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Abstract 

The configuration of bitangents of a smooth quartic curve in P’(C) has been a classical 
object of study. In particular for the Klein curve xy3+yz3+zx3=0 it is highly symmetric 
(Baker 1935; Klein 1879). Key concepts are Steiner sets and Aronhold sets (Dickson, 1961). We 
give a complete description of these sets for the Klein curve and of their orbits under the group 
of the curve, using the relation between the geometric configuration, the Coxeter graph 
(Coxeter, 1983) in various appearances and the regular 2-graph on 28 points (Taylor, 1977). 
Also a model is provided for the self-dual configuration of 21+28 points and 21+28 lines 
associated with the Klein curve. 

1. A model for the Klein curve and an encoding for its bitangents 

The Klein curve is the unique plane quartic curve with the maximal number 168 of 

automorphisms. Coxeter [2] mentions a model of the Klein curve due to Ciani. Let 

c be a complex root of x2 +x+2=0. Consider the curve C with equation 

x4+y4+z4+3C(y2 z2+z2 x2+x2y2)=0, 

in P2 (C). It is defined over Q[c] = Q[J-;I] and reduces mod J--7 to the double 

conic (x2 + y2 + z2)2 = 0 in P2 (F7). Coxeter lists the 28 bitangents of C: they reduce 

mod fi to the 28 rational secant lines of the conic, which is isomorphic to P’ (F7), 

and each tangent point reduces to a rational point of the conic. Hence the bitangents 

can be encoded by the set r1 of unordered pairs of distinct elements of P’ (F7)= 

(0, 1,2,3,4,5,6, m}. If the lines in P2 (C) are indicated by the coefficients of their 

equations, the correspondence is 
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occ = [l, 1, l] 01=[1,0,c] 02 = [O, c, 1) 03 = [l, c*, - l] 

lco=[-l,c2,1] 12=[-C,l,O] 13=[1, -l,l] 14=[0, --c, l] 

200 = [CZ, 1, - l] 23 = [l, 1, c’] 24=[1,0, -C] 25 = [l, -c2, l] 

3co =[C,O, l] 34=[-c2,1, l] 35=[0,1, -Cl 36=[1, -C,O] 

400 = [l, - 1, c”] 45=[1,1, -11 46=[1,c2, l] 04= [C, LO] 

5co=[l,C,O] 56=[-C,O, l] 05=[-1,1,cq 15 = [c2,1, l] 

6oo=[O,l,C] 06 = [c’, - 1, l] 16=[1,1, -c’] 26=[-l,l,l]. 

Moreover, the automorphisms of C are reduced to automorphisms of the conic; this 

establishes an isomorphism H=Aut(C) z PSL(2, F7). The set r, carries a graph 

structure: two pairs ab and cd are connected iff abed is a harmonic tetrad in P’(F,). 
This gives an incarnation of the Coxeter graph r (cf. [2, 41). See Fig. 1 with its bold 

labels, which is the same as Fig. 2 of Coxeter [2]. 

04 
136 

Fig. 1 
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We have G1 = Aut(Ti) g PGL(2, F,), which contains H as a subgroup of index 2. In 

this incarnation the distances > 1 in P also have an algebraic significance, see 

Lemma 1.1. 

Lemma 1.1. Let ab,cdeT1. Write p for the distance in the Coxeter graph and (a bed) 
for the cross-ratio of the points a, b, c, dEP’(F,). Then 

(abed)= -1 e p(ab,cd)=l, 

(abcd)E{2,4} e p(ab, cd) = 2, 

(abcd)E(3,5} o p(ab, cd) = 4, 

# {a, b, c, d} = 3 o p(ab, cd) = 3. 

Proof. By inspection from Fig. 1 we find that p(Oco,la)=3 for aE{O, co}, = 1 for 

a = 6, = 2 for aE{2,4} and =4 for aE{3,5}. The statement for the remaining pairs 

follows using G1. 0 

2. A second incarnation of the Coxeter graph 

Let r, be the graph of which the points are the triangles of P2(F2), two points being 

adjacent if they are disjoint (as to vertices or, equivalently, as to edges). See the 

previous figure and its lower case labels. Then r2 zz r and Aut(T,) is faithfully 

represented by the group of collineations and correlations of P2(F2), see [4]. 

In Fig. 2 the points are labelled such that the lines are the cyclic shifts mod 7 of 013. 

The lines are labelled by twice the sum of the labels of their points. In that way 

concurrent triples of lines have as labels again the cyclic shifts of 013 and the map 

interchanging point i and line i for all i is a correlation. Call the vertices and sides of 

a triangle its elements. We then have Lemma 2.1. 

Fig. 2 
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Lemma 2.1. If two triangles have mutual distance 1,2,3,4, respectively, in r,, then they 

have in common 0,4,2,3 elements, respectively. 

Proof. We denote a triangle by the triple of its vertices. Modulo PSL(3,2) we can take 

the first triangle as 012, one at distance 1 from it as 356 and one at distance 2 from it as 

024. One at distance 3 from it can be taken as either 135 or 136, one at distance 4 from 

it as either 025 or 246 (see Fig. 3). The lemma now follows by inspection. 0 

Note that the correlation mentioned above fixes 012, 356 and 024. It interchanges 

135 with 136 and 025 with 246. 

With a triangle A (012, say) there is a unique point not on any of its sides (5) and 

a unique line not through any of its vertices (346). We call these the central point and 

the central line of A. The triangle A has distance 4 to precisely 6 other triangles. 

Three of these (015,025,125) are the triangles having the same central line as A. Such 

triangles have also mutual distance 4, and mutually share a side and two vertices. The 

four vertices involved (0, 1,2 and 5) are those of a 4-gon. Dual statements hold for the 

other three triangles at distance 4 from A (036,134,246). The correlations that leave 

invariant 012 interchange the two triples of triangles, which are pairwise joined by 

edges of r, (see Fig. 3). Evidently in r the relation “at distance 4 from” is the disjoint 

union of two relations, each defining a graph consisting of 7 4-cliques. Two points 

x and y are connected in r if and only if there are points z1 and z2 such that (x, zi) 

and (y, zz) are in one of these relations and (x, z2) and (y, zr) in the other. Note that 

by r only the pair of these relations is defined, not each of them separately. 

Fig. 3. 



R.H. Jew&en et al. / Discrete Mathematics 132 (1994) 83-96 87 

We note in passing that TZ has six 7-cycles through each vertex (see 012 and the arcs 

in Fig. 3), so 24 in total. In the figure one easily recognizes the stabilizer Ss of 012 in 

PSL(3,2): the reflection in the vertical line gives an automorphism of r, and there is 

also an automorphism of order 3 that cyclically shifts the 12 vertices on a horizontal 

line over 4 positions; both do not interchange the two triples of vertices at distance 

4 from 012. This S3 acts transitively on the 6 arcs in the figure. Thus we have a regular 

action of the subgroup of order 168 of Aut(F,) on the set of pairs consisting of a vertex 

and a 7-cycle through it, and the stabilizer of a 7-cycle must be the cyclic group of 

order 7. In Aut(F,) it is the dihedral group of order 14, as can be seen in Fig. 1. 

3. The reflection points 

We investigate the relation between geometric properties of the configuration of 

bitangents and graph-theoretical properties of r,. The bijection from the set of 

bitangents onto the set of triangles establishes an isomorphism between H and the 

subgroup PSL(3,2) of Aut(r,). The centres of the 21 involutions of H each are incident 

with 4 bitangents and each bitangent contains 3 of these centres (see [l] or the 

following). The 21 involutions of PSL(3,2) g H correspond to the 21 centre/axis pairs. 

Each involution leaves invariant 4 triangles, having their central point on the axis and 

their central line through the centre. For instance for centre 4 and axis 045 the 

invariant triangles are 012,356,125 and 036. In F2 they span two ‘antipodal’ edges (see 

Fig. 4 and the pairs AA’, BB’, CC’ in Fig. 3). Their mutual distances are 1, 1,4,4,4, 4. 

Since there are 21 of these edge-pairs we have a l-l correspondence, and 4 bitangents 

036 125 

Fig. 4. 
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through a reflection point must correspond to 4 triangles that are the endpoints of two 

antipodal edges. It thus may be expected that those 4 bitangents admit a ‘natural’ 

partition into two pairs (see also [2, Section 4, last paragraph]). 

Now in PSL(3,2) there are 8 collineations that leave invariant the centre 4 and 

the axis 045 (namely the involutions with axis 045 and centre 0,4 or 5, those 

with centre 4 and axis 124 or 346, and the two of order 4 that interchange 0 and 5 

and cyclically permute 1,3,2,6). They form a dihedral group. Its action on the 

above set of triangles has a kernel of order 2 (generated by the initial involution); the 

image is the Klein group on the triangles. The two elements of order 4 have the same 

image; it interchanges the 4 triangles in pairs, fixing the antipodal edges. We have 

Lemma 3.1. 

Lemma 3.1. Every bitangent b is intersected in each of its 3 rejection points by 3 other 

bitangents, one of which is distinguished by the fact that it is interchanged with b by the 
two elements of order 4 in Aut(C) that fix the rejection point. DeJning these distin- 

guished bitangents as the neighbours of b we get a Coxeter graph on the set of bitangents. 

We mention in passing that the 21 involutions of PSL(2,7) are realized on the conic 

in Pz(F7) as the involutions that have their centers in an internal point (a point lying 

on no tangent), since involutions with their centre in an external point have fixed 

points and cannot belong to PSL(2,7). 

4. Klein groups and fkycles 

In PSL(3, 2) two involutions commute if and only if they share the centre or the 

axis, so a Klein subgroup contains, apart from the identity, the 3 involutions with 

a given centre or the 3 involutions with a given axis. Thus, as already noted by Klein 

[S], there are 14 Klein groups forming 2 conjugacy classes. A dihedral group of order 

8 contains two Klein groups; they share an involution. So one of them contains the 

involutions with a certain centre, the other those with a certain axis through that 

centre. Now we have only 7 x 3 =21 such pairs of Klein groups. In the previous 

section we have seen that each centre/axis pair yields a dihedral group. Apparently 

these are the only dihedral groups of order 8. The involution that gave rise to such 

a group is the one shared by its Klein groups. It corresponds to a pair of antipodal 

edges in TZ, and the points at distance 3 from all 4 endpoints of these edges span an 

g-cycle, as we can observe in Fig. 4 (the arcs). It has the dihedral group as its stabilizer 

in H. Since there are &(28 x 6)=21 8-cycles we have again a bijection. (It can be 

verified that the antipodal pairs corresponding to the other involutions of the two 

Klein groups each consist of two of the small horizontal edges in Fig. 4). 

Now from Fig. 4 we take the cycle corresponding to the centre/axis pair 4/045: 

234-015-246-035-146-025-134-056-234. The set {234,246,146,134} is an orbit 

under the Klein group belonging to the centre 4, the set {015,035,025,056} is an orbit 
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under the Klein group belonging to the axis 045 and (consequently) both are orbits 

under the dihedral group. Note that of the pairs {234,146}, {246,134}, (015,025) and 

{035,056}, opposite in the g-cycle, the first two consist of triangles sharing a vertex 

and two sides, whereas for the second two this is a side and two vertices, cf. 

Lemma 2.1. 

In the sequel we shall use the following lemma. 

Lemma 4.1. Let K be a Klein subgroup of PGL(3, C) and P and Q points in P2(C). Then 

there is a conic through P and Q that is invariant under K. It is unique if and only ifP and 

Q are in diflerent K-orbits. 

Proof. By suitable choice of coordinates we may suppose that K is generated by the 

involutions 

x:y:z H -x:y:z and x:y:z HX: -y:z. 

The tonics invariant under K are those with equations of the form ax2 + by2 + cz2 = 0. 

Such a conic contains P=p, : p2 : p3 and Q = q1 : q2 : q3 if and only if 

ap:+bp$+cp?j=O=aq:+bq$+cq$. 

There is a solution a : b : c, and it is unique if and only if p: : p$ : p: # q! : q$ : qi, that is, 

if and only if p1:p2:p3 # fql: +q2: +q3. 0 

5. Another incarnation of the Coxeter graph 

The stabilizer of a triangle in PSL(3,2) is a subgroup isomorphic to S3, and it is 

easily verified (e.g., embedding PSL(3,2) in 5,) that every subgroup of type S3 is the 

stabilizer of a triangle. All these subgroups are conjugate. However, as follows from 

Section 3, stabilizers of disjoint triangles (e.g., 012 and 356) are conjugate under 

a collineation of order 4 (e.g., (05)(1326) of which the square belongs to both 

stabilizers. Conversely, a collineation of order 4 is of type (a)(bc)(d efg) with abc, adf 

and aeg lines, and one verifies that a triangle a fixed by its square is mapped by it 

onto a triangle disjoint from a. Thus we have a Coxeter graph of which the points are 

the subgroups of type S3 in PSL(3,2). 

6. Some geometry 

We denote the reflection point in P’(C) that corresponds to the centre/axis pair 

4/045 in P2(F2) by 05. Note that the bitangents through it correspond to the triangles 

having 0 or 5 as their central point and the other point as a vertex. Let a be the 

bitangent corresponding to the triangle 012 (a=012 for short). Then A =05, A1 = 15, 

A, = 25 are the reflection points on a. The other bitangents through A with the 
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reflection points on them are 

b=356 with B,=03 and B2=06, 

c=125 with Cl=01 and C2=02, 

d=036 with D,=35 and DZ=56. 

We now have 9 reflection points. There is a bitangent through two of them if and 

only if the corresponding pairs are not disjoint and their union is not a collinear triple. 

We thus find 8 more bitangents 

B1 D1 =056 and B2 D2 =035, intersecting in 36, 

B, C2 =234 and B2 Cl = 146, intersecting in 04, 

Ai D, = 134 and A, D, = 246, intersecting in 45, 

Al Cl =025 and A2 C2 =015, intersecting in 12. 

Evidently the two special pairs a, b and c, d are characterized by the fact that no two 

reflection points on the bitangents of such a pair are on a third bitangent. The 

bitangent 012 is intersected in the reflection points 05,15,25, respectively, by the 

bitangents 036,134,246, respectively. These 4 bitangents have mutual distance 4 (see 

Lemma 2.1) and a common central point 5. Likewise it is intersected by 125,025,015, 

giving a quadruple with common central line 346. The two triples of bitangents form 

a line-perspective pair of triangles with vertices 45,56,35 and 12,02,01. Finally we 

have the bitangents 345,356,456, the neighbors of 012 in the Coxeter graph. They also 

form a triangle that is line-perspective with the other two. Using coordinates as in 

Section 1, and the isomorphism between r, and r, as given in [4] and in Fig. 1, it can 

be calculated that all three triangles are perspective from one point - 1: 1 : 2’. This 

point, the ‘Hermitian pole’ of the bitangent [ - 1, 1, c’] we started with, is the pole of 

that bitangent with respect to the 2 tonics belonging (as explained in the next section) 

to the first two triples of bitangents (see [2], Section 10). 

We have seen in Section 4 that every reflection is in the centre of a unique dihedral 

subgroup of H and commutes with precisely 4 other reflections. So its centre is on the 

axes of these 4 reflections and its axis passes through their centres (which implies that 

a reflection line is not a bitangent). These are all incidences between reflection points 

and reflection lines: the bitangents through a point p contain 8 other reflection points, 

so there is only room for 4 reflection lines through p with precisely 3 more reflection 

points on each. See [2], Sections 6 and 7, for a different approach. 

We shall now denote a reflection point by the pair (p, 1) of the centre and axis of the 

corresponding involution of the Fano plane and the axis of the same reflection by 

(1,~). Then we have: (p, 1) is on (m,q) iff p=q and 1 # m or p # q and 1 =m. If we 

represent a bitangent by the pair (m, q) of the central line m and the central point q of 

the corresponding triangle, then a reflection point (p, 1) is on the bitangent (m, q) iff 

porn and qgl. 
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In Ciani’s coordinatization every reflection point is the Hermitian pole of the 

corresponding reflection line (see [2], Section 6). So the Hermitian poles of the 

bitangents also play a (dual) role: each is incident with 3 reflection lines. As Coxeter 

([2], Section 7) remarks, these poles and the reflection points are all intersection points 

of reflection lines since 21 x (~)+28(~)=(‘~). Moreover there are no incidences be- 

tween the 28 bitangents and their Hermitian poles [2]. Calling (4, m) the pole of the 

bitangent (m, q), we thus can fully describe the configuration of 28 +21 lines and 

28 + 21 points as follows. 

Theorem 6.1. Let P be the set of points and L that of lines of the Fano plane. There is 

a labelling of the 21 reflection points of the Klein curve and the 28 other intersection 

points of rejection lines by the elements of P x L and a labelling of the 21 reflection lines 

and the 28 bitangents by the elements of L x P in such a way that 

(i) (p, l)EP x L represents a rejection point ifspE1, (1,p)EL x P represents a reflec- 

tion line ifsl3p, 

(ii) the rejection with centre (p, 1) has axis (1, p), 

(iii) the reflection point (p, 1) is on the reflection line (m,q) ifsp=q and 1 # m, or 

p #q and l=m, 

(iv) the reflection point (p,l) is on the bitangent (m,q) ifSpEm and qE1, 

(v) the rejection line (1,~) passes through the point (q, m) with q $ m tffpgrn and 

qE1. 

There are no other incidences between the 49 points and the 49 lines. 

Remark. In Fig. 2 a point p and a line 1 carry a label from F,. Denote these labels by p’ 

and q’, respectively. Then p is on 1 if and only if p’ + l’~{ 1,2,4}. If we replace the labels 

(p, 1) in the theorem by (p’, 1’), and the labels (1,~) by ((l’,p’)) we get, for instance: 

(p’, 1’) represents a reflection point and ((m’, 4’)) a bitangent through it if and only if 

p’+l’,p’+m’,q’+l’E{1,2,4} and m’+q’$ {1,2,4}. 

7. Steiner sets of hitangents of a smooth quartic curve 

We give some classical results concerning the configuration of bitangents of 

a smooth quartic curve X in P’(C). A set of four distinct bitangents II,. . . ,14 of 

X whose eight tangent points are on a conic we call a coherent tetrad. Each X has 315 

coherent tetrads. These define a relation between unordered pairs of distinct bitan- 

gents of X by: lm - pqc*lmpq is a coherent tetrad. Remarkably this is an equivalence 

relation on the set of 378 unordered pairs of distinct bitangents. An equivalence class 

for this relation is called a Steiner set of pairs of bitangents; each Steiner set contains 

6 pairs and there are 63 Steiner sets. The bitangents occurring in one Steiner set are all 

different. See [3], Section 185. We will determine the Steiner sets for the curve C of 

Section 1 and the H- and G1-orbits in the set of coherent tetrads of C and in the set of 

Steiner sets. Observe that the data of the Steiner sets and of the coherent tetrads are 
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equivalent: a tetrad is coherent if and only if it consists of two pairs from the same 

Steiner set. A triple is called coherent if it is formed from a pair of bitangents and 

a bitangent of another pair in the Steiner set containing the first pair. These triples are 

called syzygetic in [3], and are the edges of the regular 2-graph on 28 points, see 

Section 6 in [6] (from which we took the term ‘coherent’; we return to this in the 

remarks in Section 9). 

8. The coherent tetrads of bitangents of C. 

Coxeter has observed that the following form coherent tetrads of bitangents of C: 

(1) Four bitangents of C passing through one point. These tetrads are in l-l 

correspondence with the centres of involutions in H. A typical one is {Oco,16,23,45}, 

consisting of the pairs 0~0-16 and 23-45 which are connected in F; the remaining 

distances in the tetrad are 4. We shall say that these tetrads have a distance pattern 

(1, 1,4,4,4,4); in this we write the distances of disjoint pairs of the tetrad next to each 

other. 

(2) 2 x 7 tetrads in which all distances are equal to 4 ([2] Table 2 and Fig. 7). These 

14 tetrads form one orbit under G1, but two orbits under the action of H. Each 

unordered pair of distance 4 in F occurs in exactly one of these tetrads, and H has two 

orbits on these pairs; see Section 2. 

(3) 28 tetrads consisting each of a vertex of r and its 3 neighbours ([2], p. 135). The 

distance pattern is (1,2,1,2,1,2). 

To these we can add the following. 

(4) Each of the 21 8-cycles in r gives rise to 2 tetrads with distance pattern 

(2,2,2,2,4,4), see Section 4. A tetrad with this distance pattern clearly is on a unique 

S-cycle, so there are 42 of these tetrads. Take such a tetrad. It is the orbit of a Klein 

group K in H. Let p and q be the tangent points of one of its bitangents. Take a conic 

as in Lemma 4.1. It contains the images under K of p and q, which are the tangent 

points of the other bitangents of the tetrad. So the tetrad is coherent. 

The tetrads of type (1) to (4) count for 105 tetrads. In none of these a pair with 

distance 3 occurs. Let us consider 3 more types of tetrads in which four pairs have 

distance 3 (i.e. contain a common symbol), to be constructed as follows. Take two 

disjoint pairs ab and cd. These give rise to the tetrad {ac, bd, ad, bc}. We distinguish 

three cases, according to whether (a b c d)E{2,4}, (3,5} or (6). 

(5) 84 tetrads with distance pattern (1,2,3,3,3,3); e.g., {01,02, col,cc2). Such 

a tetrad must consist of the endpoints of an edge m of r and two points each opposite 

to m in a 7-cycle, and at mutual distance 2. From Fig. 3 we see that for an edge m there 

are 4 points at distance 3 from each of its endpoints, forming 2 pairs with distance 2, 

corresponding to the pairs of 7-cycles that share precisely m. Observe that there are 

indeed 42 x 2 of such pairs of 7-cycles. We have one H-orbit, since the stabilizer of 

((0, co}, { 1,2}} in PSL(2,7) has order 2. (Note: there also exist tetrads with distance 

pattern (1,3,2,3,3,3)). 
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(6) 84 tetrads with distance pattern (4,4,3,3,3,3); e.g., {01,03, ~01, ~03). From 

Fig. 3 one can derive that for two points at distance 4 (there are 2 cases!) there are 

4 points having distance 3 to both, forming 2 pairs with distance 4 (the other distances 

are 3). So there are indeed 4 (28 x 6 x 2) = 84 tetrads with these distances. Note that the 

4 points mentioned form again a tetrad of this kind; we thus have a set of 6 points 

consisting of 3 pairs with distance 4 while all other distances are 3. Since the stabilizer 

of { (0, co}, { 1,3}} in PSL(2,7) has order 4, there are two H-orbits. There is only one 

Gi-orbit. 

(7) 42 tetrads with distance pattern (2,2,3,3,3,3); e.g., (01,06, col,c06}. From 

Fig. 3 we see that for points x and y at distance 3 there are only 2 points z at distance 

3 from x that have distance 2 from y. For only one choice of z there is a point at 

distance 2 from x and at distance 3 from y and z. The four points are the neighbours of 

an edge. So we have indeed 42 tetrads with this distance pattern, and clearly they are 

in one H-orbit. 

It remains to show that tetrads of type (5), (6) or (7) are coherent. Note that we then 

have found a total of 315 coherent tetrads and thus have them all. Its suffices to give 

the proof for one tetrad out of every orbit. 

Now {000,16,23,45) is of type (1) and {000,45,13,26) is of type (2), so the pairs 

{Occ,45}, {16,23} and {13,26} are in the same Steiner set. Therefore, { 16,13,26,23} 

is coherent, and of type (6) since (12 3 6)=5. Multiplication by 5, which is in 

PGL(2,7)\PSL(2,7), transforms the above tetrad of type (2) into {Oco,46,15,23}. 

Since the pair {Occ,23} is also in the tetrad of type (1) above, {15,16,45,46} is 

coherent. It is also of type (6) since (14 5 6) = 5, but in the other H-orbit since no cyclic 

shift transforms it into the first one. 

Again we use (Oco,16,23,45} of type (1) now with (Oco,16,25,34} of type (3), to 

find {23,25,43,45}. It is of type (5) since (2 4 3 5) =2. 

Finally {Occ, 16,34,25} and (000,16,24,35} of type (3) yield {24,25,34,35}. It is of 

type (7), since (2 3 4 5) = 6. 

9. The types of Steiner sets of C 

We have seen that all tetrads of type {UC, bc, ad, bd} are coherent, of type (5) (6) or 

(7). It follows that for any a, b the 6 pairs {ax, bx} with x # a, b form a Steiner set. 

Clearly there are 28 of these sets, all equivalent under H. Note that all pairs have 

distance 3. The 12 points of r that are involved are those at distance 3 from the 

point ab. 

In the 105 tetrads of type (1) (2), (3) or (4) distance 3 does not occur. Therefore, they 

are of type { ab, cd, eJ gh} with a,. . . , h all different. Since 105 =& (82) (2)(i) all tetrads 

involving the eight elements 0,. ,6, CC are coherent. Thus for every partition 

{a, b, c, d} u {e,f, g, h} of the set of these elements we find a Steiner set 

{{&cd}, {ac,bd}, (ad,bc}, {ef,gh), {es,fh}, {eh,fg}. 
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If a, b, c, d or e,f; g, h is, in some order, a harmonic quadruple, we can map it (in that 

order) onto 0, cc, 1,6 or 0, co, 6,1 by an element of PSL(2, 7). So under H the Steiner 

set is equivalent to 

{{0~,16}, (01,6~0), {06,6~}, {23,45}, (24,35}, {25,34}}, 

and the orbit has length 21, since there are 42 harmonic quadruples. Note that the 

distances in the pairs are 1,2,2,1,2,2. The twelve points of r involved are the 

4 endpoints of two antipodal edges and their 8 neighbors. 

In the remaining cases we can, mod PSL(2,7), take a = 0, b = co. We can take c = 1 if 

cordisasquare,andsince(Oco16)=(01co4)=(1coO2)=-1wecanthentaked=3 

or 5. If both c and d are nonsquares we can take c= 3, d = 5 or 6. But 

(03 cc 5) =(3 co 06) = - 1. We are left with the cases where (a, b, c, d} = (0, 00, 1,3} or 

= (0, co, 1,5}. The corresponding Steiner sets are 

{{Ok, 131, {01,3~}, (03,1~)> (24,561, {25,46}, {26,45}}, 

{{0~,15}, {01,5~}, {05,1~), {24,36}, {23,46}, (26334)). 

Note that all distances in the pairs are 4. Since (Oco13)=5 =(Oco51) there is equiva- 

lence under Cr. Now by the map z I-+ z/(z+4) from PSL(2, 7) we see that in the 

first set the first 3 pairs as well as the second 3 pairs are equivalent, and by 

z H (2 + 22)/( 1 + 42) that all 6 pairs are equivalent. Likewise for the second set, by 

z H z/(z + 2) and z H (2 + 4z)/( 1 + z). So the sets could only be equivalent under H if 

{Oco,13} and {Oco,l5} are equivalent. Now 0, co, 1,3 in this order becomes co, 0,3,1 

by z H 3/z, and fixing 0 we can cyclically permute co, 1,3 by the above z H z/(z + 4). 

So equivalence would imply that there is a map in PSL(2,7) that maps 0, co, 1,5 in this 

order onto 0, co, 1,3 or onto 0, co, 3,l. Both are impossible. Finally, the stabilizer of 

{ (0, co, 1,3}, (2,4,5,6}} in PSL(2,7) has order 24, so the orbit of the first Steiner set 

has order 7, and so has that of the second one, there being 63 Steiner sets. We 

summarize. 

Theorem 9.1. Under H the 63 Steiner sets fall apart in: an orbit of length 28 with 

distance pattern 3,3,3,3,3,3, an orbit of length 21 with distance pattern 1, 1,2,2,2,2 and 

two orbits of length 7 each with distance pattern 4,4,4,4,4,4. 

Remarks. Without reference to P’(F,) Dickson [3] mentions a labelling of the 

bitangents by the 28 pairs from { 1,2,3,4,5,6,7,8}, due to Hesse and Cayley, in such 

a way that the Steiner sets are as above, with 0, 1,. . ,6, cc replaced by 1,2,. . ,7,8. In 

his section 186 he shows, using combinatorial properties of the Steiner sets, that to 

prove that the Steiner sets are as given above, it is sufficient to prove for five 

particularly chosen sets that they are Steiner sets. That same labelling is used in [6] to 

show that the triples called ‘syzygetic’ in [3] are the edges of a regular 2-graph. Of 

course it helped in finding the cases (5), (6) and (7) in Section 8. 
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10. Aronbold sets 

An Aronhold set is a set of seven bitangents with the property that no three of them 

form a coherent triple (geometrically they are of interest since such a set determines 

the quartic curve). They are described in [3], Section 186, in terms of the labelling 

mentioned in the remarks in Section 9, as follows. Coherent triples have the form 

{xy, yz, zw} or {uu, wx, yz}, with u, u, w, x, y, z all different (We have seen this in the 

beginning of Section 9.) It follows that an Aronhold set has one of the forms 

{{ax> I x # a}, or {ah ac, ad, ae, fs, sk W-3, and that indeed 7 is the largest cardinality 

a set with our property can have. 

Now the 8 sets of the first type clearly form one orbit under H. In r they are the sets 

of 7 points at mutual distance 3 (see the black points in Fig. 3). As to the second type: 

mod H we can suppose that {f; g, h} = (0, co, l}, which is left invariant by the maps id., 

z H l/(1 -z) and z H 1 - l/z. So the sets in which a = 2, 4 or 6 are equivalent, with 

a stabilizer of order 1; the orbit has length 168. The set with a= 3 and that with a=5 

are not equivalent, and each has an orbit of length 56. Then Theorem 10.1 follows. 

Fig. 5. 
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Theorem 10.1. The 288 Aronhold sets fall apart into 4 orbits under H, of lengths 

8,168,56 and 56. 

11. Intrinsic connection with the Fano plane 

As we observed above, the tetrads of type (2) lie in two H-orbits. Reversing the 

process in Section 1 we regain P*(I;z) in the following way. Call the tetrads in one 

H-orbit ‘points’ and the other ones ‘lines’. These are indicated in Fig. 7 of [2] as o and 

l respectively. Moreover this Fig. 7 contains the connections between tetrads which 

have nonempty intersection. Let us define an incidence relation between ‘points’ and 

‘lines’ as disjointness of the corresponding tetrads. Then the resulting geometry P is 

isomorphic to P*(F,). Moreover there is a bijection between the set of vertices of 

r and the set of pairs (p, 1) with p a point, 1 a line of P and p # 1. Observe that the 

complement of 1 u (p> in P is just a set of three noncollinear points. This gives 

a natural bijection between r and the set of triangles in P, such that two adjacent 

vertices in r are mapped to disjoint triangles! The group G1 appears as the union of 

the collineations and the correlations of P. 
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