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Abstract

Let us consider an ordered set of keys A= {a1¡ · · ·¡an}, where the probability of searching
ai is 1=n, for i=1; : : : ; n. If the cost of testing each key is similar, then the standard binary search
is the strategy with minimum expected access cost. However, if the cost of testing ai is ci, for
i=1; : : : ; n, then the standard binary search is not necessarily the best strategy.
In this paper, we prove that the expected access cost of an optimal search strategy is bounded

above by 4C ln(n + 1)=n, where C =
∑n

i=1 ci. Furthermore, we show that this upper bound is
asymptotically tight up to constant factors. The proof of this upper bound is constructive and
generates a 4 ln(n + 1)-approximated algorithm for constructing near-optimal search strategies.
This algorithm runs in O(n2) time and requires O(n) space, which can be useful for practical
cases, since the best known exact algorithm for this problem runs in O(n3) time and requires
O(n2) space. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Let us consider an ordered set of keys A= {a1¡ · · ·¡an}, a list of strictly posi-
tive costs c1; : : : ; cn and a list of probabilities p1; p2; : : : ; p2n+1, where ci and p2i are,
respectively, the access cost of the key ai and the probability of retrieving ai. For
i=1; : : : ; n − 1, p2i+1 is the probability of searching an element greater than ai and
smaller than ai+1. The probabilities p1 and p2n+1 are, respectively, the probability of
searching an element smaller than a1 and an element greater than an.
Any search strategy for the set A can be represented by a binary search tree (BST)

with n nodes and n + 1 leaves, where each internal node corresponds to a key of A
and the ith leaf from left to right corresponds to an unsuccessful search to an element
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larger than ai−1 and smaller than ai. Let T be a BST and let Pi be the sum of the
probabilities of the nodes in the subtree of T rooted by ai. The expected access cost
of the search strategy represented by T is given by

EC =
n∑
i=1

ciPi: (1)

An optimal BST, is a BST that minimizes EC among all BSTs with n internal nodes
and n+ 1 leaves.
The best known algorithm to End an optimal BST is based on dynamic programming

and runs in O(n3), with O(n2) space requirement [9]. This algorithm is an extension
of the algorithm previously proposed by Knight to address the particular case, where
only the costs are non-uniform [3]. The case with uniform costs and di%erent access
probabilities has been extensively studied [4, 7, 5, 2]. For this case, the best known
algorithm to End an optimal BST is due to Knuth [4]. It runs in O(n2) time, with
O(n2) space requirement.
In this paper, we focus on the case where the costs are non-uniform, all keys (internal

nodes) have the same probability q and all unsuccessful searches (leaves) have the same
probability p. In this case, the expected access cost of a BST can be rewritten as

EC = p
n∑
i=1

ci + (p+ q)
n∑
i=1

cin(ai); (2)

where n(ai) denotes the number of internal nodes in the subtree rooted by the node
ai. We can omit the constants p,

∑n
i=1 ci and q, since EC is minimized if and only

if
∑n

i=1 cin(ai) is minimized. Hence, all the results in this paper concern to the mini-
mization of the function

n∑
i=1

cin(ai); (3)

which we call the cost of a BST. In [3], Knight proposed a simple dynamic program-
ming algorithm to build a BST with minimum cost. His algorithm runs in O(n3) time,
requiring O(n2) space. Knight has also shown upper and lower bounds on the cost of
an optimal BST for the cost structure ci= it , where t is a Exed positive constant. This
cost structure arises in a Elter design problem [10].
The time and space requirements of the algorithm proposed by Knight makes it

prohibitive for large values of n. Motivated by this fact, we consider alternatives
for constructing near-optimal BSTs. Here, we present the Ratio algorithm. Ratio is
a 4 ln(n + 1)-approximated algorithm that runs in O(nHR) time, with O(n) space re-
quirement, where HR is the height of the tree TR obtained at the end of the algorithm.
Since HR¡n, then Ratio runs in O(n2) time. Let C =

∑n
i=1 ci. The analysis of Ratio

shows that 4C ln(1 + n) is an upper bound on the cost of TR, and as a consequence,
an upper bound on the cost of an optimal BST. Moreover, this upper bound is asymp-
totically tight up to constant factors in the sense that there are some cost structures
such that the cost of an optimal BST is J(C log n) [3].
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We also study some combinatorial properties of optimal BSTs. We present a nec-
essary condition for a BST to be an optimal search tree. Based on this condition, we
give a non-trivial upper bound on the height of an optimal BST. We argue that the
height of an optimal BST is O(

√
n) for practical cases. Finally, we report some ex-

perimental results comparing the performance of Ratio to other algorithms proposed
in the literature. These experiments give some evidence that Ratio has a much better
performance than that analytically predicted.

1.1. Related problems and other applications

In general, non-uniform costs may appear in any kind of binary identiEcation pro-
cedure. As an example, consider the problem of searching for a defect in a pipeline
[6]. The pipeline test problem consists of a Enite number of segments linked together
from left to right which can be tested for defects only at a link. The test of a link
establishes whether the defect is in a segment to the left or to the right of the link. If
the test of link i, for i=1; : : : ; n, has cost ci, then it can be useful to determine a test
strategy with minimum expected cost.
The Elter design problem described by Steiglitz and Parks [10] requires the solution

of the following problem. For each positive integer k between two prescribed limits
there is an associated LP (linear programming) of complexity k, the feasibility of
which is not known. When the LP is feasible for some value of k, then all larger
values of k have feasible associated problems. It is required that we End the smallest
k whose associated LP is feasible. In this case, the cost of probe an integer k is the
time required to solve a LP of complexity k.
Non-uniform costs also appear on searching in tapes [11], Hard-Disks and CD-ROMs

[9, 8]. In these applications, the access cost of a key is not Exed since it depends on
the last accessed key.

1.2. Paper organization

This paper is divided as follows. In Section 2, we present the Ratio algorithm and
an upper bound on the cost of optimal BSTs. In Section 3, we show a necessary
condition for a BST to be an optimal BST and we give an upper bound on the height
of an optimal BST. In Section 4, we report some experiments comparing Ratio to
other algorithms proposed in the literature. In Section 5, we comment our Endings and
discuss some future research.

2. The ratio algorithm

In this section, we prove that the cost of an optimal BST is bounded above by
4C ln(1 + n). It must be observed that we do not assume anything concerning the
costs. Our upper bound is based on the analysis of the Ratio algorithm presented in
Fig. 1.
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Ratio Algorithm;
root ← Root(1,n);
Function Root (i,m): node;
If i 6 m then
k∗ ← i;
For k = i to m do

If ck=min{k − i + 1; m− k + 1}6 ck∗ =min{k∗ − i + 1; m− k∗ + 1}
then k∗ ← k;

ak∗ :left ← Root(i; k∗ − 1) ; ak∗ :right ← Root(k∗ + 1; m);
Return ak∗ ;

Else
Return null;

Fig. 1. The Ratio algorithm.

Ratio uses a top-down approach combined with a simple rule to select the root of
the BST for the current key interval. If the current key interval is [ai; : : : ; am], then the
key a∗k that minimizes

ck∗ =min{k∗ − i + 1; m− k∗ + 1}

is selected to be the root of the subtree for the current interval. After selecting the
root, Ratio recursively constructs subtrees for the key intervals [ai; : : : ; ak∗−1] and
[ak∗+1; : : : ; am]. The root of the subtree for [ai; : : : ; ak∗−1] becomes the left child of
a∗k and the root of the subtree for [ak∗+1; : : : ; am] becomes the right child of a

∗
k . In

the pseudo-code, a∗k :left and a∗k :right are, respectively, the left and the right child of
the node a∗k . If a node a

∗
k does not have a left (right) child, then null is assigned to

a∗k :left(right).
Basically, Ratio attempts to balance two goals when it selects the root of the subtree

for the current interval :
(i) select the key that splits the interval into two halves; and
(ii) select the key with minimum cost.
In fact, Ratio assigns penalties (multiplicative factors) to the keys. The keys that are
closer to the extremes of the current interval receive larger penalties than those that
are closer to the median of the current interval. As an example, if the current interval
is [a3; a4; a5; a6; a7; a8], then a3 and a8 receive penalty 1=1=min{3 − 3 + 1; 8 − 3 +
1}=1=min{8− 3 + 1; 8− 8 + 1}; a4 and a7 receive penalty 1

2 and a4 and a5 receive
penalty 1

3 . Ratio selects the key with minimum cost, accounting the penalties, to be
the root of the search interval.

2.1. Cost analysis

In this section we analyze the cost of the tree produced by the Ratio algorithm. In
order to bound this cost, we need the following proposition.
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Proposition 1. If the key ak∗ is selected by Ratio to be the root of the key interval
[a1; : : : ; an]; then

ck∗ 6
4min{k∗; n− k∗ + 1}C

n(n+ 2)
:

Proof. Since ak∗ is selected, then we have the following inequalities:

ci ¿
ck∗ ×min{i; n− i + 1}
min{k∗; n− k∗ + 1} for i = 1; : : : ; n:

By adding the inequalities above in i, we obtain that

n∑
i=1

ci¿
�n=2�∑
i=1

ck∗ × i
min{k∗; n− k∗ + 1} +

n∑
i=�n=2�+1

ck∗ × (n− i + 1)
min{k∗; n− k∗ + 1}

¿
ck∗(n+ 2)n

4min{k∗; n− k∗ + 1} ; (4)

since for even n,

n=2∑
i=1

i +
n∑

i=n=2+1
n− i + 1 =

(n+ 2)n
4

;

and for odd n,

(n+1)=2∑
i=1

i +
n∑

i=(n+1)=2+1
n− i + 1 =

(n+ 1)2

4
¿
(n+ 2)n

4
:

Since
∑n

i=1 cj =C, then it follows from (4) that

ck∗ 6
4min{k∗; n− k∗ + 1}C

n(n+ 2)
:

Theorem 2. The cost of the tree TR constructed by the Ratio algorithm for the key
interval [a1; : : : ; an] is bounded above by 4C ln(n+ 1).

Proof. If n=1, the result holds, since 4c1 ln 2¿c1. Now, we assume that the result
holds for all key subintervals [ai; : : : ; am] with m− i+1¡n and we prove that the result
also holds for the key interval [a1; : : : ; an].
Let us assume that the key ak∗ is selected by Ratio to be the root of the tree

TR constructed for the key interval [a1; : : : ; an]. Moreover, we assume without loss of
generality that k∗ 6 �n=2	. The case where k∗¿�n=2	 is symmetric. Hence, the cost
c(TR) of the tree TR is given by

c(TR) = nck∗ + c(T (1; k∗ − 1)) + c(T (k∗ + 1; n)); (5)

where c(T (1; k∗−1)) and c(T (k∗+1; n)) are, respectively, the costs of the subtrees con-
structed by the Ratio algorithm for the key intervals [a1; : : : ; ak∗−1] and [ak∗+1; : : : ; an].
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If C1 =
∑k∗−1

i=1 ci and C2 =
∑n

i=k∗+1 ci, then it follows from (5) and from the inductive
hypothesis that

c(TR)6 nck∗ + 4C1 ln(k∗) + 4C2 ln(n− k∗ + 1):

Since ln(k∗)6 ln(n− k∗ + 1) for 16 k∗ 6 �n=2	 and C1 + C2¡C, then we obtain
that

c(TR)6 nck∗ + 4(C1 + C2) ln(n− k∗ + 1)¡ nck∗ + 4C ln(n− k∗ + 1):

On the other hand, since k∗ 6 �n=2	, it follows from Proposition 1 that ck∗ 6
(4k∗C)=n
(n+ 2). Hence,

c(TR)¡
4k∗C
n+ 2

+ 4C ln(n− k∗ + 1):

Let f(k∗)= 4k∗C=(n+2)+4C ln(n− k∗+1). Since the derivative of f is negative in
the interval [0; n], then the value of f decreases in this interval. Hence, f(k∗) reaches
its maximum in the interval [0; �n=2	] when k∗=0, and as a consequence we have
that

c(TR)¡
4k∗C
n+ 2

+ 4C ln(n− k∗ + 1)6 4C ln(n+ 1);

what establishes the theorem.

Now, we present two corollaries of the previous result.

Corollary 3. The cost of an optimal search tree for the key interval [a1; : : : ; an] is
bounded above by 4C ln(n+ 1).

Proof. It follows from Theorem 2 and from the fact that the cost of an optimal BST
is no greater than the cost of the tree produced by Ratio algorithm.

Corollary 4. Ratio is a 4 ln(n+ 1)-approximated algorithm.

Proof. It follows from Theorem 2 and from the fact that the cost of an optimal BST
is J(C).

The upper bound 4C ln(n + 1) is asymptotically tight up to constant factors in the
sense that the cost of an optimal BST, for some cost structures, is J(C log n) . As an
example, for the cost structure ci= i, Knight [3] proved that the cost of an optimal
BST is at least (n+ 1)2[log(n+ 1)=2− 1].
Although there are some cost structures such that the cost of an optimal BST is

J(C log n), there are others where the cost of an optimal BST is O(C). As an example,
the cost structure ci=2i, for i=1; : : : ; n. In this case, the tree constructed by Ratio is
totally unbalanced, that is, the only node at level i, for i=1; : : : ; n, is the key ai. It is
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easy to verify that the cost of this tree is O(C). It would be interesting to determine if
there is a constant K such that c(TR)=c(T ∗) 6 K for any given cost structure, where
c(TR) and c(T ∗) are, respectively, the cost of the tree produced by Ratio and the cost
of an optimal BST. So far, we do not know how to answer this question.

2.2. Time analysis

Clearly, the Ratio algorithm runs in O(nHR) time, where HR is the height of the
tree obtained at the end of the algorithm. Since HR 6 n, then the time complexity of
Ratio is O(n2).

3. Combinatorial properties

In this section, we show some combinatorial properties of the optimal search trees.
First, we show a necessary condition for a given key to be the root of an optimal
search tree. After that, we give a necessary condition for the height of an optimal
search tree to exceed H when H¿2

√
ne ≈ 3:297√n.

3.1. Optimality condition

Theorem 5. Let T ∗ be an optimal search tree for the key interval [ai; : : : ; am]. Further-
more; let n∗(ah) be the number of descendants of the key ah in T ∗ for h= i; : : : ; m.
If ak is the root of T ∗; then we have that:
(i) cj ¿

(j−i+1)ck
m−i+1−n∗(aj)

; for j= i; : : : ; k − 1.
(ii) cl ¿

(m−l+1)ck
m−i+1−n∗(al)

; for l= k + 1; : : : ; m.

Proof. The idea of the proof is to show that if either (i) or (ii) does not hold, then
the cost of the tree T ∗ can be improved. We only give a proof that condition (i) must
hold, since the proof for condition (ii) is similar.
Let us assume that ak is the root of the optimal search tree T ∗ for the key interval

[ai; : : : ; am]. Now, let j¡k and let T be the tree obtained after the application of the
procedure below.
Procedure MoveToRoot
1. T ← T ∗

2. While aj is not the root of the tree T , obtain a new tree T through a rotation
involving aj and its parent
Fig. 2(a) shows a tree T ∗ and Fig. 2(b) shows the tree T obtained by applying the

procedure MoveToRoot.
We can observe two facts:

(a) If aj′ is not an ancestor of node aj in T ∗, then its number of descendants does
not modify from T ∗ to T .

(b) If aj′ is an ancestor of node aj in T ∗ and j′ �= j, then its number of descendants
in T ∗ is greater than or equal its number of descendants in T .
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Fig. 2. (a) shows a tree T∗ with root ak and (b) shows the tree T obtained by applying the procedure
MoveToRoot. Every node and every subtree that contains nodes with index greater than j is shadowed in
both Egures.

Fact (a) holds since the subtree rooted at aj′ is not modiEed due to the rotations. On
the other hand, fact (b) holds since every descendant of aj′ in T is also a descendant
of aj′ in T ∗.
Given a key ah, let n(ah) be the number of descendants of node ah in the tree T .

We have that n(aj)= (m− i+1), n∗(ak)= (m− i+1) and n(ak)= (m−j). Furthermore,
it follows from (a) and (b) that n(ah)6n∗(ah) for h �= j; k. Hence, we have that

c(T )− c(T ∗) =
m∑
h=i

chn(ah)−
m∑
h=i

chn∗(ah)

6 (m− i + 1− n∗(aj))cj − (j − i + 1)ck :

As a consequence, we must have cj¿((j− i+1)ck)=(m− i+1− n∗(aj)), otherwise
we would have c(T )¡c(T ∗), which contradicts the optimality of T ∗.

We point out that this result can be easily generalized for the case where the keys
have di%erent access probabilities.

3.2. Bounding the height of an optimal search tree

Now, we give a necessary condition for the height of an optimal search to exceed H
when H¿2

√
ne ≈ 3:297√n. A consequence of this result is that the height of optimal

search trees for practical cases must be O(
√
n), otherwise there must be costs di%ering

by an enormous factor as f
√
n, where f is !(1). For example, if H =6:6

√
n, then

there are two keys di%ering by a factor greater than 2
√
n.
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Fig. 3. The picture shows a BST for the key interval [a1; : : : ; a20]. The bold edges deEne the path P and
the shadowed nodes are the nodes that belong to the set L.

Theorem 6. If the height of the optimal search tree for the key interval [a1; : : : ; an]
is H; with H¿2

√
ne ≈ 3:297√n; then there are two keys ai and aj such that

ci
cj

¿
√
 H

(
H

2
√
ne

)H

:

Proof. Let us consider an optimal search tree T ∗ with height H and let P be a path
from some leaf to the root of T ∗ that contains H + 1 nodes. Then, let aj0 ; : : : ; ajH be
the nodes of P, where ajk is the unique node of P at level H − k in T ∗. Now, we
construct two subsets of the nodes of P, the Erst called L and the second called R.
The set L is given by all nodes ajk such that ajk−1 is a left child of ajk , while R is
given by all nodes ajk such that ajk−1 is a right child of ajk . Furthermore, both L and
R contain aj0 .
As an example, Fig. 3 shows a BST with height 7. The number inside each node

corresponds to the key index. The path P is deEned by the nodes that touch a bold
edge. The shadowed nodes are the nodes of L. In this case, L is given by the keys
a8; a9; a10; a13; a16; a19 and R is given by the keys a8; a7; a4.
We assume without loss of generality that |L|¿|R|. Since |L| + |R|=H + 2, it

follows that |L|¿1 + �H=2	. Then, let ai1 ; ai2 ; : : : ; ai|L| be the keys of L, with ij¡ij+1,
for j=1; : : : ; |L| − 1.
Now, for j=1; : : : ; |L|, let a‘j−1 be the leftmost descendant of the subtree of T

∗ rooted
at aij . Hence, aij is the root of the key interval [a‘j−1 ; : : : ; aij+1−1], for j=1; : : : ; |L|. For
the correctness of the last statement, we deEne i|L|+1 = n + 1. Since T ∗ is an optimal
search tree and aij is descendant of aij+1 , it follows from Theorem 5 that

cij ¿
cij+1(ij − ‘j + 1)

(ij+2 − ij+1) + (‘j−1 − ‘j)
for j=1; : : : ; |L| − 1:
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By multiplying the set of inequalities above, we obtain that

ci1
ci|L|

¿
|L|−1∏
j=1

ij − ‘j + 1
(ij+2 − ij+1) + (‘j−1 − ‘j)

: (6)

Hence, in order to give a lower bound on ci1 =ci|L| , we must minimize the right hand
side of (6) constrained to 16‘|L|−16 · · ·6‘06i1¡ · · ·¡i|L|+1 = n+ 1.
First, we have that

|L|−1∏
j=1

(ij − ‘j + 1)¿ (|L| − 1)! (7)

On the other hand, since

|L|−1∑
j=1

(ij+2 − ij+1) + (‘j−1 − ‘j)6 n;

it follows from means inequality that

|L|−1∏
j=1

(ij+2 − ij+1) + (‘j−1 − ‘j)6
(

n
|L| − 1

)|L|−1
: (8)

From (6)–(8), we obtain that

ci1
ci|L|

¿
|L|−1∏
j=1

ij − ‘j + 1
(ij+2 − ij+1) + (‘j−1 − ‘j)

¿ (|L| − 1)!
( |L| − 1

n

)|L|−1
:

It follows from Stirling approximation that

(|L| − 1)!¿
√
2 (|L| − 1)

( |L| − 1
e

)|L|−1
:

From the two previous inequalities, we obtain that

ci1
ci|L|

¿
√
2 (|L| − 1)

( |L| − 1√
ne

)2|L|−2
:

Since |L| − 1¿�H=2	, then

ci1
ci|L|

¿
√
 H

(
H

2
√
ne

)2|L|−2
:

If H¿2
√
ne, then we have that

ci1
ci|L|

¿
√
 H

(
H

2
√
ne

)H

:
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4. Experimental results

In this section, we report some experiments obtained by comparing the performance
of the Ratio algorithm with the optimal search strategy and with other strategies pro-
posed in the literature. We consider four di%erent algorithms:
Opt: the optimal algorithm proposed in [3];
Ratio: the algorithm presented in this paper;
BinS: a standard binary search, that is, a strategy represented by a complete binary

search tree;
Small: a greedy algorithm proposed in [9] that always choose the node with minimum

cost to be the root of the current key interval.
We observe that Small was devised for a text retrieval application described in [9],

and it has a good performance only if the following assumption holds: given an index
k, with k ∈{i; : : : ; j}, the probability of ak being the key with minimum cost in the
key interval [ai; : : : ; aj] is 1=(j − i + 1).
We use two kinds of cost structures in our experiments. The Erst one, is the structure

that arises in the Elter design problem described in [3]. The cost ci is given by it ,
where t is a Exed positive constant. The second one is a random structure of costs.
The costs are generated by choosing ci, randomly, in the interval [1; : : : ; c∗], where c∗

is the maximum number of di%erent costs. We consider this cost structure, because it
satisEes the assumption required by the Small algorithm. In every experiment, the cost
of the produced tree was normalized through a division by

∑n
i=1 ci.

4.1. The 7lter design cost structure

Table 1 presents the cost of the BSTs obtained by the algorithms for the cost structure
ci= it , with t=1; 2; 3 and n=50; 200; 500. The cost obtained by Opt is presented as
an absolute value, while the cost of the trees obtained by the other algorithms are
presented as relative errors with respect to the optimal one. Observe that Ratio and
BinS achieved very good results. The relative error of these algorithms with respect to
the optimal one was smaller than 4% in all the cases. In this table, we omit the results
of Small, since the assumption required by this algorithm does not hold for the Elter
design cost structure. In fact, Small produces very poor results in this case.

Table 1
Cost of the BSTs constructed by OPT, Ratio and BinS, for the cost structure ci = it , with t=1; 2; 3 and
n=50; 200; 500

t 1 2 3

n 50 200 500 50 200 500 50 200 500

Opt 4.75 6.66 7.98 4.39 6.27 7.56 4.09 5.94 7.22
Ratio (%) 2.3 1.5 0.3 1.8 1.2 0.5 2.7 0.8 1.5
BinS (%) 1.7 1.5 0.1 3.4 2.7 1.3 3.7 2.9 1.6
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Table 2
Heights of the trees produced by Opt, Ratio and BinS for the cost structure ci = it , with t=1; 2; 3 and
n=50; 200; 500

t 1 2 3

n 50 200 500 50 200 500 50 200 500

Opt 5 7 8 7 9 11 8 10 12
Ratio 6 8 9 10 14 16 12 17 21
BinS 5 7 8 5 7 8 5 7 8

Table 3
Average cost of the BSTs constructed by OPT, Ratio, BinS and Small for the random cost structure

c∗ 2 5 100 1000

n 50 200 500 50 200 500 50 200 500 50 200 500

Opt Average 3.82 5.07 5.94 3.01 3.67 4.12 2.52 2.67 2.74 2.49 2.61 2.67
StdDev 0.09 0.06 0.05 0.12 0.07 0.04 0.2 0.12 0.08 0.2 0.14 0.09

Ratio (%) Average 0.6 0.57 0.51 0.68 0.75 0.73 0.5 0.55 0.51 0.49 0.47 0.48
StdDev 0.52 0.19 0.12 0.55 0.27 0.16 0.57 0.3 0.17 0.62 0.26 0.19

Small (%) Average 1.04 0.89 0.78 3.06 2.58 2.54 9.38 9.68 9.77 9.56 10.45 10.71
StdDev 0.61 0.26 0.16 1.41 0.72 0.42 4.1 2.1 1.39 4.12 2.48 1.65

BinS (%) Average 27 33 35 62 83 95 95 154 191 93 158 204
StdDev 10.8 8.8 8 18 15 16 36 33 29 31 35 31

Table 2 presents the height of the trees obtained at the end of each experiment.
Observe that the results suggest that the height of the tree produced by Ratio for the
cost structure ci= it is O(t log n).

4.2. The random cost structure

Table 3 presents the results obtained for the random cost structure. We report ex-
periments for c∗ equal to 2; 5, 100 and 1000. In order to obtain more stable results,
we generated one hundred distinct cost structures for each pair (n; c∗). Hence, each
cost reported in the third line of Table 3 represents the average cost of one hun-
dred optimal BSTs constructed for the corresponding random cost structures. The
Efth, seventh and ninth line indicate the average relative error of the BSTs gen-
erated by Ratio, Small and BinS, respectively. We also include an estimation for
the standard deviation (StdDev) of each reported average. We make the following
observations:
1. The expected cost of an optimal BST decreases when the number of di%erent costs
increases;

2. Ratio was the best non-optimal algorithm, obtaining excellent results in all experi-
ments. Its relative error was smaller than 1% in all cases;
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Table 4
Average height of the BSTs constructed by OPT, Ratio, Small and BinS for the random cost structure

c∗ 2 5 100 1000

n 50 200 500 50 200 500 50 200 500 50 200 500

Opt 5.8 7.96 9.05 6.09 8.37 10.01 6.79 9.72 11.52 7 9.93 11.85
Ratio 5.9 8 9.11 6.12 8.44 10.03 6.88 9.79 11.66 7.07 10.17 12.16
Small 6.02 8.1 9.87 7.16 9.7 11.5 9.63 13.9 16.4 9.7 14.66 18.42
BinS 5 7 8 5 7 8 5 7 8 5 7 8

3. Small obtained good results in all cases, since its maximum relative error was about
10%. The experiments suggest that its relative error does not depend on the number
of keys and that it increases with the number of di%erent costs;

4. BinS obtained poor results. In fact, it is not diOcult to show that the expected cost
of the tree obtained by BinS is #(C log n) [9], which is #(log n) in our case, due
to the normalization. Hence, due to the observation 1, its relative error with respect
to Opt increases when the number of di%erent costs increases.
Finally, Table 4 presents the average height of the BSTs produced for the random

cost structure. We observe that the average height of the trees produced by Ratio was
smaller than 1:5 log n in all experiments, which suggests that Ratio runs in O(n log n)
expected time for a random cost structure. This conjecture is motivated by the following
observation. Given two indexes k and k ′, with |k − n=2|¡|k ′− n=2|, the probability of
Ratio selecting the key ak , as the root of the key interval [a1; : : : ; an], is not smaller than
the probability of selecting the key ak′ . Hence, the BST produced by Ratio is more
likely to be balanced than a random binary search tree, which has expected height
O(log n) ([1, Chapter 13]) .
Comparing all the experiments, we realize that Ratio got a satisfactory result, with

relative error smaller than 3% in all cases. Nevertheless, we must observe that we have
just considered two cost structures and we do not have a strong (constant) approxima-
tion result for Ratio algorithm.

5. Conclusion

In this paper we introduced the Ratio algorithm, an approximated algorithm for con-
structing binary search trees with minimum expected access cost over uniform prob-
abilities. The algorithm runs in O(n2) time and requires O(n) space. The analysis of
Ratio shows that 4C ln(n + 1) is an upper bound on the cost of the optimal binary
search strategy.
The Ratio algorithm presented here can be useful since the fastest known exact

method to construct minimum cost binary search trees runs in O(n3) time, requiring
O(n2) space. As a future work, we intend to extend our techniques to handle the case
where the access probabilities are also non-uniform.



584 E.S. Laber et al. / Theoretical Computer Science 287 (2002) 571–584

Acknowledgements

We would like to thank Prof. Gonzalo Navarro that introduced us this problem and
to Prof. Ricardo Baeza-Yates for some helpful comments. Furthermore, we would like
to thank the referees for the careful revision.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, 6th Edition, MIT Press and
McGraw-Hill Book Company, Cambridge, MA; New York, 1992.

[2] R. De Prisco, A. De Santis, On binary search trees, Inform. Process. Lett. 45 (1993) 249–253.
[3] W.J. Knight, Search in an ordered array having variable probe cost, SIAM J. Comput. 17 (1988)

1203–1214.
[4] D.E. Knuth, in: Optimum Binary Search Trees, Acta Informatica, Vol. 1, Springer, Heidelberg, FRG

and NewYork NY, USA, 1971.
[5] L.L. Larmore, A subquadratic algorithm for constructing approximately optimal binary search trees,

J. Algorithms 8 (1987) 579–591.
[6] M.J. Lipman, J. Abrahams, Minimum average cost testing for partially order, IEEE Trans. Inform.

Theory 41 (1995) 287–291.
[7] K. Mehlhorn, Nearly optimal binary search trees, Acta Informatica 5 (1975) 287–295.
[8] R.L. Milidi-u, A.A. Pessoa, E.S. Laber, R. Renteria, Fast calculation of optimal strategies for searching

with non-uniform costs, in: P. Fuente (Ed.), Proc. SPIRE 2000, A Coruña, Spain, September 2000,
pp. 229–235.

[9] G. Navarro, E. Barbosa, R. Baeza-Yates, W. Cunto, N. Ziviani, Binary searching with non-uniform
costs and its application to text retrieval, Algorithmica 27 (2000) 145–169.

[10] K. Steiglitz, T.W. Parks, What is the Elter-design problem, in: B.W. Dickenson (Ed.), Proc. Princeton
Conference on Information Sciences and Systems, New Jersey, November 1986.

[11] M. Wachs, On an eOcient dynamic programming technique of f f yao, J. Algorithms 10 (1989) 518–530.


