 has the cause at time t = 1/2, the wave at
t = 1/2 has the cause at time t = 1/4, the wave at t = 1/2n has the cause at
time t = 1/2n+1, and so forth.

In order to prevent this difficulty, we define the notions of fundamental
functions and speed condition. The intuitive meaning of fundamental function
is the follows. In the development described by a fundamental function, one
can always trace back the cause of each phenomenon to the initial condition.
The formal definition of it is given in Definition 2.10 and 4.2. The speed
condition is a condition for the transition rules. The intuitive meaning of
speed condition is that a wave progressing at speed v does not make the effect
faster than its speed v. The formal definition of it is given in Definition 4.5.

Through these devices, we prove the uniqness of the solution under a cer-
tain kind of restriction. That is Theorem 4.16, which is the main theorem of
this paper.

As for Example 1.1, the set of transition rules actually satisfies speed
condition. The function φ′ is not a fundamental function, and the function
φ1 is the unique fundamental function which is the solution of the transition
rules.

2 Topological Operators over Time-Space

Definition 2.1 (Time-Space) Let X be a complete metric space. Then the
set U = X ×R is called a time-space, where the left part X is regarded as the
space and the right part R is regarded as the time.

Example 2.2 Let X be a closed subset of R
n. Then X × R is a time-space.

Definition 2.3 (Accumulation operator) Let U be a time-space. We de-
fine operators A+

v and A−
v over E ⊂ U for a real number v ≥ 0.

• A+
v (E)
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= {(x, t) | ∀ε > 0.∃(x′, t′). t−ε < t′ < t, d(x, x′) ≤ v(t−t′), (x′, t′) ∈ E}
• A−

v (E) = {(x, t) | (x,−t) ∈ A+
v ({(x′, t′) | (x′,−t′) ∈ E})}

= {(x, t) | ∀ε > 0.∃(x′, t′). t < t′ < t+ε, d(x, x′) ≤ v(t−t′), (x′, t′) ∈ E}
The operator A+

v is called the forward accumulation operator at speed limit v,
and A−

v is called the backward accumulation operator at speed limit v.

Remark 2.4 The operators A+
v and A−

v are appropriate for the phenomena
progressing at a constant speed. When we deal with the phenomena with the
speed getting slower, the following operators are appropriate.

A+
>v(E) =

⋂
w>v

A+
w(E), A−

<v(E) =
⋃

w<v

A−
w(E).

Proposition 2.5 1. U = A+
v (U) 2. ∅ = A+

v (∅)
3. E ⊂ E ′ ⇒ A+

v (E) ⊂ A+
v (E ′) 4. A+

v (A+
v (E)) ⊂ A+

v (E)

5. A+
v (E ∪ E ′) = A+

v (E) ∪ A+
v (E ′) 6. v ≤ w ⇒ A+

v (E) ⊂ A+
w(E)

The similar properties hold for A−
v .

Definition 2.6 (Closure, interior, boundary) The closure operators F +
v

and F−
v , the interior operators G+

v and G−
v , and the boundary operators ∂+

v

and ∂−
v are defined as corresponding to A+

v and A−
v . For E ⊂ U and a real

number v ≥ 0, they are defined as:

F−
v (E) = E ∪ A+

v (E), F−
v (E) = E ∪ A−

v (E),

G+
v (E) = U − F +

V (U − E), G−
v (E) = U − F−

v (U − E),

∂+
v (E) = F+

v (E) − G+
v (E), ∂−

v (E) = F−
v (E) − G−

v (E).

Remark 2.7 The properties similar to Prop. 2.5 hold for these operators
F+

v , F−
v , G+

v , G−
v , ∂+

v and ∂−
v .

Definition 2.8 (Closed set, open set) The families of closed sets and open
sets are defined for each real number v ≥ 0 as follows:

F+
v = {E ⊂ U | E = F +

v (E)}, F−
v = {E ⊂ U | E = F−

v (E)},
G+

v = {E ⊂ U | E = G+
v (E)}, G−

v = {E ⊂ U | E = G−
v (E)}.

Remark 2.9 If v ≤ w, then the following hold: F+
w ⊂ F+

v , F−
w ⊂ F−

v ,
G+

w ⊂ G+
v , and G−

w ⊂ G−
v .

Definition 2.10 (Fundamental set) For each real number v ≥ 0, we define
a family of sets Dv as:

Dv = {E ⊂ U | E ∈ F−
0 , F−

v (∂−
0 (E)) ⊂ E}.

A set E ∈ Dv is called a fundamental set at speed limit v.

Remark 2.11 If v ≤ w then Dw ⊂ Dv.

Remark 2.12 This Dv is closed under finite union.
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3 Modal Logic

Definition 3.1 (State) A finite set Q = {q1, q2, ..., qn} is called the set of
states, and an element qi ∈ Q is called a state. States play the rôle of atomic
formulae.

Definition 3.2 (Formula) Formulae are defined as the following syntax.

P ::= q | ¬P | P ∧ P | �vP (q ∈ Q, v ≥ 0)

We write P for the set of all the formulae. We write Pv for the set of all the
formulae p which do not have any occurrences of modal operators �w such
that v < w. Note that Q ⊂ Pv ⊂ P .

Notation 3.3 p ∨ p′ = ¬(¬p ∧ ¬p′), �vp = ¬�v¬p.

Notation 3.4 The powers of connection of ¬, � and � are strongest. The
next is that of ∧, and that of ∨ is the weakest.

Definition 3.5 (Totally Modalised formula) A formula p ∈ P is totally
modalised if any occurrences of any q ∈ Q in p are in scopes of �’s. We
write P M for the set of all the totally modalised formulae, and write P M

v as
P M

v = P M ∩ Pv.

Definition 3.6 (Interpretation of formulae) For a partial function φ of U
into Q and a formula p ∈ P , the interpretation [[p]]φ ⊂ U is defined as follows.

[[q]]φ = φ−1(q), [[¬p]]φ = U − [[p]]φ, [[p ∧ p′]]φ = [[p]]φ ∩ [[p′]]φ,

[[�vp]]φ = A+
v ([[p]]φ).

Notation 3.7 For a function φ : U → Q, we write φ|E for the function made
by restricting the domain into E.

Proposition 3.8 For any v ≥ 0, any subset E ∈ G+
v , any functions φ, φ′ :

U → Q such that φ|E = φ′|E and any formula p ∈ Pv, it holds that [[p]]φ ∩E =
[[p]]φ′ ∩ E.

Proposition 3.9 For any v ≥ 0, any subset E ∈ G+
v , any functions φ, φ′ :

U → Q such that φ|E = φ′|E and any formula p ∈ P M
v , it holds that [[p]]φ ∩

F+
v (E) = [[p]]φ′ ∩ F+

v (E).

Definition 3.10 (Positive occurrence, negative occurrence) The no-
tions of positive occurrence and negative occurrence of a state q ∈ Q in a
formula p ∈ P are defined in the usual way.

Remark 3.11 For each formula p, there is a formula p′ which is logically
equivalent to p and has only positive occurrences of states q’s. The logical
equivalence of two formula p and p′ is defined as: [[p]]φ = [[p′]]φ for any total
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functions φ : U → Q. Actually, such p′ is made from p by replacing each

negative occurrence of each state q with the formula ¬ ∨
q′ �=q

q′.

Definition 3.12 (Propagating speed in a formula) The propagating
speed of a state q in a formula p ∈ P M is the greatest number v such that the
formula p has a positive occurrence of q, or a negative occurrence of some q ′

other than q, in the scope of �v. If there is no such v, then the propagating
speed is defined as −∞.

We write Pr(q, p) for the propagating speed of q in p.

Example 3.13 It holds that Pr(q, �vq) = v and Pr(q, �v¬q) = −∞.

The formula ¬�vq has a negative occurrence of q in the scope of �v.
Indeed q occurs positively in �v, but it occurs negatively in ¬�vq. Thus
Pr(q,¬�vq) = −∞ and Pr(q′,¬�vq) = v for a state q′ �= q.

Remark 3.14 The definition of propagating speed of q mentions the negative
occurrences of the state other than q. That is because the negative occurrences
of the state other than q can be turned into the positive occurrence of q by
the replacement as in Remark 3.11.

Lemma 3.15 Put φ, φ′ : U → Q and p ∈ P M . Suppose that (x, t) ∈ [[p]]φ and
(x, t) �∈ [[p]]φ′. Then, for any ε > 0, there is a point (x′, t′) such that:

0 < t − t′ < ε,
d(x, x′)

t − t′
≤ Pr(φ(x′, t′), p), and

d(x, x′)

t − t′
≤ Pr(φ′(x′, t′),¬p).

4 Transition System

Notation 4.1 U≥t0 = {(x, t) ∈ U|t ≥ t0}, U>t0 = {(x, t) ∈ U|t > t0},
U(t1,t2) = {(x, t) ∈ U|t1 < t < t2}
Definition 4.2 (Fundamental function) For v ≥ 0, a function φ : U → Q
or φ : U≥t0 → Q is a fundamental function at speed limit v iff φ−1(q) ∈ Dv for
each q ∈ Q.

We write Φv for the set of all the fundamental functions φ : U → Q at
speed limit v. We write Φv,≥t0 for the set of all the fundamental functions
φ : U≥t0 → Q at speed limit v.

Remark 4.3 The notion of fundamental functions is a generalisation of the
notion of half-open intervals. Actually, for a fundamental function φ ∈ Φv and
a state q ∈ Q, the set {t ∈ T | φ(x, t) = q} is a countable union of half-open
intervals [t, t′).
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Remark 4.4 If φ ∈ Φv, then φ|U≥t0
∈ Φv,≥t0 .

The inverse also holds. For each function φ′ ∈ Φv,≥t0 , there is a total
function φ ∈ Φv such that φ′ = φ|U≥t0

. This φ is constructed as:

φ(x, t) = φ′(x, t) if t ≥ t0, and φ(x, t) = φ′(x, t0) if t < t0.

Definition 4.5 (Transition rule) A triple 〈q, v, p〉 ∈ Q × [0,∞) × P M is
called a transition rule. The rule 〈q, v, p〉 means that, if p holds, then the
state is changed into q at expanding speed v.

Definition 4.6 (Satisfaction of rules at a point) A partial function φ of
U into Q satisfies a transition rule 〈q, v, p〉 at a point (x, t) ∈ U iff they satisfy
the relation φ |=(x,t) 〈q, v, p〉 defined as:

φ |=(x,t) 〈q, v, p〉 ⇐⇒ (x, t) ∈ G−
v (φ−1(q)) ∪ [[¬p]]φ.

Definition 4.7 (Satisfaction of rules in an area) A partial function φ of
U into Q satisfies a transition rule 〈q, v, p〉 at an area E ⊂ U iff they satisfy
the relation φ |=E 〈q, v, p〉 defined as:

φ |=E 〈q, v, p〉 ⇐⇒ ∀(x, t) ∈ E. φ |=(x,t) 〈q, v, p〉
⇐⇒ E ∩ [[p]]φ(x, t) ⊂ G−

v (φ−1(q)).

Definition 4.8 (Transition system) A transition system is a finite set S
of transition rules. A transition system at speed limit v is a finite subset
S ⊂ Q × [0, v] × P M

v .

Definition 4.9 (Completeness) A transition system S = {〈q1, v1, p1〉,
〈q2, v2, p2〉, ..., 〈qk, vk, pk〉} is complete at speed limit v iff, for each function φ ∈
Φv, it holds that U =

⋃
1≤i≤k

[[pi]]φ, which is equivalent to: φ |=U p1∨p2∨ ...∨pk.

Conjecture 4.10 For a transition system S = {〈q1, v1, p1〉, 〈q2, v2, p2〉, ...,
〈qk, vk, pk〉}, if S is complete at some speed limit v, then for each function

φ : U → Q, it holds that U =
⋃

1≤i≤k

[[pi]]φ.

Definition 4.11 (Propagating speed in a system) The propagating speed
of a state q in a system S is the maximum of Pr(q, p) for p’s such that
〈q′, v, p〉 ∈ S. Note that the state q′ in 〈q′, v, p〉 may be different to q.

We write Pr(q, S) for the propagating speed of q in S.

Definition 4.12 (Speed condition) A system S satisfies speed condition iff
there is q0 ∈ Q such that, for each 〈q, v, p〉 ∈ S, it holds either

Pr(q, S) ≤ v,

or

q = q0 and Pr(q0, p) = 0, and moreover, for any other 〈q′, v′, p′〉 ∈ S,
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if q′ �= q0 and Pr(q′, p) ≥ 0, then Pr(q, p′) < 0.

This q0 is called the exception state.

Remark 4.13 If it holds Pr(q, S) ≤ v for each 〈q, v, p〉 ∈ S, then the system
S satisfies speed condition.

Definition 4.14 (Solution at the initial condition with positive thick-
ness) For a transition system S and a function φ0 : U(−ε,0) → Q, a function
φ : U≥−ε → Q is a solution of S at the initial condition φ0 iff the followings
hold:

φ|U(−ε,0) = φ0, and φ |=U≥0
R for each R ∈ S.

Definition 4.15 (Solution at Hagiya’s initial condition) For a transition
system S and a function φ0 : X → Q, a function φ : U≥0 → Q is a solution of
S at the initial condition φ0 iff the followings hold:

φ(x, 0) = φ0(x), and φ |=U>0 R for each R ∈ S.

Theorem 4.16 (Main theorem) Let S be a transition system at speed limit
v. Suppose that S is complete at speed limit v and S satisfies speed condition.
Let φ0 be a function X → Q. Then, the solution of S at the initial condition
φ0 in Φv,≥0 is unique if it exists. On the other words, if both of functions
φ, φ′ ∈ Φv,≥0 are the solution of S at the initial condition φ0, then φ = φ′.

We will show the proof of this theorem latter. First, we put the corollary of
this theorem.

Corollary 4.17 Let S be a transition system at speed limit v. Suppose that
s is complete at speed limit v and S satisfies speed condition. Let φ0 be a
function in U(−ε,0) → Q. Then, the solution of S at the initial condition φ0 in
Φv,≥−ε is unique if it exists.

Outline of the proof. The function φ|X×{0}, which is the solution at t = 0,
is uniquely determined from the initial condition φ0, because of Proposition
3.9. The function φ|U≥0

is the solution of S at Hagiya’s initial condition
φ|X×{0}. Therefore, the whole function φ is uniquely determined because of
the main theorem (Thm. 4.16). �

Hereafter we define several notions in order to prove the main theorem (Thm.
4.16).

Definition 4.18 (Difference set) Let S be a transition system at speed
limit v which is complete at speed limit v, and satisfies speed condition. For
two functions φ, φ′ ∈ Φv,≥0 such that both φ |=U>0 S and φ′ |=U>0 S. Then,
the difference set ∆ is the set {(x, t) ∈ U≥0 | φ(x, t) �= φ′(x, t)}.
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Definition 4.19 (Cause-effect relation) For two point (x, t), (x′, t′) ∈ ∆,
the point (x, t) is a cause of (x′, t′) iff the followings hold:

1. t < t′, 2.
d(x, x′)

t′ − t
≤ Pr(φ(x, t), S), 3.

d(x, x′)

t′ − t
≤ Pr(φ′(x, t), S),

4. Either (x, t) ∈ ∂−
0 (φ−1(φ(x, t))) or (x, t) ∈ ∂−

0 (φ′−1(φ′(x, t))).

The relation of these (x, t) and (x′, t′) are called the cause-effect relation.

Lemma 4.20 For each (x, t) ∈ ∆, there exists (x′, t′) ∈ ∆ which is a cause
of (x, t).

Remark 4.21 The cause-effect relation is not transitive.

Definition 4.22 (Cause-effect chain) Let (D, <) be an ordered set. A
function f : D → ∆ is a cause-effect chain iff the followings hold:

– f is injective.

– For any e, e′ ∈ D, if e < e′, then there is a finite sequence e = e0 < e1 <
e2 < ... < en = e′ in D such that f(ei+1) is a cause of f(ei) for each i ≤ n− 1.

Notation 4.23 We write ℵ1 for the least uncountable ordinal, as is usual.
We write Ord(α) for the set of all the ordinals β < α, which is sometimes
identified to α itself in the set theory.

Lemma 4.24 If {(x1, t1), (x2, t2), (x3, t3), ...} which is regarded as a function
of Ord(ω) → ∆ is a cause-effect chain, then limn→∞(xn, tn) ∈ ∆. Moreover,
there is (xω, tω) ∈ ∆ such that {(x1, t1), (x2, t2), (x3, t3), ..., (xω, tω)} which is
regarded as a function of Ord(ω + 1) → U is a cause-effect chain.

Proof of the main theorem (Thm. 4.16). Suppose that there are two
distinct solutions φ, φ′ ∈ Φv,≥0 of S at the initial condition φ0, and we will
derive the contradiction from this assumption. Note that ∆ ∩ (X × {0}) = ∅,
because both φ and φ′ follow the same initial condition φ0.

We will construct a cause-effect chain f : Ord(ℵ1) → U>0.

For zero: Because φ and φ′ are distinct, the difference set ∆ is not empty.
Thus there is a point (x, t) ∈ ∆. We put f(0) = (x, t) for this (x, t).

For successors: We will define f(α + 1) for a successor α + 1. As the
induction hypothesis, we have already defined f(α). By Lemma 4.20, there is
(x, t) ∈ ∆ ⊂ U>0 which is a cause of f(α). We put f(α + 1) = (x, t) for this
(x, t).

We have to check that f |{β|β≤α+1} is a cause-effect chain. As the induction
hypothesis, we already have that f |{β|β≤α} is a cause-effect chain. Hence it
suffices to show that there is a finite cause-effect chain from f(β) to f(α + 1)
for each β ≤ α. That is shown because we already have a finite cause-effect

I. Takeuti / Electronic Notes in Theoretical Computer Science 120 (2005) 173–186182



chain from f(β) to f(α).

For limits: We will define f(α) for a limit ordinal α. There is a increas-
ing sequence α1, α2, α3, ... which converges into α. As the induction hy-
pothesis, we have already defined f(β) for β < α and f |{β|β<α} is a cause-
effect chain. Thus, we can choose the sequence {f(α1), f(α2), f(α3), ...} as a
cause-effect chain. By Lemma 4.24, there is (x, t) ∈ ∆ such that the chain
{f(α1), f(α2), f(α3), ..., (x, t)} is a cause-effect chain. we put f(α) = (x, t) for
this (x, t).

We have to check that f |{β|β≤α} is a cause-effect chain. It suffices to show
that there is a finite cause-effect chain from f(β) to f(α) for each β ≤ α.
That is shown because we already have a finite cause-effect chain from f(β)
to f(αn), for some αn > β.

Thus we have constructed a cause-effect chain f : Ord(ℵ1) → U>0. For
α < ℵ1, put (xα, tα) as (xα, tα) = f(α). Then 0 < tα < tβ for any β < α < ℵ1.
Therefore, the chain {tα}α<ℵ1 is an uncountable bounded monotone chain.
However, there is no uncountable bounded monotone chain in real numbers.
That is contradiction. �

Remark 4.25 The main theorem (Thm. 4.16) gives a reasonable sufficient
condition which ensures the uniqueness of the solution. It is similar to the
theorem of Cauchy and Kovalevskaja for differential equations. Unfortunately,
it seems very much difficult to give a reasonable sufficient condition which
ensures the existence of the solution, although the condition in the theorem
of Cauchy and Kovalevskaja also ensures the existence of the solution.

5 Examples

Example 5.1 Example 1.1 is formalised as below. The space is a line X = R,
and the set of states is Q = {0, 1}. The transition system S and Hagiya’s initial
condition φ0 are defined as follows:

S = {〈1, 1, �11〉, 〈0, 1,¬�11〉},
φ0(0) = 1, and φ0(x) = 0 for x �= 0.

This S is a transition system at speed limit 1, is complete at speed limit 1, and
satisfies speed condition. The function φ1 in Section 1 is the unique solution
of S at the initial condition φ0 in Φ1,≥0.

Example 5.2 (Hagiya’s Example) The space is a plane X = R
2, and the

set of states is Q = {white, red, blue, black}, which consists of four colours. The
transition system S and Hagiya’s initial condition φ0 are defined as follows.

R1 = 〈red, 1, p1〉, p1 = �1red ∧ �1(white ∨ red),

R2 = 〈blue, 1, p2〉, p2 = �1blue ∧ �1(white ∨ blue),

I. Takeuti / Electronic Notes in Theoretical Computer Science 120 (2005) 173–186 183



R3 = 〈black, 0, p3〉, p3 = �1red ∧ �1blue,

R4 = 〈black, 0, p4〉, p4 = �0black,

R5 = 〈white, 1, p5〉, p5 = �1white,

R6 = 〈white, 1,¬(p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5)〉,
S = {R1, R2, R3, R4, R5, R6}

φ0 : X → Q, φ0(x, y) =




red, (x, y) = (1, 0)

blue, (x, y) = (−1, 0)

white, otherwise

This S is a transition system at speed limit 1, is complete at speed limit 1,
and satisfies speed condition. The function φ ∈ Φ1,≥0 defined as follows is the
solution of S at the initial condition φ0.

φ : U≥0 → Q, φ(x, y, t) =




red, x > 0, t ≥ √
(x − 1)2 + y2

blue, x < 0, t ≥ √
(x + 1)2 + y2

black, x = 0, t ≥ √
y2 + 1

white, otherwise

The rule R6 is a dummy rule; this rule is not applied at any points actually,
that is, [[¬(p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5)]]φ = ∅ for this φ. The system S has the rule
R6 because it makes the system complete.

Example 5.3 The space is a line X = R, and the set of states is Q =
Z/5Z = {0̄, 1̄, 2̄, 3̄, 4̄} which is the cyclic group of period 5. It holds in Q that
−1 = 4̄ = 9̄ = ..., −2 = 3̄ = 8̄ = ... and so forth. The transition system S is
defined as below.

For ī ∈ Q,

R1,̄i = 〈̄i, 1, P1,̄i〉, P1,̄i = �1ī ∧ �1(̄i ∨ i − 1),

R2,̄i = 〈̄i, 1, P2,̄i〉, P2,̄i = �1ī ∧ �1(̄i ∨ i − 2),

R3,̄i = 〈̄i, 1, P3,̄i〉, P3,̄i = �1i − 1 ∧ �1i − 2,

R4,̄i = 〈̄i, 1, P4,̄i〉, P4,̄i = �1ī,

R5 = 〈0̄, 1,¬(P1,0̄ ∨ ... ∨ P4,4̄)〉,
S = {R1,0̄, ..., R4,4̄, R5}

This S is a transition system at speed limit 1, is complete at speed limit 1,
and satisfies speed condition.

The initial condition is defined as below. The functions φ ∈ Φ1,≥−ε and
φ : U(−ε,0) → Q are defined as:
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m, n ∈ Z, n ≤ t + x < n + 1, m ≤ t − x < m + 1 ⇒ φ(x, t) = n + 2m.

The area {(x, t) | n ≤ t + x < n + 1, m ≤ t− x < m + 1} is an oblique square
whose lowest point is (m+n/2,

n−m/2). The set of such squares fills the whole
plain. Therefore this φ is well-defined. The initial condition φ0 is defined as:
φ0 = φ|U(−ε,0)

.

Then, the function φ is the solution of S at the initial condition φ0.

Remark 5.4 This φ in this example makes periodic intervals on the one-
dimensional line. In general, on n-dimensional space R

n, we can construct
a transition system and an initial condition such that the solution makes
periodic cells.

The set of states in this example represents only the phases of cells. If
we put the set of states as the direct product of the set of colours and the
set of phases, such as Q = {white, black} × Z/5Z, then the system can re-
alise a cellular automaton. This can be generalised into the spaces of higher
dimensions.
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