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A b s t r a c t - - I n  the method of matched asymptotic expansions, one is often forced to compute 
solutions which grow as a polynomial in y as lYl --* ¢o. Similarly, the integral or repeated integral 
of a bounded function / (y )  is generally unbounded also. The k th integral of a function f(y) solves 
dku - - / ( y ) .  We describe a two-part algorithm for solving linear differential equations on y E [-c~,  ¢¢] 

where u(y) grows as a polynomial as [Yl --* c~. First, perform an explicit, analytic transformation to 
a new unknown v so tha t  v is bounded. Second, expand v as a rational Chebyshev series and apply a 
psoudospectral or Galerkin discretization. (For our examples, it is convenient to perform a preliminary 
step of split t ing the problem into uncoupled equations for the parts  of u which are symmetric and 
ant isymmetric  with respect to y ---- 0, but  although this is very helpful when applicable, it is not 
necessary.) For the integral and iterated integrals and for constant coefficient differential equations 
in general, the  Galerkin matrices are banded with very low bandwidth.  We derive an improvement on 
the "last coefficient error estimate" of the author 's  book which applies to series with a subgeometric 
rate of convergence, as is normally true of rational Chehyshev expansions. (~) 2001 Elsevier Science 
Ltd. All rights reserved. 

K e y w o r d s - - R a t i o n a l  Chebyshev functions, Spectral method, Quadrature,  Unbounded domain, 
Matched asymptotic expansions. 

1. I N T R O D U C T I O N  

P h y s i c s  a n d  e n g i n e e r i n g  p r o b l e m s  a r e  o f t e n  s o l v e d  o n  a n  u n b o u n d e d  d o m a i n ,  b u t  t h e  s o l u t i o n  

is a l m o s t  a l w a y s  r e q u i r e d  t o  b e  b o u n d e d  a t  in f in i ty .  I n  t h e  p e r t u r b a t i o n  m e t h o d  k n o w n  as  

" m a t c h e d  a s y m p t o t i c  e x p a n s i o n s "  [1,2], t h e  d o m a i n  is d i v i d e d  i n t o  t w o  (or  m o r e )  s u b d o m a i n s  

a n d  d i f f e r e n t  ( a p p r o x i m a t e )  d i f f e r e n t i a l  e q u a t i o n s  a r e  s o l v e d  o n  e a c h  s u b d o m a i n .  I n  t h e  l i m i t  
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tha t  the per turbat ion parameter  e -~ 0, the width of the "inner" domain is unbounded. The  
"inner" subproblem must  therefore be solved on a semi-infinite or infinite interval in the "inner" 
coordinate even though the inner approximation will be used, for finite e, only on par t  of the 
physical domain. I t  follows tha t  the usual physical constraint of boundedness at infinity in the 
coordinate x does not apply to the inner problem. 

Our own interest in unbounded solutions to differential equations arose from applying matched 
asymptot ics  to nonlinear waves of the rotationally-modified Korteweg-deVries (RMKdV) equa- 
tion [3]. The j th-order inner approximation grows as a polynomial of degree (j - 1) in the inner 

coordinate y as lYl ---* c~. However, the waves are not unbounded, but rather  oscillate sinusoidally 
as the physical coordinate tends to infinity [4]. The growing-in-y te rm in the O(e 2) inner approx- 
imation matches smoothly to the inner limit of the outer approximation,  e sin (ey) ~ e2y, y ~ 0. 

Similarly, at all higher orders, polynomial growth in y matches to sinusoidal oscillations in the 
outer region also. 

Neither finite differences nor spectral methods are at all happy with unbounded solutions. Our 

central theme is tha t  linear problems can be easily transformed into a new differential equation 
with a new unknown v(y) such tha t  v is bounded. The key strategy is to subtract  a set of smooth 
but unbounded functions, Cj(y), from the original unknown u. The unbounded growth of u(y) 
is completely captured by a weighted sum of the Cj. One can then apply any infinite interval 
numerical method to compute the bounded, modified unknown v(y). 

A convenient spectral  basis is the set of rational Chebyshev functions, TBj (y )  [5-8]. These 
are images of a Fourier cosine basis under a change-of-coordinate. It  is not necessary tha t  the 
t ransformed solution decay to zero as lYl -~ oc. The usual "spectral accuracy", tha t  is, an error 
tha t  decreases exponentially fast with the number of basis functions N,  is obtained even if v(y) 
merely asymptotes  to a constant. 

The general problem attacked here is a linear, inhomogeneous boundary value problem on an 
unbounded domain of the form 

Eu = / ( y ) ,  (1) 

where u(y) and f (y )  asymptote  to polynomials in y as lYl --~ co and the differential operator  is 
of the form 

Cu = bk(y) (2) 
k=O dYk " 

We shall only explicitly discuss first- and second-order examples, but the methods apply to 
differential equations of any order. 

An important  special case is the integral or iterated integral of a bounded function f (y )  on an 
unbounded interval, 

I (1) - f ( z )  dz, 

(3) 
i(2) _ dz f (w)  dw, 

and so on. The k th such integral is equivalent to the differential equation ~ -: f (y) ,  with 

dk-lu dk-2u 
dyk_l(O--------- ~ -- dyk_2(O-------- ~ . . . . .  u(O) = O. 

Because of its simplicity, we shall use this to give concrete illustrations of more general and 
abst ract  methods tha t  are needed for variable coefficient differential equations. 

Both the analytic subtractions and the rational Chebyshev spectral method apply to nonlinear 
differential equations also. However, because the asymptot ic  behavior of the solution u(y) must 
be analyzed on a case-by-case basis for nonlinear problems, we shall not discuss them explicitly 
in our article. 
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2. S U B T R A C T I O N S  

The crucial step in taming an unbounded u(y) is to transform it. 
assumed to be unbounded through a polynomial as lYl -~ oc, i.e., 

The original unknown is 

M { u ( v )  ~ M 

j = l  

y - ~ ,  

y ~ --(X), 

(4) 

_ (+) a ~ - )  where in c~j -# in general. The transformation replaces the unbounded function u(y) with 

the new unknown v defined by 
2M 

= v + ~ ajcj(y), (~) 
j = l  

The inhomogeneous term in the differential equation is where the Cj will be defined below. 

replaced by 
2M 

g(y) = f(y) - ~ ~J~¢J(y)- 
j = l  

The transformed differential equation is 

(6) 

Lv=g. (7) 

The challenge is to choose the "subtraction functions" Cj (y) and weights ~/j so that  the trans- 

formed proble m has a bounded solution. 
There are many possible choices for basis functions, but our preference is the following. Note 

that  because we shall split the differential equation into two subproblems whose solutions are of 
definite parity with respect to y = 0, we shall define two basis sets accordingly. 

y J, 

CJ (Y) -  yJ eft(y) ,  

yJ, 
CJ(Y) = yJ ef t(y) ,  

j = even integer, 
[Symmetric], (8) 

j = odd integer, 

j = odd integer, 
[Antisymmetric]. (9) 

j = even integer, 

Why the error function? A good subtraction function must be explicitly integrable, analytically 
simple, and preferably introduce no poles or branch points which are not already present in the 
original integrand. (Singularities of the subtracted function, even if off the real axis, could degrade 
the rate of convergence of the rational Chebyshev series.) Powers of y are the best, but  they are 
not enough because the even powers of y are always symmetric. The error function factor allows 
us to also mimic symmetric functions that  asymptote to odd powers of lY[ as y - -  c~, and to 
similarly imitate antisymmetric functions whose magnitude grows proportionally to even powers 
of lYl. The error function can be generalized to include a scale factor, i.e., erf()w), where ~ is a 
constant chosen to match the scale of the error function to the length scale of f(y). For simplicity, 
we set )~ -- 1 in what follows. 

Assume M' 

J='  (10) f(u) ~ M' 

E ~ - ) y  j, v - ~ - ~ ,  
j = l  
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where ~ + )  ¢ f~J-). Similarly, assume that  the coefficients of the differential equation bk (y) asymp- 

(+) in u can then be found, merely tote to constants or polynomials as [Yl -~ ~ .  The constants ~j 

/~(+) and the asymptotic expansion by matching powers of y, in terms of the known constants , j  
coefficients of the bk(y). This matching is a small linear algebra problem. 

If, for example, the coefficients of the differential equation asymptote to constants where those 
for b0 and bl~ are nonzero where u is the order of the differential equation, then the number of terms 
in the large-ly I polynomial for u(y) matches the number of terms in the similar representation 
of f (y) ,  that  is, M ~ = M. This is the simplest case because the coefficients of the polynomial 
growth in u are completely determined by the large-ly I behavior of the inhomogeneous term f .  

The iterated integral is more complicated. For the second integral, for example, b2 asymptotes 
to one, while all the other bk are identically zero. The degree of the asymptotic polynomial 
paxt of u(y) is then larger by two than the degree of the asymptotic polynomial in f (y) ,  that  
is, M = M '  + 2. Because of this discrepancy, it is necessary to employ subtraction functions 
which asymptote to a constant and zero, as well as additional unbounded functions if the inte- 
grand f (y )  is unbounded. For this reason, we shall give this important  special case a separate, 
detailed t reatment  in later sections. However, the general principle is not changed: transform the 
problem by subtracting known functions Cj (y) with calculable weights ~j  from the unbounded 
unknown u(y) to obtain a new unknown v(y) which can be computed by standard infinite interval 

algorithms. 

3 .  P A R I T Y  D E C O M P O S I T I O N :  

T H E  F I R S T  S T E P  

For many problems, the subtraction step and the computation of the transformed unknown v(y) 
are simplified by first splitting the problem into two uncoupled subproblems of definite parity. 
A function f (y )  is said to be "symmetric with respect to the origin" or to have "even parity" if 
f (y )  = f ( - y )  for all y. Similarly, an "antisymmetric" or "odd parity" function has the property 
f (y )  = - f ( - y )  for all y. An arbitrary function can always be split into its symmetric part  us 
and antisymmetric part UA through the following: 

1 1 
u(y) -- us(y) -t- UA(y), US = -~ (u(y) + u(--y)),  UA = -~ (u(y) -- u(--y)).  (11) 

Differentiation is a parity-reversing operation: the first derivative of a symmetric function is an- 
tisymmetric, but its second derivative is symmetric and so on. The rational Chebyshev functions 
have the property that  even degree functions (TB2j) are symmetric, whereas the odd degree 

functions are of odd parity. 
The book [8] describes parity in more detail, but the salient point is that  a differential equation 

can always be split into symmetric and antisymmetric problems. In the general case, these 
problems are coupled, and then the parity decomposition is not useful. For integrals and iterated 
integrals and also for the inner problems of the RMKdV equation, the two subproblems axe 
uncoupled. The parity decomposition then reduces the computational cost as shown below. 

4 .  R A T I O N A L  C H E B Y S H E V  S P E C T R A L  M E T H O D S  

The transformed differential equation for the bounded unknown v(y) still must be solved. One 
can combine the strategies of earlier sections with finite difference, finite element, or spectral 
algorithms for solving the transformed differential equation. In this article, we chose to use 
spectral methods with a basis set of the "rational Chebyshev" functions. 

There are two reasons for this choice. First, the spectral method yields an error that  decre~tses 
exponentially fast with the size N of the truncated basis set (after transformation so that  the 
expansion is applied only to bounded functions) [8,9]. Second, no special procedures are needed 
for solutions that  asymptote to a constant, rather than to zero, for large lYl. 
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The rational Chebyshev functions are defined on the interval y E l -co ,  co] by 

TBn(y)  -= cos (nt), (12) 

where the coordinates are related via 

y =  Leo t  (t), t = arccot ( L )  (13) 

The constant L is a user-choosable map parameter; strategies for optimizing L are given in [6-8], 

but the most fundamental idea is to choose L to be roughly equal to the length scale of the 

desired solution. The actual basis functions are given by (for L -- I), 

Y" TB2(y) - (y2 _ 1) 
TBo(y) - 1, TBI(y )  - -  (y2 _}_ 1)1/2, (y2"~ 1) '  

TB3 _ . y ( y 2 _  3) TB4(y) = (y4 _6y2  + 1) 
(y2 + 1)3/2, (y2 + 1) 2 ' 

(14) 

and so on; the functions for general L are obtained by replacing y by y /L  in the formulas above• 
The odd degree Chebyshev functions are not rational functions because of the square root in 
the denominator,  but  in a minor abuse of terminology, we shall apply the label "rational" to all 
members of the basis anyway• A Matlab function for computing these basis functions and their 

derivatives is given in [10, p. 147]. 
A differential equation can be solved in two different ways. Either way, a t runcated series of 

rational Chebyshev functions is substituted into the differential equation to define the "residual" 

function R, 

N 
v(y) ~ VN(y) =- ~'~ ajTBj(y;  L), (15) 

j=0 

R (y; ao, a l , . . . ,  aN) -- F.VN -- g(y). (16) 

The coefficients a 0 , . . . ,  aN are determined by solving a matrix problem which results from im- 
posing (N + 1) constraints that  minimize the residual function. (If VN were the exact solution, 
the residual function would be identically zero.) The two algorithms differ only in the form of 

the smallness-of-residual constraints. 
In the Galerkin method, the constraints are that  the first (N + 1) coefficients of the spectral 

series for R are zero. This is equivalent, after expressing the coefficient integrals in terms of the 

trigonometric coordinate, to 

fo ~ R(y[t]) cos (jt) dt = 0, j = 0, 1 , . . . ,  N. (17) 

In the pseudospectral method, the constraints are that  the residual is zero at each of N points 

which are evenly spaced in t: 

r ( 2 i  - 1) 
R ( L c o t ( t i ) ) = O ,  t i -  ( 2 N + 2 ) '  i = l , 2 , . . . , ( N + l ) .  (18) 

To exploit parity, the basis is restricted to even degree basis functions, TB2j (y), for symmetric 
solutions v(y), and to odd degree to compute solutions that  are antisymmetric in y. The Galerkin 
constraints are similarly restricted to products of only cos (2it) or cos ([2j - 1It) with the residual, 
respectively. The pseudospectral collocation points are restricted to ti < ~r/2. 



1298 J .P .  BOYD 

For general differential equations,  bo th  Galerkin and pseudospectral  discret ization matr ices  are 

dense. The  pseudospectral  me thod  is preferable because it is simpler to program.  

For cons tant  coefficient differential equations,  which includes comput ing  the integral or iter- 

ated integral of a funct ion f (y) ,  Galerkin 's  me thod  is preferable. The  reason is t ha t  it gives 
a banded matrix.  The  Galerkin first-derivative matrix,  for either a basis of  definite parity, is a 

t r idiagonal  matrix.  The  second derivative Galerk in-TB matrices are similarly pentadiagonal  with 

five nonzero elements in each row. These banded matrices can be factored and solved in O(N) 
operat ions.  

This  is much cheaper than  the  O ( N  3) cost of the LU factorizat ion of  a dense matrix.  Un- 

fortunately,  the Galerkin matrices are banded only when the differential equat ion has cons tant  

coefficients or other  special cases. 

5. F U N C T I O N S  W I T H  
A L G E B R A I C  D E C A Y  A T  I N F I N I T Y  

If  the t ransformed unknown g(y) decays exponentially fast to  either zero or a cons tant  as lYJ -% 

as i l lustrated by examples such as g = exp (_y2)  and t anh  (y), respectively, then the TBj  basis 

described above is always sufficient. However, a function like 

1 
g(y) = ~-* g(cot  (t)) = sin3(t) (19) 

(1 -4- y2) 3/2 

is equivalent under  the mapping  y = cot  (t) to  the cube of the sine function. However, T B j  - 
cos (jr), so expanding this part icular  g(y) as a series of  TBj  is equivalent to approximat ing  sin3(t) 

by a cosine series, which converges very slowly. A far bet ter  s t ra tegy  is to  write 

O 0  (X)  

g(y) = ~ bj sin (jt) = ~ bjSBj_,(y;  L = 1), 
j= l  j= t  

(20) 

where the new basis functions are defined by SBj - I ( y ;  L) =- sin (jt), where t = acot  (y/L).  
This  difficulty arises because a cosine series is always symmetr ic  about  t = 0, t ha t  is, its sum 

~(t) always has the proper ty  tha t  ~(t) = ~ ( - t )  for all t. I t  follows tha t  the cosine approximat ion  

to  g(t) is not  to the  function itself, but  ra ther  to 

sin3(t), t e [0, 7r], 
~(t) ~ --sin3(t) ,  t e [--Tr,0]. 

(21) 

If  a funct ion g(y) decays algebraically fast to  its limit, then its symmetr iza t ion  ~) may  have 

discontinuities. 
This  difficulty does not  arise for functions tha t  decay exponential ly fast as lYl -~ cx~ because 

then g(y[t]) is a function whose derivatives to all orders are zero at t = 0 and t = 7r. Such 
a funct ion can be extended across t = 0 in either a symmetr ic  or ant i symmetr ic  way wi thou t  

inducing discontinuities of derivatives of any order in the extended function. Consequently,  it is 

sufficient to  use either a cosine series or a sine series to represent such a funct ion on t E [0, 7r]. 

The  sum of the sine series will be the negative of the sum of the cosine series for t c [-Tr, 0], but  
the  two expansions will agree for t E [0, ~], the interval tha t  is the image of  the entire real y-axis 

under  the  map  y = L cot (t). 
I t  is possible to contrive examples where a general Fourier series in t also fails to converge 

rapidly. An  illustration is 

g(y) _ 1 ~-~ g(y[t]) = sinS/2(t). (22) 
(1 + y2)S/4 
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Because the  sine is raised to  a fractional power, g(y[t]) has a square root  singulari ty at  t = 0 

and its Fourier series in t converges poorly. Its rat ional Chebyshev expansion in y, which has 

the  same coefficients, must  converge poor ly  also. For this case, the only remedy is make a 
pre l iminary  change of  the coordinate  y to a new variable z, chosen so tha t  g(y[z(t)]) will have a 

rapidly  convergent  Fourier series. 
In  summary,  the  change of  coordinate  y -- L cot (t) will yield an efficient spectral  me thod  if 

and only if g(y[t]) has a rapidly convergent Fourier series in t. The  marvel of the mapp ing  is tha t  

a problem on an unbounded  domain is converted to a problem of ordinary  Fourier analysis on a 

finite interval. 
For functions tha t  decay exponential ly to their limits as lYl --* :x), and fur thermore,  have no 

singularities on the  real y-axis (except at  infinity), the rapid convergence of the TBj series is 

guaranteed.  For functions tha t  decay as powers of y or as some other  nonexponential ,  algebraic 

functions,  then  a more  careful analysis is needed. For some problems, adding the Fourier sine 

terms is sufficient to remove all difficulties. This is the case for the problem of integrat ing the  

rat ional  Chebyshev functions TBj, where the  SBj functions play an essential role, as explained 

in Append ix  A. 

6. T H E  M A P  P A R A M E T E R  L 

There  is no simple way to choose the map parameter  L. The  first tactic is to choose L to  equal 

the  dominan t  length scale of the solution. The  second is to  apply the simple formulas given in [6], 

assuming tha t  one has some information about  

(i) the rate  of  asympto t ic  decay of  the solution with lYl, and 

(ii) the singularities of  the solution in the complex y-plane. 

Since this information is usually unavailable, the third s t r a t e g y - - a  little exper imenta t ion  with 

different L for a single modera te  value of N - - i s  usually the fastest and most  effective way to 

opt imize L. 

Antisymmetric Second Derivative Example: Error vs. L 

" N 20 /~ 

g 
S 10s 

UJ 

10 -lo 
I 

N=80 
I I 

0.25 10 ° 101 32 
L 

Figure 1. A graph of the maximum absolute error versus L for three different N 
for the antisymmetric second derivative example discussed later. For a given L, the 
best L is that which minimizes the error. In agreement with the theory of [6], the 
optimum L increases slowly with N. 
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Typically, the curve of error versus L for fixed N has a "V-shape" (Figure 1) for reasons 
explained in more detail in [6,7]. In brief, off-the-real-axis poles and branch points of u are best 
resolved by smal l  L; the exponential decay of u(y)  towards its asymptotic value is best resolved by 
large L. The total error is thus the sum of two independent contributions which vary oppositely 
with L. Note that  L = 1, which was used for the two numerical examples, is decidedly not  

optimum for any N for the example of Figure 1. Nevertheless, one can obtain very ~ccurate 

solutions as illustrated in Figures 3 and 4. 

7. N U M E R I C A L  E X A M P L E  F R O M  M A T C H E D  
A S Y M P T O T I C  E X P A N S I O N S  

As noted earlier, the theory of matched asymptotic expansions for the rotation-modified 
Korteweg-deVries (RMKdV) equation requires solving a sequence of inner problems on an in- 
finite domain which are identical in form to those studied here [3,4,11]. The unapproximated 
"linear" RMKdV problem [11] is 

w4y - wyy - e2u = -18  sech 4 + -~- sech 6 . (23) 

From this, perturbation theory gives the second-order inner problem as, after two formal inte- 

grations in y, 
U y y - - U =  12 log (cosh ( Y ) )  , (24) 

This has the exact solution, symmetrical with respect to y = 0, 

u = cosh (y){6yth  + 3sh 2 -  121og (cosh ( Y ) ) - 6  log (2)+  (1 + th2)} 
(25) 

+ 6 y t h -  12log (cosh ( Y ) ) +  3sh2-  61og(2)(1 + th2) , 

where th - tanh (y/2) and sh - sech (y/2). To avoid cancellation errors that  are bigger than the 
(very tiny!) errors of the rational Chebyshev series, we computed the exact solution for lY] > 7 

through 

1 1 
u ~ - 6 y  + 12log (2) - (6y + 9) exp ( - y )  - 2 exp ( -2y )  + ~ exp ( -3 y )  - g exp ( -4y ) ,  (26) 

which shows explicitly that  the solution grows linearly with y for large y. The solution and 
forcing are both s y m m e t r i c  with respect to y = 0. The only initial or boundary conditions are 
those of no exponential growth as y -~ co, which are automatically and implicitly satisfied by 
every member of the T B  basis set. 

Only one special basis function is needed because u grows only linearly: 

Cx -=yerf(y).  (27) 

The transformed problem is 
v = u + a ¢ l ,  (2s) 

where a is chosen so that  the transformed problem 

vuu - v = g ( y )  (29) 

has an inhomogeneous term g(y), which is bounded at infinity, and where 

(30) 
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The  asympto t i c  relation 

12 log (cosh ( Y ) ) , , ~  6y, y > > l  

implies t h a t  a = 6, and therefore, 

(31) 

4 ( l _ y 2 ) e x  p ( _ y 2 ) _ y e r f ( y ) }  g ( y ) = 1 2 ( c o s h ( Y ) ) + 6  ~ (32) 

Because this equat ion is constant coefficient, it is efficient to solve it by Galerkin 's  method.  
Because the  inhomogeneous term in the differential equat ion decays exponentially fast to  its 

limits, a rat ional  Chebyshev series in the TBj  functions is sufficient. Because the solution is 
symmet r i c  wi th  respect to y = 0, the basis can be restricted to functions of even degree, t ha t  is, 

TB2j. The  nonzero elements of the  Galerkin matr ix  are 

1 3 ,  2 . G j j - - - 1 - ~ - ~  t 3 - 2 )  2 , j = I , 2 , . . . N ,  

V j d + l - ~ - ~  ~ ( 2 j - 2 )  2 4 - ~ ( 2 j - 2 ) +  , 

: { 1 . 3 1 }  
oj,j±  - : - (23 - 2) : ( 2 j  - 2) - : . 

(33) 

The  elements of  the inhomogeneous te rm in the matr ix  equat ion can be calculated using the  

quadra tu re  approximat ion  

S e c o n d - O r d e r  I n n e r  A p p r o x i m a t i o n :  L i n e a r  R M K d V  

~- 10 0 
._m 
.o_ 
=1= 
o 
o 

rn 
I-- 
.o_ 10 s 

E 

o 
• 10 "10 

" f ( G a l e r k i n  - Exact~ . . . . .  oo°°U 
- -  ~ ~ O ~ o  o ~ o  o°% 0°% ooo ~ o O  o oOOOOoooooo o v ! 0 ~ o  ~ ~ o  o o  ~ ,~'~ o" 'ooOo ~ --,,-,0ooo%o I 
e )  |oo ° o o ~ oo ° o o 

I o o o o o o o 

< 10 "15 . . . . .  
0 50  100  150  2 0 0  

d e g r e e  2] for  b a s i s  TB_2j  

Figure 2. Thick solid line: numerically-computed TB coefficients for the solution 
of vuy - v = 12 log(cosh (y/2)) + 6{(4/V~)(1 - y2) exp (_y2) _ yerf (y)}, which 
is transformed from the second-order inner approximation for the linear RMKdV 
equation. The dashed line, almost hidden by the thick curve, shows the exact 
TB coefficients. The circles are the difference between the exact and Galerkin 
spectral coefficients. The horizontal dotted line marks the maximum pointwise er- 
ror, max~e[_oo,oo ] IVGalerkin(Y) --  V(y) I ,  which is 3.8E-11. The limit of the enve- 
lope is roughly £(198) ~ 2 . E -  12. The map parameter L = 2; the basis was 
T Bo(y), TB2 (y) . . . . .  TB19s (y). 
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4 f./2 gj =_ - g(L cot (t)) cos ((2j - 2)t) dt 
7 r j  0 

1 2 ~ ( / ~ r ( 2 k - 1 )  } )  ( / T r ( 2 k - - 1 )  } )  
c j _ , - ~  = g ncot  [. ~ - /~  cos ( 2 j - 2 )  I, (4N) ' 

where co = 2, ck = 1, Vk > 0. 
Figure 2 shows the result of solving the tridiagonal matrix equation 

(34) 

G 

a0 

a2 
a4 = 

a2j 

go 

g2 

g4 

g2j 

(35) 

8. U N B O U N D E D  I N T E G R A L S  
O N  A N  I N F I N I T E  D O M A I N  

An integral such as 

// / ( 1 ) ( y )  ~_~ f ( z )dz ,  y e [-oo, oo] (36) 

can be evaluated in two ways if the integrand f (y )  is bounded. First, one can expand f (y )  as 
a series of rational Chebyshev functions and integrate term-by-term. Second, one can solve the 
differential equation 

I(1) = f ( y ) ,  I(1)(0)  = 0. (37) 

To implement the first strategy, compute the coefficient f j  of TBy in the Chebyshev series 
of the integrand. This coefficient is given by the usual inner product integral which is most 
conveniently evaluated by converting to the trigonometric coordinate 

cj. /0 ~ f j  =- - -  f ( L  cot (t)) cos (jt) dr, (38) 
7r 

where co = 2, Ck = 1 otherwise. One can then integrate the series term-by-term. 
It is straightforward to integrate individual rational Chebyshev functions. For example, for 

L = I ,  

f f  [ ~  (z) + y2 _ 1, (39) 
£ 

TBo dz = y, TB1 dz = 
,Io J 

Y TB2(z)  dz = y - 2 arctan (y), Y TB3(z) dz - x/y 2 +-------~ 5, (40) 

o y dz y3 + 5y 4 arctan TB4(z) (y). (41) 
y 2 + l  

Unfortunately, these formulas become increasingly complicated as the degree j increases. Ap- 
pendix A gives a simple recurrence to compute these integrals to arbitrarily high order. 

The alternative differential equation strategy requires subtractions because u(y) is usually 
unbounded even if f (y )  is finite for all real y. However, if f (y )  itself is unbounded, or if the 
integral is iterated, then subtractions are needed even for the term-by-term approach. We shall 
therefore leave the integrals of individual rational Chebyshev functions to the appendix. In the 
next few sections, we concentrate on integrating or iteratively-integrating a function f (y )  by 
solving the differential equation. 
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The evaluation of an integral on an unbounded domain is more difficult than the general 
differential equation discussed earlier. The problem can be stated either as the integral or as the 
equivalent first-order differential equation 

jr0 
y 

u(y) =- f ( z )  dz uy = / ( y ) ,  u ( 0 ) = 0 .  (42) 

The  difficulty is tha t  f (y )  --- 1 implies u(y) = y, and therefore, the integral can be unbounded as 
[Yt --* eo even when the integrand f (y )  is bounded. If f is bounded, then the following theorem 
shows tha t  it is sufficient to subtract  one symmetric and one ant isymmetric  function from f so 
tha t  the t ransformed integrand g asymptotes  to zero as y --* cx~. The functions ¢0(Y) - 1 (for 
the symmetr ic  part  of f )  and ¢1 - ye r f (y )  (for the antisymmetric part)  are good choices. 

THEOREM 1. BOUNDEDNESS OF INTEGRAL. Let g(y) be a function, nonsingular for all finite 
real y, which satisfies either of the two (equivalent) conditions. 

1. g asymptotes to zero as [y[ --* c~ with sufficient rapidity that the following bounds apply 
for some constants A, B: 

A 
Ig(y)l < ;y2--------Z,(B + vy, (43) 

or  

2. 

[h(t)l < D, Vt e [0, r],  h(t) - g (Lcot ( t ) )  
- sin2(t) ' 

for some constant D where t(y) - acot (y/L).  

Then 

oYg(z)dz < C, Vy, 

fbr some constant C. This is equivalent to the statement that the solution u to 

(44) 

(45) 

v y = g ( y ) ,  v(0) = 0 (46) 

is bounded as [y[ ---* oo. 

When the inequalities apply, the integrand is bounded by a rational function for all y. PROOF.  

Then 

g(z) dz < ~ arctan < C - 2 ~ '  

by explicit integration of this bounding integral. The necessity of the second condition follows 
by rewriting the integral definition of v(y) in terms of the trigonometric coordinate t as 

f ~ / 2  g ( L  cot 1 
V ~ Ldacot(y/L ) ( t ) ) ~ d t .  (48) 

Unless the integrand is bounded, v itself will be unbounded. 

The  t ransformed differential equation is given in the summary  below. 

| 
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10. U N B O U N D E D  I N T E G R A L S :  
N U M E R I C A L  T E C H N O L O G Y  

To solve vv 
coordinate t as 

= g, it is convenient to rewrite it in the equivalent form in the trigonometric 

vt = - L  g ( L c ° t ( t ) )  _ Lh( t ) ,  (49) 
sin2(t) 

where h = g (Lco t  ( t ) ) / s in2( t ) ,  the same as defined in equation (44) in Theorem 1. The theorem 
demands that  h(t)  be bounded for the boundedness of v. Assume h(t) has a convergent expansion 
as a general Fourier series, 

o o  

h(t) = ao + E aj cos ( j t )  + E bj sin ( j t ) ,  
j=l j=l 

(50) 

where the coefficient integrals are defined in the usual way as 

2jo  2/o  ao = h(t) dt, aj = - h(t) cos ( j t )  dt, bj = - sin ( j t )h ( t )  dt. (51) 
7r 7r 

These can be approximated (with exponential accuracy, if h(t) is periodic and infinitely differen- 
tiable on t E [0, 7r]) by trapezoidal rule quadrature as in equation (34). 

The general solution is then 

o o  o o  

( " ) - L E  1 sin(/t)+LElb v = C - Lao t - -~ j = l  j a j  j=i ~ j cos ( j t )  

o o  o o  

= C + L a r c t a n  ( L ) - L E ~ a j S B j - I ( Y ; L ) + L E ~ b j T B j ( y ; L ) ,  
j= l  j= l  

(52) 

using the identity acot ( y / L )  - :r/2 = - arctan ( y /L ) .  The constant C, which enforces the initial 
condition v = 0 at y = 0 (~-* t = r / 2 ) ,  is 

C = L E  1 L E l b  J j cos j=l j a j  sin 
j=l 

(53) 

Note that  unlike the other cases described here, Vy ---- g can be solved explicitly without the need 
to solve a banded Galerkin's matrix. 

The  inhomogeneous term of the transformed differential equation, Vy = g, is 

1 1 
g(y) - f ( y )  - ~ {f(cx)) - f ( - a c ) }  ef t(y)  - ~ { f ( ~ )  + f ( - ~ ) ) .  (54) 

is 

The solution to 

~0 y 
u~ = f ( y ) ,  u(O) = O, ~ u(y) = f ( z )  dz 

1 
u(y)  = v(y) + -~ (f(c~) + f ( - o o ) )  y 

1 { I ( e x p ( _ y 2 ) _ l ) }  + ~  (f(cx~) - f(-cx~)) ye r f (y )  + ~ 

(55) 

(56) 
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11 .  I N T E G R A L - O F - I N T E G R A L  

The problem is to find u(y) where 

f0 f0 z u(y) -- dz f (w)  dw *-~ uyy -- f (y ) ,  u(0)  = u (0) = 0. (57) 

The once-iterated integral is harder because now we need two subtractions for each parity, 
versus only one for integral (42). The reason is illustrated by this example. 

/o /o /o dz sech2(w) dw = dz tanh (z) dz = log (cosh (y)) + log (2). (58) 

Even though the integrand sech2(w) asymptotes exponentially fast to zero, and thus, has 
a bounded integral by the previous theorem, the integral-of-its-integral asymptotes to [Yl as 

The following theorem provides sufficient conditions for removing the unboundedness of u. 

THEOREM 2. BOUNDEDNESS OF INTEGRAL-OF-INTEGRAL. Let g(y) be a function such that the 
following bound applies for some constants A, B: 

foy dz A g(z) < (B + y2----~' Vy. (59) 

Then 

fo y dZ foZg(w)dw < C, Vy, (60) 

for some constant C. Fbr the boundedness of the integral of g, it is also necessary that 

A t 

[g(Y)] < (B' + y2)' Vy, (61) 

for some constants A t, B ~. Equivalently, it is sufficient that 

g(L cot (t)) 1 f , / 2  
h(s) ds (62) h(t) - sin2(t ) and k(t) - sin2(t)/jt  

are bounded. 

PROOF. Apply Theorem 1 twice, once to the integral of g and then again to g itself. | 

To impose these conditions, it is convenient to choose functions with simple second deriva- 
tives so that  f ( y )  is transformed easily; the corresponding Cj are the iterated integrals of these. 
The second derivatives of the subtraction functions are the constant one and exp (-y2)  for the 
symmetric part of f and erf(y) and 2y exp (_y2) for the antisymmetric part. These functions 
and the weights that  enforce both conditions of the theorem, (60) and (61), are given in the 
summary (75). 

12 .  I N T E G R A L - O F - A N - I N T E G R A L :  

N U M E R I C A L  T E C H N O L O G Y  

The second derivative, after separation into two subproblems of definite parity, gives pentadi- 
agonal Galerkin matrices. The technical complication of expanding the inhomogeneous term as 
a sine series but the unknown as a cosine series does not arise here. As in the previous section, 
the constant in the spectral series must be determined from the initial condition u(0) = 0 rather 
than from the residual of the differential equation. 
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Iterating the chain rule gives 

d 2 sin4(t) d 2 2cos (t) sin3(t) d 
dy~ L 2 dt 2 L '2 dr" 

The Galerkin matrix elements are, therefore, 

G(2)=  4 i t ~ 2  {si~2(t) 2c°s(t)sin3(t)  
jk - dt cos (jr) ~ ( - k  2) cos (kt) + L2 

7r j0 

Analytical evaluation in Maple shows that  the nonzero elements are 

(3/8) j 2 
Gjj -- L2 , 

{ j2/4 + (3/4)j + 1/2 - (3/16)5U} 
G j , j + 2  = L2  , 

{- j2 /16  T (3/8)j - 1/2} 
G j , j ± 4  = L2  , 

where 61j is zero unless j = 1, in which case, 61i = 1. 

The column vector on the right-hand side of Gg = ff has elements 

(63) 

( - k ) s i n ( k t ) } .  (64) 

(65) 

(66) 

(67) 

4 /=/2 
gj - - g (Lcot ( t ) )cos( j t )  dt. (68) 

7r ao 

In summary, define vs(y) to denote the sum of the even degree basis functions, omitting the 
constant, and similarly for VA: 

N N 

vS(y) -- Z a2jTB2j(Y), vA(y) =-- Z a2j-1TB2j-I(Y),  (69) 
j = l  j = l  

where the coefficients aj are determined by solving Gd = ff for each parity. The transformed 
differential equation pair is 

VS,yy = gs(Y), VA,yy = gA(Y), (70) 

where, defining f s  =- {/(Y) + / ( - Y ) } / 2  and fA -- {f(Y) -- f(--Y)}/2,  

2 
gS(Y) ---- fs(Y) -- fs(oO) -- a s - - ~  exp (_y2) , (71) 

gA (Y) ~ f A (Y)  -- f A ( CX~ ) erf (y) - OA 2y  exp (_y2) ,  (72) 

/7 /5 as -- {fs(Y) - fs(oo)} dy, aA -- {fa(X) -- fa(oO)erf(y)} dy. (73) 

The solution to 
~ = I(y) (74) 

is 

where 

i (exp (-~'~) - i) } ~(y) = vs(v) - ~s(0) + Is(oo)~y ~ + ~s yerf(v) + 

Y +VA(B)+ f A ( C C ) { ( l y 2 +  1 ) e r f ( y )  + ~ (exp ( -y2)  - 2)} 

+hA Y -  ---x- 

N 

vs(O) = Z a2j (--1) j. 
j = l  

(75) 

(76) 
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13 .  I N T E G R A L - O F - A N - I N T E G R A L :  
S Y M M E T R I C  N U M E R I C A L  E X A M P L E  

The symmetric example is 

y2 
u s  = -~- - log (cosh (y)), f s ( Y )  ~ tanh2(y). 

The two parameters that  determine the subtractions are 

f s ( o c )  = 1, 
j~0 ° °  

= Us(y) - f s ( o o ) }  dy = - 1 .  

The transformed symmetric problem is 

2 
vs,yu = t a n h 2 ( y ) -  1 + ~ e x p  (_ y 2 ) ,  

with the exact solution 

{ 1 } 
v s = - l o g ( c o s h ( y ) ) +  y e r f ( y ) + ~ ( e x p ( - y 2 ) - l )  , 

which asymptotes to the constant log (2) - 1 / v ~  and is zero at y = 0. 

100 
( -  

. _ ~  
o 

it= 
(1) 

o O.S O l  

F-- 
° ~  

Q 

E 0-1o E1 

O 
o 

10 "15 ) .  

O (/) 
..O 

uS = (1/2) y * * 2 - I o g ( c o s h ( y ) )  

. . . . . . . . .  max( Iv ,vexact l )  

• - ~ "  - :~  ' _ ~ , ~ . .  0 (uaJerKm - t x a c t )  ~o  ~ II . . . .  , .... 

< 10 .20 I I I 

0 100 200  300  400  
degree  2j for basis TB_2j  

Figure  3. Solid: abso lu te  value of Ga le rk in -computed  coefficients as ca lcula ted  us ing  
even degree  ra t ional  C h e b y s h e v  func t ions  up  to  and  inc luding TB4o0 for a m a p  
p a r a m e t e r  L = 1. T h i n  dashed:  exac t  coefficients of  t he  T B  expans ion  of v s .  These  
two curves  are ind i s t ingu ishab le  unt i l  t h e  coefficients have decreased to O(10 -15 ) .  
Circles: error  in t h e  coefficients, which is the  difference be tween  t he  o ther  two curves.  
Note  t h a t  t h e  error  curve  is a lmos t  i ndependen t  of degree j ,  a t  a m a g n i t u d e  control led 
by roundoff  error, roughly  O(10-14) .  T h e  m a x i m u m  pointwise  error  (hor izonta l  
do t t ed  line) is abou t  6.7 x 10-13; this ,  too, is control led by roundoff  error,  and  
would be  much  smal le r  (for th i s  value of N)  in a c o m p u t a t i o n  wi th  higher-precis ion 
a r i thmet ic .  
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(77) 

(78) 

(79) 

(so) 
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Figure 3 is a log-linear plot of the rational Chebyshev coefficients of vs. For comparison, the 
dashed curve--indistinguishable from the Galerkin coefficients until the degree is very large--  
gives the magnitudes of the exact coefficients of the function vs as computed through the usual 

(exact) ~r Fourier integrals, a2j ---- (2/7r)f0 cos (2 j t ) vs (Lco t  (t))dr. There are two sources of error in 
the solution to the differential equation. First, the Chebyshev series must be truncated at j = 2N 
for some finite N, which gives a "truncation error" that  is the sum of all the neglected, higher- 
degree terms. Second, the GaJerkin method (or any of the alternatives like collocation) invariably 
computes coefficients of low degree which are slightly different from those of the exact expansion. 
The graph shows that  this "discretization error" is roughly the same order of magnitude for all 

computed coefficients. 
It can be proved [8] that  both sources of error decrease exponentially fast with N. On a log- 

linear plot, the coefficients (and error) would asymptote to a straight line if the error decreased 
geometrically, tha t  is, log (error) ,,~ - q N  for sufficiently large N and some positive constant q. 
Unfortunately, as explained in [6-8], the convergence rate on an unbounded domain is "subgeo- 
metric" with log (error) ~ - q N  r where r < 1, typically in the range of 1/2 to 2/3, depending on 
the problem. (For our examples, Boyd [6] has shown that  r = 1/2.) The figure shows that  with 
sufficient basis functions, one can obtain full machine precision. 

100 

¢- 

.o 

8 
rn !-- 
"O 

O 

O 
Q) 

--= 0-10 ml  

0 
..Q 
< 

10 -is 

uA = tanh(y) y**2 
i i i 

ctl) 

(Galerkin - Exact) v ~  

0 50 100 150 200 
degree (2j-1) for basis TB_(2j-1) 

Figure  4. T h e  s ame  as previous  figure, bu t  for the  a n t i s y m m e t r i c  example .  Note  
t h a t  t h e  coefficients g raphed  (solid and  dashed  curves)  are those  of Galerkin  and  
exac t  expans ion  of VA ; an  appropr ia te  combina t ion  of t he  error func t ions  mad var ious  
G a u s s i a n s  m u s t  be  added  to VA to ob ta in  t he  solut ion to t he  original problem,  UA = 
y2 t a n h  (y). T h e  m a x i m u m  pointwise error is 7 . 7 E - 9 ,  which is marked  by t he  th in  
hor izontal  d ividing line. 

14 .  I N T E G R A L - O F - A N - I N T E G R A L :  

A N T I S Y M M E T R I C  N U M E R I C A L  E X A M P L E  

The problem is 

UA = y2 tanh (y), fA(Y) 4y sech2(y) + 2 tanh (y) - 2y 2 tanh (y) sech2(y). 

The two parameters that  determine the subtractions are 

fA(CX)) = 2, a A  = { f A ( Y )  -- f A ( c x ) ) e r f ( y ) }  d y  - -  v / .  ~ .  

(8~) 

(s2) 
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The t ransformed antisymmetric problem is 

4 
VA,yy = 4ysech2(y) + 2 tanh (y) - 2y2tanh(y)sech2(y) - 2erf (y)  v ~ y e x  p ( _ y 2 ) ,  (83) 

with the exact solution 

VA = y~ tanh (y) - 2 y2 + erf (y) + ~ (exp (_y2) _ 2) 

2 (y___~_~er f (y ) )  (84) 

which asymptotes  to the constant 1//2. 

Figure 4 shows tha t  exponential-but-subgeometric convergence is obtained for this example 
also. The number  of basis functions was halved from the symmetric example to show tha t  the 
discretization error for the Galerkin-computed coefficients is again roughly independent of the 

degree j even when N is small enough so that  the error (now about  10 - l °  for each coefficient) is 
less than machine precision. The maximum pointwise error ( L ~  error) is about  7.7 × 10 -9, which 
is marked on the graph by the thin horizontal dotted line. We see that  the average discretization 
error in a coefficient is roughly the maximum pointwise error divided by the truncation N.  
Because these errors can accumulate, and the truncation error must be added also, the maximum 
difference between the sum of the truncated Chebyshev series and the exact VA (y) is considerably 
larger than the error in any individual Chebyshev coefficient. 

15. M Y S T E R Y :  W H Y  I S  T H E  M A X I M U M  

P O I N T W I S E  E R R O R  SO L A R G E ?  

A good check on the accuracy of a spectral calculation is to graph the magnitude of the 
coefficients. In Appendix B, we show that  the truncation error, made by chopping a spectral  
series after the N th term, is 

(x) 

S T ( N )  - max ~ a jTBj (y )  .~ 0 (N l-r) ~(N) ,  (85) 
yE[-cx),~] j = N + I  

where E(N) ,  the "envelope" of the spectral coefficients, is a monotonically-decreasing function 
which provides an upper  bound on the spectral coefficients. Thus, we can conservatively est imate 
the t runcat ion error from a graph of the computed spectral coefficients as illustrated in Figure 5, 
where the "envelope" is the slanting dashed line and the lower of the two horizontal dashed lines 
indicates the est imated truncated error ET. 

The discretization error Em of a spectral calculation is the sum of the differences between 
the first N + 1 exact coefficients and those same coefficients as computed using a Galerkin or 
pseudospectral  algorithm; this error is the small circles in Figures 3 and 4. The total  error in 
solving a differential equation is the sum of ET and ED. As explained in the book [8], est imating 
the t runcat ion error is fairly easy but estimating the discretization error is hard. 

Empirically, however, the discretization error is usually the same order-of-magnitude as the 
t runcat ion error as formalized as Rule-of-Thumb 1 [8, p. 31]. The reason is obvious. If  the 
t runcat ion error is zero, which is equivalent to the s ta tement  that  an N- t e rm  spectral  series 
exactly represents the solution u(y), then the discretization error ED will be zero also. For any 
well-behaved spectral  algorithm, the truncation and discretization errors are handcuffed together 
in the sense tha t  both must go to zero simultaneously as N increases. 

Unfortunately, Figure 5 shows that  the maximum pointwise error, maxyc[_~,~ l  IVs(y)-- 
v(Galerkin) 

s , is about  SIXTY times the truncation error[ This implies tha t  the discretization er- 
ror ED is roughly sixty times larger than  ET. 

We have no explanation for why the discretization error is so large for this example. 



1310 J . P .  BOYD 

10 -7 
uA = tanh(y)  y**2 
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Figure 5. The  same as the  previous graph, but  showing only half t he  range in degree j 
and with a compressed vertical scale as well ("zoom" version of the  previous figure). 
The  slanting dashed  line is the  "envelope" £ ( j )  of the  spectral  coefficients, which are 
the  heavy solid line; the  es t imated  t runcat ion  error is ET = vFNN£(N) as marked by 
the  lower of the  two horizontal  do t t ed  lines. The  max imum pointwise error (upper  
do t t ed  line) is expected  to be the  same order  of magni tude  as t he  t runcat ion  error ET, 
but  is actually about  60 t imes larger. 

16 .  S U M M A R Y  

In this work, we have shown that  it is straightforward to use rational Chebyshev expansions 
to solve differential equations or to compute indefinite iterated integrals on an unbounded do- 
main. This is true even though such solutions or integrals may asymptote to polynomials as the 
coordinate y --~ c~. The key trick is to construct simple, explicit special basis functions which 
have polynomial unboundedness. For linear differential equations and for indefinite integrals, the 
coefficients of these special functions can be found through an asymptotic analysis for large y. 
The differential equation can then be transformed so that  the new unknown v(y) is bounded, and 
therefore, has a rapidly-convergent series in rational Chebyshev functions TBj. 

When the differential equation has constant coefficients, a Galerkin discretization is very ef- 
ficient because it generates a banded matrix. Furthermore, when the differential equation is 
parity-preserving, symmetry can be exploited to 

(i) split the matrix problem into two subproblems of half the size and a smaller bandwidth, 
and also 

(ii) to simplify the unboundedness-removing transformation. 

Problems with polynomial-unboundedness arise very naturally in the method of matched 
asymptotic expansions as noted earlier. The composite matched asymptotics approximation 
is bounded because the outer approximation, which does not grow with lYl, replaces the growing 
inner approximation for large lYl. In the RMKdV problem for nonlinear waves in a channel [4], the 
inner differential equations are linear. However, nonlinear inner problems can arise in matched 
asymptotics also. 

In principle, the strategies described here can be extended to nonlinear differential equations. 
However, the Galerkin matrix is almost always dense, and it is probably easier to apply the 
collocation or pseudospectral method [9,12]. 
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In Appendix A, we give a trio of three-term recurrence relations which collectively compute 
the integrals of the rational Chebyshev functions. In Appendix B, we derive a bound/est imate  
of the truncation error which applies to any spectral series. This generalizes the bounds of [8] 
to series with an exponential but subgeometric rate of convergence, which is the usual rate for 
expansions on an unbounded spatial interval. 

Our examples have been confined to first- and second-order linear ordinary differential equa- 
tions. However, the underlying ideas have a much broader applicability. Special basis functions 
that  depend nonlinearly on the unknown have been applied to nonlinear differential equations 
[10,13], for example. 

Clearly, unbounded solutions on an unbounded integral are not necessarily difficult. With 
simple tricks, it is possible to achieve spectral accuracy. 

A P P E N D I X  A 
R E C U R R E N C E  A N D  L E M M A  F O R  I N T E G R A L S  
OF T H E  R A T I O N A L  C H E B Y S H E V  F U N C T I O N S  

The desired integrals are defined by 

// In - TBn(x) dy 

= f ~/2 cos ~ L  
Jacot (y/L) (n'r)sm vr) 

dr. 

(86) 

(87) 

A recurrence relation for these integrals can be derived by using the recurrence relation for the 
cosine functions 

cos ([n + l l T )  = 2cos (T) COS (nv) -- cos ([n -- 1]T), n = 1,2 . . . . .  (88) 

(Parenthetically, it may be noted that  this, after a change-of-coordinate, is the usual three-term 
recurrence for the Chebyshev polynomials.) Integrating both sides of this recurrence and invoking 
the definition of In  gives a formula for Zn+l in terms of In -1  and the quantity defined by 

~n ~- ~oYTBI(y)TBn(y)dy -- fTr12 i J~¢o~ (~iL) cos (T) cos ( n r ) ~  d~. (89) 

We can derive a recurrence for the auxiliary integrals Jn  by again applying the cosine identity (88), 
and then splitting the integral whose integrand is proportional to coQ(T) cos (aT) by the identity 
coS2(T) ---- 1 -- sin2(T). The result can be written in terms of the Jn  and In plus the integral of 
cos (nr) ,  which, of course, can be integrated explicitly to give sin (nt). 

The  images of sin (nt) under the mapping y = L cot (t) have been discussed in [8] using the 
notation 

S B n - l ( y ; L ) - - s i n C n a c o t ( L ) ) ,  ' n - - 1 , 2 , . . . .  (90) 

These basis functions satisfy the same recurrence relation as their cousins, the TBn, which are 
the images of cos (at) under the same map. One finds that  the integrals of the T B  functions 
can thus be computed by the following two-step procedure. (For simplicity, we set L = 1 in the 
rest of this appendix, but the general case follows by making the elementary change-of-variable 
y -* y/L.) The first is to initialize the recurrences through 

Zo = y ,  Zl = v /Y+y  2 -  1, (91) 

J0 = ~/1 + y2 _ 1, J1 = Y - arctan (y), (92) 
1 y 

SSo - ~ ,  SB1 = 21 + y----~" (93) 
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The second step is to simultaneously advance three recurrences through a single loop: 

SBn+I = 2 Y--~---SBn - SBn-1 ,  (94) 
~/1 + y2 

Zn-I-1 ---- 2 ~ ' n  --  Z n - - 1 ,  (95) 

Jn-]-I :2In "4---n2( Ssn-1 -- sin ( n 2 ) )  - ~ J n - l .  ( 9 6 )  

If one wishes to compute all the In  for n <_ N, then the cost (in floating point arithmetic) is 
directly proportional to N. 

In principle, this formalism can be extended to iterated integrals also. However, after the first 
integration, one must subtract the unbounded, growing-linearly-with-ly I factors and re-expand 
the difference as a series of T B  functions. Thus, the strategy of subtractions is necessary for 
i terated integrals even when using recurrence relations. 

Although suitable for numerical evaluation, the recurrence leaves unanswered an important  
question. How do the integrals behave as y -* oc? The following provides an answer. 

THEOREM 3. ASYMPTOTICS OF INTEGRALS OF T B  FUNCTIONS. 

fO y T B~ (x )  dy ~ (sign (y))~ y + O (n2),  lYl >> 1 (97) 
n 

PROOF. The trigonometric definition of the rational Chebyshev functions is 

(98) 

When y >> L, power series for the trigonometric functions show that  t ~ L /y .  Similarly, when y 
is large and negative, t --, It. Combining both limits gives 

TB,~(y; L) ,., (sign (y))n 
n2L 2 1 

2 y2 + 0 (y -4 ) .  (99) 

Next, split the range of integration, x E [0, y], into two parts. On the subinterval x e [0, n/e] for 
some 0 < (, the asymptotic approximation (99) does not apply. However, since ITB~(y; L)] < 1 
for all n and all real y as follows from its definition in terms of the cosine, it follows that  the 
integral of T B n  on this subinterval is bounded for all n and e > 0. If e << 1, then the asymptotic 
approximation will be accurate on the rest of the integration range, x E [n/e, y]. The  sign function 

f 

integrates to (sign (y))ny; the integral of the error terms is bounded as y -~ oc. | 

A P P E N D I X  B 

I M P R O V E D  T R U N C A T I O N  E R R O R  B O U N D  

In this appendix, we derive a bound on the truncation error for a spectral series which has 
"subgeometric" convergence as defined in [8]: 

aj ~ ( } exp ( _ q j r ) ,  j --. oc, (loo) 

where the empty braces denote factors that  vary slower-than-exponentially with j or are oscil- 
latory with degree j .  Although the rest of this article has focused solely on rational Chebyshev 
functions, the theorem derived here applies equally to Chebyshev and Legendre polynomials, 
Fourier series, and to all other spectral series for which the basis functions have been normalized 
to maximum values of one on the expansion interval. 

THEOREM 4. TRUNCATION ERROR BOUND. Let ¢j(y)  denote the elements of a spectral basis 
set which have been normalized to a max imum value of one on the expansion interval. Define the 
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truncation error ET(N) as the sum of all terms in the infinite series which are neglected when 
the series is truncated after the term of degree j = N - 1: 

o o  

ET(N) - E ajCj(y).  (101) 
j=N+I  

Suppose that the spectral coefficients satisfy a bound of the form, with r >_ O, 

lajl <_ C e x p ( - q j  r) =-- C(j), j > N, (102) 

where the bounding function ~(j) is said to be an "envelope of the spectral coefficients". Then 

lET(N)[ < C r q @ F  (1 ;qN~)  , N > > I  

- < C I N I - r e x p ( - q N r ) {  . qN - - - T -  + (1/r-1)(1/r-2)q 2N2r + . . .  } , 

where F(a; z) is the usual incomplete F fimction defined by 

(103) 

jfz °° F(a; z) = exp ( - t ) t  ~-1 dt. (104) 

PROOF. Because each basis function has a maximum value of one, it follows that  each term in 
the spectral series is individually bounded by laj I: 

ET(N) < ~ [aj[. (105) 
j=N+I  

Replacing each coefficient by its upper bound as specified in equation (102) gives 

ET(N) < C ~ e x p ( - q f f ) .  (106) 
j = N + I  

It is e~ ie r  to analyze integrals than sums, so note that  without approximation, 

/1 s -= exp ( -q f f )  = N a(x) dx, (107) 
j=N-+- I 

where a(x) is the piecewise-constant function 

a(x) -- exp - q N  r , x E N '  " 

Note further tha t  a is bounded from above by the integrand of 

(108) 

jfl °° I(r,Q) = dxexp ( -Qx~) ,  (109) 

where Q - qN r. It follows that  s <_ I(r, Q) and, in fact, this is a very tight bound in the sense 
that  s ~ I(r, Q) within a relative error of O(1/N)  as N --* oc. 

By the change of coordinate Qx r - z, the integral I(r, Q) can be transformed into the usual 
definition of the incomplete gamma function given in the theorem. The last line of the theorem 
follows by replacing the gamma function by its large-Q asymptotic approximation. | 



1314 J. P. BOYD 

To make practical use of this theorem, three further observations are necessary. First, the inte- 
gral that  defines the upper bound becomes an increasingly good approximation (with a relative 
error O(1/N))  as N increases. If we relax the certainty of a bound for the explicitness of an 
approximation, then the theorem can be restated as: the truncation error in the sum of a series 
whose jth term is exp (_qj r )  is approximately 

oo 

E exp (_qjr )  ,,v 1 N l - r  exp ( - q N r ) .  (110) 
rq 

j = N + I  

Second, the last retained coefficient in the series is exp ( - q N r ) .  Therefore, equation (110) can be 
restated as: the truncation error of the subgeometrically-converging sum is the magnitude of the 
N th term multiplied by N l - r / ( r q ) .  This implies that the last coefficient that  we keep provides us 
useful information about the sum of all the higher-degree terms that we drop in the truncation. 
Similar reasoning led to the "last coefficient error estimate", Rule-of-Thumb 2 [8, p. 51]. The 
book restricted itself to the special case r = 1 (geometric convergence); we have here generalized 
the argument to subgeometric convergence (r < 1) also. 

Third, spectral coefficients usually oscillate as well as decay with increasing degree j. ( Ir / the 
author 's  experience, this seems to be almost universal for rational Chebyshev series.) 'Thus,  
one has to be careful: a truncation error based on the size of aN could be wildly optimistic if 
degree N happened to be a zero or near-zero of the oscillations of the spectral coefficients with 
degree. For this reason, Boyd [8] and Flyer [14] have introduced the concept of the "envelope 
of the spectral coefficients", £(j) ,  as defined above in the body of the theorem, equation (102). 
When the coefficients are oscillatory-in-degree, the truncation error is 

E T ( N )  "~ 0 (N l - r )  E(N). (Iii) 

An algebraically-converging series, i.e., one where the best bound one can establish is of the 

form 1 
[ a j l<  C~-~, (112) 

for some constant k, is the limit r --~ 0 of an exponentially-convergent series. A geometrically- 
converging series is the limit r = i. The theorem above interpolates between the two cases r = I 
(geometric convergence) and r = 0 (algebraic convergence) given in the last coefficient error 

estimate, Rule-of-Thumb 2 of [8, p. 51]. 
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