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Mutations in the putative pore-forming domain of CFTR do not change 
anion selectivity of the cAMP activated C1- conductance 
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Abstract Cystic fibrosis transmembrane conductance regulator 
(CFTR) apparently forms CI- channels in apical membranes of 
secretory epithelial cells. A detailed model describes molecular 
structure and biophysical properties of CFTR and the impact of 
various mutations as they occur in cystic fibrosis. In the present 
report mutations were introduced into the putative 6th a-helical 
transmembrane pore forming domain of CFTR. The mutants 
were subsequently expressed in Xenopus oocytes by injection of 
the respective cRNAs. Whole cell (wc) conductances could be 
reversibly activated by IBMX (1 mmol/l) only in oocytes injected 
with wild-type (wt) or mutant CFTR but not in oocytes injected 
with water or antisense CFTR. The activated conductance was 
partially inhibited by (each 100/xmol/l) DIDS (27%) and gliben- 
clamide (77%), but not by 10 /xmol/I NPPB. The following 
mutations were examined: K335E, R347E, R334E, K335H, 
R347H, R334H. They did not measurably change the wt-CFTR 
anion permeability (P) and wc conductance (G) sequence of: 
Pcr>  PBr- > P r  and Gcr  > GBr- > GI-, respectively. Moreover, 
anomalous mole fraction behavior for the cAMP activated cur- 
rent could not be detected: neither in wt-CFTR nor in R347E- 
CFTR. Various mutants for which positively charged amino acids 
were replaced by histidines (K335H, R347H, R334H) did not 
show pH sensitivity of the IBMX activated wc conductance. We, 
therefore, cannot confirm previous results. CFTR might have a 
different molecular structure than previously suggested or it 
might act as a regulator of ion conductances. 
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1. Introduction 

Cystic fibrosis t ransmembrane conductance regulator 
(CFTR)  is a member of  the ABC family of  proteins and is 
mutated in cystic fibrosis (CF) [6]. Several lines of  evidence 
indicate that C F T R  is responsible for cAMP-dependent  CI- 
currents in epithelial cells. (i) Mutat ions of  C F T R  as they occur 
in CF result in impaired c A M P  activated CI- conductance. 
(ii) Overexpression of  exogenous C F T R  in a variety of  expres- 
sion systems results in a cAMP-act ivated C1- conductance or 
C1- channels with an  anion permeability and conductance se- 
quence, respectively, of  CI- ~ Br- > l -  [5]. (iii) Hydrophobici ty 
plots of  C F T R  suggest 12 transmembrane c~-helical domains 
forming an anion selective pore along with a regulatory subunit 
and two nucleotide binding domains [6]. (iv) Reconstitution of  
purified C F T R  or fusion of  C F T R  containing liposomes with 
black lipid membranes induced C1 channels with a single chan- 
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nel conductance of  about 7 pS [2,8]. (v) Mutations in the appar- 
ent 6th a-helical t ransmembrane domain of  C F T R  (K335E, 
R347E) resulted in changes in the halide selectivity of  C F T R  
[1]. (vi) Furthermore,  anomalous mole fraction behavior of  
w t -CFTR was abolished in one mutant  of  C F T R  (R347D) [7]. 
These changes of  the halide permeability and conductance se- 
quence, respectively, strongly support the model of  the anion 
conducting pore. We felt that these important  observations had 
to be confirmed and expanded by additional studies using an- 
other C F T R  expression system. 

In the present study we demonstrate that CFTR,  when mu- 
tated in this region and expressed in oocytes of  Xenopus laevis, 
has the same halide selectivity as wt-CFTR.  The data presented 
here, thus, do not confirm those of  previous reports [1,7]. 

2. Materials and methods 

2.1. CFTR-cRNA and site directed mutagenesis 
A 4.7 kb fragment encoding CFTR was subcloned into p-Bluescript 

vector (Stratagene) via KpnI and NotI and amplified in E. coli (TOP-10, 
Invitrogen). For in vitro transcription ofcRNA the plasmid was linear- 
ized via KpnI and cRNA was synthesized using the T3 promotor and 
a 5' cap (reCAP RNA, Stratagene). For mutagenesis, a 2.1 kb EeoRI 
CFTR fragment, comprising the first six transmembrane domains and 
the first nucleotide binding fold (NBF1), was subcloned into p-alter 
vector (Altered Sites in vitro Mutagenesis System, Promega, Hei- 
delberg, Germany) and single-stranded cDNA was obtained by helper 
phage R408. All mutations were performed in the cDNA sequence 
apparently encoding the 6th transmembrane domain of CFTR. Synthe- 
sis of mutated CFTR-cDNA was induced by annealing of ampicillin 
repair oligonucleotide and oligonucleotide primers carrying the respec- 
tive mutation changing positively charged to negatively charged amino 
acids (R334E, R347E, K335E) or replacing R and K at these positions 
by histidines (R334H, R347H, K335H). After subcloning of the mu- 
tated fragment into p-Bluescript, correct mutations were confirmed by 
sequencing the entire subcloned CFTR fragment including ligation sites 
using DIG-Taq sequencing kit (Boehringer) and cycle sequencing kit 
(PRISM, Perkin Elmer) with an automated sequencer (Pharmacia, Ger- 
many). 

2.2. Microinjection and voltage clamping of oocTtes 
Isolation and voltage clamping of oocytes have been described in 

previous reports [3]. In brief, adult Xenopus laevis female frogs were 
obtained from H. K~ihler (Bedarf ffir Entwicklungsbiologie, Hamburg, 
Germany). After isolation, oocytes were dispersed and defolliculated by 
1 h treatment with collagenase (type A, Boehringer) [3]. Subsequently, 
oocytes were rinsed 10 times and kept in a Na÷-HEPES buffer (pH 
7.55), supplemented with pyruvate (2.5 mM), theophylline (0.5 mM) 
and gentamycin (50 mg/l) at 14~18°C. Oocytes of identical batches were 
injected each with 10-50 ng of cRNA dissolved in about 50 nl double- 
distilled H20 (controls) (PV830 pneumatic pico-pump, WPI, Ger- 
many). 2-3 days after injection oocytes were impaled with two elec- 
trodes (Clark Instruments) which had input resistances o f -  ~ 1 Mr2 when 
filled with 3 mol/l KC1. A flowing (3 mol/l) KCI electrode served as a 
bath reference. The membrane currents were measured by voltage 
clamping of the oocytes (OOC-1, WPI, Germany) from -80 to +80 mV 
in steps of 1~20 mV and conductances were calculated from current- 
voltage relations (of the outward current, i.e. anion entry). Permeability 
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sequences were obtained from zero-current voltages using the 
Goldman-Hodgkin-Katz equation. 

All used compounds were of highest available grade of purity. They 
were obtained from Sigma (Deisenhofen, Germany) and Merck (Darm- 
stadt, Germany). Agonists were dissolved from a stock in standard bath 
solution and prepared freshly every day. 

All data were presented as original recordings or as mean val- 
ues + S.E.M. (n = number of observations). Statistical analysis was 
performed according to Students t-test. P values < 0.05 were accepted 
to indicate statistical significance. 

3. Results 

3.1. Cl- currents activated in oocytes overexpressing CFTR 

A time-independent whole cell (wc) current was activated by 
1 mmol/1 IBMX in oocytes which were injected with wild-type 
(wt) -CFTR (Fig. 1A,B). Wc conductances were significantly 
increased from 1.6 + 0.2 to 12.6 + 4.2 ¢tS (n = 9) with 8-(4- 
chlorophenylthio)adenosine Y,5'-cyclic monophosphate .  When 
extracellular CI- was replaced by equimolar  concentration of  
the impermeable anion gluconate, the reversal potential for wc 
currents (zero current voltage) of  stimulated oocytes was 
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Fig. 1. (A) Recording of the wc currents obtained in a voltage clamp 
experiment with an oocyte from Xenopus laevis transfected with wild- 
type CFTR. The oocyte was voltage clamped from -80 to +80 mV in 
steps of 20 mV. Wc steady state currents were increased substantially 
by 1 mmol/1 3-isobutyl-l-methylxanthine (IBMX). (B) Summary of the 
wc conductances of Xenopus oocytes as measured in voltage clamp 
experiments. IBMX increased wc conductance in oocytes injected with 
wt CFTR-cRNA but not in water or antisense injected oocytes. Aster- 
isks indicate significant differences (n = number of experiments). 
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Fig. 2. Anion selectivity of the IBMX induced wc current in Xenopus 
oocytes. (A) I/V curves obtained under control conditions and after 
stimulation with IBMX. Note the shift and decreased slope of the/ /V 
curves, when extracellular CI- was replaced by either I- or Br-. Sum- 
mary of the permeability ratios (B) and conductance ratios (C) for the 
respective anions obtained from intercepts and slopes (outward cur- 
rent) of the respective IIV curves. 

shifted to more depolarized values by 33.9 + 4.1 mV (n = 9), 
indicating that a wc C1- conductance was activated. Moreover,  
the activated wc current was inhibited significantly by 4,4'- 
dinitro-stilbene-2,2'-disulphonic acid (DIDS,  100/1moll1) and 
glibenclamide [9] (100 pmol/1) by 26.6 + 0.3% (n = 9) and 
77.3 + 8.2% (n = 4), respectively, but was insensitive towards 
5-nitro-2-(3-phenylpropylamino)benzoate (NPPB [9], 10pmol/1 
(n = 7). No  currents were activated in oocytes injected with 
either water or antisense C F T R - c R N A  (Fig. IB). 

3.2. Anion selectivities o f  wt and mutant  CFTRs  are similar 
In wt C F T R  overexpressing oocytes, anion permeability and 

conductance sequences were examined by a complete replace- 
ment of  extracellular C1- by I- or Br-. Fig. 2A demonstrates 
typical current-vol tage (I/V) curves of  an IBMX stimulated 
oocyte for either CI-, I-  or Br- as the extracellular anion. The 
data of  this set of  experiments are summerized in Fig. 2B,C and 
indicate that anion permeability and conductance sequences of  
the wt C F T R  for the examined anions were identical and were 
CI- > Br > I-. This is the reverse anion sequence obtained for 
the Ca2+-dependent C1- conductance endogenously present in 
oocytes, which was I- > Br > CI- for both permeability as well 
as conductance (n = 14). 
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Fig. 3. Summary of the permeability and conductance ratios obtained in experiments with oocytes injected with cRNA of various CFTR mutants. 
The G values were determined as the ratio of the conductance measured in the presence of IBMX minus that under control conditions over that 
obtained for CI-. Note that similar permeability as well as conductance ratios were obtained for all mutants when compared to wild-type CFTR. 
Asterisks indicate statistical differences. 

Next,  positively charged amino  acids R334, R347, K335 lo- 
cated in the putat ive  6th pore forming t r a n s m e m b r a n e  a-helical 
domain  of  CFTR,  were exchanged by histidines (R334H, 
R347H, K335H) or by the negatively charged glutamate  
(R334E, R347E, K335E). Wc conductances  were act ivated sig- 
nificantly by I B M X  in all 6 mu tan t s  bu t  to variable degrees (AG 
in/.tS): 3.2 + 0.6 (R334E, n = 20), 2.7 + 0.6 (R334H, n = 13), 
7.1 + 0.9 (K335E, n - -  20), 2.8 + 0.7 (K335H, n = 10), 
3.2 + 0.04 (R347E, n = 32) and  1.8 + 0.3 (R347H, n = 10). This 
indicates tha t  some of  these muta t ions  led to reduced expres- 
sion or function.  None  of  the muta t ions  exposed an  altered 
halide permeabil i ty or conductance  sequence, respectively, of  
the I B M X  act ivated wc CI- conductance.  This is summarized 
in Fig. 3. 

3.3. SCN conductance in wt and R347E CFTR and pH 
&sensitivity of  histidine mutants 

Extracel lular  C1- (101 mmol/1) was partial ly (7 mmol/1) or 
a lmost  completely (96 mmol/ l)  replaced by equal  concentra-  
t ions of  SCN-  and  we currents  were measured  in I B M X  stimu- 
lated oocytes. For  bo th  wt C F T R  and  R 3 4 7 E - C F T R  we found 
reduced wc conductance  when  C1- was replaced by SCN-.  
Anoma lous  mole fract ion behavior  could nei ther  be detected 
for w t - C F T R  nor  for R347E mutan t s  (Fig. 4). Interestingly, the 
calculated permeabi l i ty  rat io (PscN/PcO was significantly larger 
than  the conductance  ratio. It was 2.2 + 0.3 (wt CFTR,  n = 17) 
and  2.0 _+ 0.2 (R334E, n -- 19), respectively. 

Fol lowing previous experiments  [7] wc C1- conductances  
were examined in mu tan t s  bear ing a histidine muta t ion  
(K335H, R347H, R334H) at different extracellular pH values. 
However,  unlike in the previous s tudy in R347H [7] no  signif- 
icant  changes of  G could be detected when  extracellular pH was 
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Fig. 4. Summary of the conductance ratios obtained in wt and R347E- 
CFTR transfected oocytes stimulated by IBMX when 101 mmol/1 ex- 
tracellular CI- was replaced by (mmol/1) 94 C1- and 7 SCN- (94/7) and 
5 C1- and 96 SCN- (5/96), respectively. The G values were determined 
as the ratio of the conductance measured in the presence of IBMX 
minus that under control conditions over that obtained for CI-. Note 
that conductance decreased in both series when extracellular CI- was 
replaced by SCN-. 
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Fig. 5. Summary of the conductances obtained from IBMX stimulated 
oocytes at different extracellular pH values. Experiments were per- 
formed with oocytes overexpressing three different CFTR mutants: 
K335H, R347H, R334H. Note that for all three mutants wc conduc- 
tances were not significantly changed when the extracellular solution 
was either acidified (pH 5.5 or 6) or alkalinized (pH 8 or 8.5). 

alkalinized to 8 and 8.5 or was acidified to 6 or even lower to 
5.5 (Fig. 5). 

4. Discussion 

The present experiments were performed in order to examine 
the applicability of the current molecular model of CFTR. 
While numerous reports suggest CFTR as a protein kinase 
activated C1- channel and present detailed concepts about 
channel regulation, kinetic properties and dysfunction in CF, 
a more direct evidence for the channel function of CFTR was 
deduced from the analysis of the conductive properties of site 
directed mutants. To this end, a number of mutations were 
introduced into the apparent 6th pore forming domain of 
CFTR. The 6th transmembrane stretch contains several posi- 
tively charged amino acids and forms a s-helical secondary 
structure [6]. Positively charged amino acids should signifi- 
cantly determine the conductive properties of the channel pore 
[4,10]. Consequently, mutation of these positively charged 
amino acids presumably lining the conductive pore by nega- 
tively charged amino acids might considerably influence the 
anion selectivity of CFTR. 

In fact, in a previous study lysine and arginine were replaced 
by negatively charged amino acids in the first and sixth trans- 
membrane domain (K95D, K335E, R347E), respectively [1]. 
The authors found a reversed permeability and conductance 
ratios for chloride over iodide of the cAMP induced wc current 
in HeLa cells overexpressing these mutant CFTRs. From these 
results it was concluded that : (i) CFTR forms a CI- channel; 
and that (ii) the molecular model of CFTR as predicted from 
hydrophobicity plots is basically correct. 

In the present study we repeated some of the published 
(K335E, R347E, R347H) and performed additional mutations 
(R334E, R334H, K335H) which are all located in the putative 
sixth transmembrane domain and overexpressed the respective 
CFTRs in oocytes. To our surprise, for none of the mutants a 
change of the permeability or conductance sequence of 

CI- -> Br- > I- for wt CFTR could be detected. However, the 
amount of wc CI- current activated by cAMP was significantly 
reduced for most of the mutants when compared to wt CFTR. 

In another study anomalous mole fraction effects were re- 
ported for single CFTR channels recorded in Chinese hamster 
ovary (CHO) cells [7]. Comparable wc measurements were per- 
formed in the present study (K335E, R347E compared to 
R347D in [7]) with SCN- and C1- present in the extracellular 
bath solution at different concentration ratios. Measurements 
of the wc conductance did not indicate anomalous mole frac- 
tion behavior for wt CFTR. Even more important, SCN- con- 
ductance was not different for the R347E mutant. However, it 
is important to keep in mind that SCN- belongs to the group 
of chaotropic ions. Therefore, data from experiments with 
SCN- should a priori be interpreted with caution. 

Additional mutations were constructed in which positively 
charged lysine and two arginines in the sixth transmembrane 
domain were replaced by pH-sensitive histidines (R334H, 
K335H, R347H). Histidine should be predominantly positively 
charged at low pH but uncharged at high pH. Consequently, 
C1- conductance properties should be different for different pH 
values. In the present study, unlike in the previous one ([7], 
R347H), we did not find significant differences for the cAMP 
activated wc conductances at different pH values in all three 
mutants. Moreover, permeability and conductance sequences 
for CI-, Br- and I- of the histidine mutants did not differ from 
that of wt CFTR (data not shown). 

We have no ready explanation of why the present data are 
in contrast to previous reports [1,7]. Obviously, the expression 
systems used in previous (HeLa cells and CHO cells [1,7]) and 
in the present studies are different. In the first report [1] the 
number of observations was rather limited and the variability 
of the data was appreciable. Furthermore, and surprisingly, the 
I /V  curves obtained with outside anion replacements showed 
marked conductance changes even for the inward currents (CI- 
flowing out of the cell ). This was not observed here (Fig. 2). 
The second report [7] shows distinct differences in single chan- 
nel properties caused for the mutants. However, only single 
channel characteristics but not the wc conductance have been 
reported. 

In summary, the data presented here do not support the 
concept that the putative sixth transmembrane or-helical do- 
main contributes to the anion conductive pore. The current 
model of CFTR probably requires reevaluation and it should 
be considered that CFTR might be a regulator of C1- channels 
intrinsically present in various cell types. 
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