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In this paper we consider semiprimitive commutative semigroup rings
and related matters. A ring is said to be semiprimitive if the Jacobson
radical of it is equal to zero. This property is one of the most important in
the theory of semigroup rings, and there is a prolific literature pertaining
to the field (see [14]).

All semiprimitive rings are contained in another interesting class of rings.
Let & denote the class of rings R such that J(R) = B(R), where J and B are
the Jacobson and Baer radicals. Clearly, every semiprimitive ring is in &.
This class appears, for example, in the theory of Pl-rings and in com-
mutative algebra. (In particular, every finitely generated Pl-ring and every
Hilbert ring are in &.) Therefore, it is of an independent interest.
Meanwhile it is all the more interesting because any characterization of the
semigroup rings in & will immediately give us a description of semi-
primitive semigroup rings. Indeed, a ring R is semiprimitive if and only if
Re& and R is semiprime, ie., B(R)=0. Semiprime commutative semi-
group rings have been described by Parker and Gilmer [12] and, in other
terms, by Munn [9]. So it suffices to characterize semigroup rings in &.

Semigroup rings of & were considered by Karpilovsky [5], Munn [6-9],
Okninski [10], and others. In this paper commutative semigroup rings
which are in & will be described completely.

To this end onc should know the structure of the Jacobson radical
J(R[S]). In [2] Jespers described J(R[.S]) under rather weak assumptions
on R. They hold, in particular, for every commutative R. Here we shall give
another (quite short) description of J(R[S]) which does not require any
restriction on R. Besides, it is specially fitted for testing whether an element
is in J(R[S]), and this is essential for our proofs.
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1. NOTATION AND PRELIMINARIES

For details we refer to [1,4]. Throughout the paper only commutative
semigroups will be considered.

Let p be a prime number. A semigroup S is said to be separative
(p-separative) if for every s, te S the equality s*=st=1> (s”=1”) implies
s=1. The least scparative (p-separative) congruence on S is denoted by
&(¢,). Explicitly

E={(s,0)|Imst"=1"*"and s"t=5"*"},

E={(s, 1) | In:s” =17},

For unification we set &,=¢.

Let R be a ring, p be a congrucnce on S. Then I(R, S, p) denotes
the ideal {¥,ri(s;—t)|r;€R,(s;,t;)ep} of R[S] Set 2,(R)=
{re R| nre A(R)}, where 2 is the Baer or the Jacobson radical. Let P be
the set of all prime numbers.

ProposiTioN 1. (Munn [9]). Let R[S] be a commutative semigréup
ring. Then

B(R[S1)=B(R)[S1+1(R, S, &)+ ) I(B,(R),S,¢&,).

pebP

A semigroup S is said to be Archimedean if for any two elements of S,
cach divides some power of the other.

ProrositioN 2. (Jespers, Krempa, and Wauters [3]). Let R be a
commutative ring, S be an Archimedean semigroup. If S is periodic, then

J(RIST) =J(R)[ST+I(R, S, &)+ Y, I(J,(R), S, &,).

peP
Otherwise,

J(R[S1)=B(R)[S1+1(R, S, &)+ ) I(B,(R), S, ¢,).

peP

Note that in the case of a non-commutative R the results corresponding
to Propositions 1 and 2 are proved in [11, 3].

2. A DESCRIPTION OF THE JACOBSON RADICAL

A semigroup I"is called a semilattice if it entirely consists of idempotents.
A semigroup S is-said to be a semilattice I' of its subsemigroups S, (xeI')
f S=U,erS. S,0Sp=F when a#f, and S,8;S S, for any «, 8. By



380 A. V. KELAREV

Theorem 4.13 in [1] cach semigroup can be uniquely represented as a
semilattice of its Archimedean subsemigroups S,. The semigroups S, arc
called the Archimedean components of S.

Let R be an arbitrary (not necessary commutative) ring, xe R[S],
X=3,esX,0 Set x,=3% . x,t. The semilattice generated in I” by all «
such that x,#0 will be called the support of x and denoted by supp (x).
(This definition of a support differs from the standard one, cf. [2]. It is the
new concept, that will work in our proofs.) Consider the natural partial
order < on [ defined by a<fl<>aff =a. Let max (x) denote the set of
elements in supp (x) maximal with respect to this order. Clearly the sets
supp (x) and max (x) are finite. The following lemma was proved in [16]
for the case of a two-element semilattice 1.

LEmMA 1. Let R be an arbitrary ring, S be a commutative semigroup
with Archimedean components S,, a€I'. The radical J(R[S]) is the largest
ideal among ideals I of R[S] such that x,eJ(R[S,]) for any xe€l,
jemax (x).

Proof. Let M be the set of ideals I of R[S§] such that xueJ(R[S,,]) for
any xel, pemax (x). By the proof of Theorem 1 in [15], J(R[S])e M.

On the other hand, take any I in Af. We claim that [ is quasiregular (and
so IS J(R[S])). Suppose the contrary and choose x in I which does not
have a right quasi-inverse and |supp (x)] is minimal. Let g e max (x). Then
x,eJ(R[S,]), and x,+a+x,a=0 for some aeJ(R[S,]). Consider the
clement y = —x—xa. Clearly yel and y,=a. Further, set z=x+y+xy.
Evidently ze I and supp (z) S supp (x)\{s}. By the choice of x there exists
u such that z+u+zu=0. Then x4+ (y+u+yu)+x(y+u+yu)=0. So x
is quasi-invertible, giving a contradiction. Thus I J(R[S]). We have
proved that J(R[S]) is the largest ideal in M. (This also can be proved as
a corollary of Lemma 1.3 in [16].)

Now let us consider a separative semigroup 7. By Theorem 4.16 in [1]
the Archimedean components 7, of T are cancellative. Denote by Q, the
group of quotients of T,. Let e, denote the identity element of Q,. Sct
Q=U.cr Q.. The multiplication of T can be casily extended on the whole
0 so that e,ey=e,;. Let pel’, xe R[Q,], and A4 be a finitc (or empty)
subset of ul. Then (y, x, A) denotes the product x[];.,(e,—e;). If
A=, then (u,x, A)=x. Following [13] we say that (u,x, A) is a
simplest  element, if xe,e J(R[Q,]) for any aeul\AI. Note that
(1, x, A)e, =0 for any ae AI. The st of the simplest clements of R[Q] is
denoted by Si(R[Q]). Put Si(R[T])= R[T]1n Si(R[Q2]).

Proposition 1 shows that I(R, S, £) = J(R[S]). Clearly R[S1/I(R, S, &)=
R[S§/&]. Therefore it suffices to describe the Jacobson radical for the semi-
group T=S/&. In this case we state
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THEOREM 1. Let xeR[T], pemax (x), A be the set of maximal
elements in the finite set supp (x)\{u}, y= (1, x,,, A). Then

(1) xeJ(R[T])<>xeR[T]nJ(R[Q]);
(2) xeJ(R[QD) <=y, x—yeJ(R[Q]);
(3) yeJ(R[QD) <> yeSiRLQD).

Assertions (1) and (2) reduce the inclusion xeJ(R[T]) to y,
x—yeJ(R[Q]). Since |supp (x—y)| <|supp (x)|, applying (2) several
times one can reduce xeJ(R[T]) to some iclusions of the form
yeJ(R[Q]), which can be checked with (3). Note that Si(R[Q]) is defined
in terms of the radicals of the components R[Q,].

Proof of Theorem 1. (1) Take xe R[TInJ(R[Q]), # € max (x). Since
xeJ(R[Q]), Lemmal yields x,eJ(R[Q,]). By Proposition2 we get
x,€J(R[T,]), for @, and T, are Archimedean. Then Lemma 1 implies
J(RLTH2R[TINJ(RLQ]).

Now take xeJ(R[T]). Denote by I the ideal generated by x in R[Q].
Choose z in I. Then z=3,a,xb;, where a;, b;e R[IQ]". Let puemax (z),
teT,. Evidently xteJ(R[T]). By Lemmal and Proposition2, (xt),€
J(RLT, 1) J(R[Q,]). Therefore z,=z,e,=3;(a;t),(xt), (bi), e
J(R[Q,1). Then Lemma 1 implies /<J(R[@]), completing the proof
of (1).

(2) Let xeJ(R[Q]). Take any nonzero element z of the ideal
generated in R[Q] by y. Say z=Y,a;yb;, where a;, b,e R[LQ]", and set
u=y;a;xb,. We may assume that each product a,x,b; is a homogeneous
element, ie., a,x,b;€ R,, for some a;e I' (otherwise we would split a; or b;
into several summands). Then

(00 (g )]

Take any « € max (z). Evidently a e uI, since supp (y)c ul". If ae AT, then
the support of the sum s=3, ., a;xb; is contained in 7 because of the
maximality of «. Hence s [T, 4 (e, —e;) =0 yielding z, =0, a contradiction.
Thus « is not in A Clearly zz;=3, _ga;x,b;=ug for any feul\Ar,
and so aemax (4). Besides z,=u,eJ(R[Q,]), since xeJ(R[Q]). By
Lemma 1, ye J(R[Q]), and so does x — y. The converse is trivial.

(3) Let yeSi(R[Q])- Take any element z of the ideal generated by
y in R[Q], say z=Y,a,;yb;#0, where a;, b;e R[LQ]". Let aemax ().
If aeAl then ye,=0, and so z,=(ze,),=0. Therefore aeul\Arl.
Evidently y may be written as y=x+)" where supp (y')c AI. Then
supp 3;a,y'b,) Al and so ye,=xe,. Since y is simplest, ye,=xe, €
J(R[Q.]). So z,=%;(a;e,)(ye,)(bie,) e J(R[Q,]), implying ye J(R[Q])
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by Lemma 1. Conversely, let ye J(R[Q]), a e uI’\AI". Then xe,= (yé,,),e
J(R[Q.]), since a € max (ye,).

CoroLLArY [13]. J(R[Q]) is the additive group generated by
Si(R[QD)

Proof. Take any zeJ(R[Q]) and set n=|supp(z)]. If n=1, then
Lemma 1 shows that ze Si(R[Q]). If n> 1, then Theorem 1 and induction
on n give the result.

3. MAIN RESULT AND COROLLARIES

We need a few definitions. Let G be a finite subgroup of a semigroup T,
I be an ideal generated in T by a finite (or empty) set of idempotents which
does not contain G. Put down all subgroups H,, ..., i, of G such that
H;={heG | ht;=et,} for a non-periodic clement t;€ GTI, where ¢ is the
identity of G. Numerate the clements of G = {g,, ..., g, }. The matrix of the
conjugacy relation of G by H, is the (mx m)-matrix D;= [d;] such that

d-_={l when g€ H.g.,
#4710 otherwise.

Set D,(G)=[D,|D;|---|D,]). If n=0 (i.e,, G has no subgroup with the
property mentioned or, equivalently, there is not any non-periodic element
in GT\I), then set D,(G)=[0].

For a ring R denote by n(R) the set of all ¢ such that q is prime or zero
and J(R)/B(R) has a nonzero element with an additive period q. (Here an
element with an additive period 0 is a non-periodic element.) We say that
G is g-complete in T, if q divides |G| or ¢q does not divide the determinant
of an (m xm)-submatrix of D,(G) (for any I).

THEOREM 2. Let R[S] be a commutative semigroup ring, & the least
separative congruence on S, and T=S/E. The Jacobson radical J(R[S]) is
nil if and only if for any q € n(R) every finite subgroup G of T is q-complete
in T.

Theorem 2 and Proposition 1 give us a description of semiprimitive
commutative semigroup rings.

COROLLARY 1. A commutative semigroup ring R[S] is semiprimitive if
and only if-R is semiprime, S is separative, and p-separative for every prime
pEen(R), each finite subgroup G in S is g-complete in S for any qe n(R).
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Note that when R is a field a déscription of semiprimitive R[S] was
given in [6].

Now we show that all the previous results on commutative semigroup
rings of the class & are in fact partial cases of Theorem 2. The previous
results are listed in Corollaries 2-5.

CorOLLARY 2 [9]. If J(R) is nil, then J(R[S]) is nil.

This follows from Theorem 2 because J(R)= B(R) if and only if
n(R)= ¢J; that is, there are no g in n(R).

CorOLLARY 3 [7]). If S has no idempotent elements, then J(R[S]) is nil.

This is clear because if S has no idempotents, then T does not have any
subgroup.

COROLLARY 4 [9]. Let S be a periodic semigroup. Then J(R[S]) is nil
if and only if J(R) is nil.

Indeed, a periodic S does not have a non-periodic element. Therefore all
D,[G] are equal to [0], and so every finite subgroup is not g-complete in
S for each q. So J(R[S]) is nil if and only if n(R) =0, which is equivalent
to J(R) is nil.

CorOLLARY 5 {7]. Let S be a semilattice of cancellative and non-
periodic S,,xe€ . Then J(R[S]) is nil.

Indeed, let us take a finite subgroup G in S. There is a such that G S,.
Fix a non-periodic element ¢ in S,. Then H={he G| ht=et} = {e}, for S
is cancellative. Hence the matrix of the conjugacy relation of G by H is the
identity matrix. It’s determinant is equal to 1, and g does not divide 1.
Therefore G is g-complete in S for every g, not only for g€ n(R).

4. PROOF OF THE MAIN THEOREM

LEMMA 2. Let F=R/B(R), T=S/E. The radical J(R[S]) is nil if and
only if J(F[T]) is nil.

Proof. This ecasily follows from Proposition 1 and the isomorphisms
R[SVI(R, S, §)=R[T], R[TYB(R)[T]=F[T].

Recall that T=),.r T, Q, denotes the group of quotients of T,, e, is
the identity of Q,, and @=U,.Q,. Say that a subgroup G of T is
g-incomplete in T-if G is not g-complete in 7. Note that n(R)=n(F). In
view of Lemma 2, Theorem 2 is equivalent to the following

481/150/2-9
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LEMMA 3. J(FLT]) has a non-nilpotent element if and only if T has a
g-incomplete finite subgroup for some qe n(F).

Proof. First we prove the “only if” part. Choose in J(F[T]) a
non-nilpotent element x with minimal |[supp (x)|. Let gemax (x).
Then supp (x") = supp (x) for each n, and so x, is not nilpotent. Further,
the element y=x,x is not nilpotent, for y,=x2. Hence supp (y)=
supp (x), that is gsupp (x)=supp (x). Therefore max (x)= {u}. Let A be
the set of maximal elements of supp (x)\{}, y=(p, x,,, 4). By Theorem 1,
yeSi(FLQ]). We are to prove that ye F[T].

To this end we first prove that e, € T for every 2 e A. Suppose the con-
trary. Then T; does not have any idempotent, and so all elements in T, are
non-periodic. Denote by P (and N) the set of periodic (non-periodic)
elements of Q,. Then T, = N. The definition of a simplest element implics
y.€J(FLQ,]). Hence J(F[Q,]) is not nil. This and Propositions 1, 2 show
that Q, is a periodic group. Therefore y,=e,y,€ F[P]. On the other
hand, x;e F[T,] < F[N], implying x,#y,. Consider z=x—y. Clearly
Zemax (z). Since x, ye J(F[Q]), Lemma 1 shows that z, e J(F[Q,]). By
Proposition 2, J(F[Q,]) =3, p I(B,(F), Q;, £,), since @; is not periodic.
Evidently, £, can not join a periodic element with a non-periodic one.
Therefore y,e F[P], x;e F[N], and x;—y,eJ(F[Q,]) yield x;,y;€
J(F[Q,]). By Propositions 1,2 J(F[Q;]) is nil, and so x; is nilpotent.
Hence w=x—x; is in J(F[T]). Meanwhile w is not nilpotent, for w,=x,.
However, |supp (w)| < [supp (x)| contradicting the choice of x. We have
shown that e, e T, for any Z€ A.

Now take any yesupp (y)\{u}. There are 2,,.., 24, such that
y=~4,---2,. Further y,=kx,e, ---¢, for an integer k. Since x,€ F[T]
and all e, € F[T] we get y,e F[T]. Therefore ye F[T].

Propositions 1 and 2 show that J(F[T,]) is nil modulo J(F)[T,].
Hence y}' e J(F)[T,]. Since }""_l}’=(;l,.\‘::', A) we may for simplicity of
notation assume that y,eJ(F)[T,]. Further, y™= (g, x}, A) because
(I'l:c 4 (e,—e;)) is an idempotent. Denote by p(y™) the additive period of
»™. Obviously p(y™) divides p(y™*!). If there is a periodic element among
» ¥4 y3, ... then we choose m such that p(y™) is the smallest possible
period. For simplicity of notation assume that m=1. Then
p(y)=p(y*)=... If all y, 3 ... are non-periodic then 0= p(y)= p(y?) =...
Thus we may assume that from the very beginning all the elements
Yur¥hr - are of same additive period. Denote it by d. Let
F,={feF|df=0}. Since F, is an idecal of F, we get ye J(F,[T]). To
simplify the notation, assume that F=F,. If d=0, then we denote by I the
set of periodic elements of F and put ¢=0. If d#0, then d can be written
as d = qgr for a prime number g, and we set I=F,. Let K= F/I and y denote
also the image of y in K[T]. Then in both the cases gen(K), for
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y,€J(K)[T,]. Evidently y is a non-nilpotent simplest element of K[T],
and X is a ring of characteristic ¢.

Clearly y, is of the form y,=3%_, a;s,, where 0 # a,e K, s;€ T,. Denote
by G or G(y) the subsemigroup generated in T by s, .., 5¢. Since T, is
periodic, G is a finite group. We may assume that from the very beginning
» is chosen so that the cardinality of G is minimal. Now we shall prove that
G is g-incomplete in 7.

First we show that g does not divide |G|. Suppose the contrary and
represent G as a direct product / x E, where H is the largest g-subgroup
of G. Then |E|<|G|. Write s, as s;=(h;, b;), where h;e H, b,e E. Set
z=Y%_,a,h, b)—ale,, b,). The clements (h;, b;) and (e,, b,) arc in the
relation ¢, with each other, since H is a g-group. By Proposition 1,
ze B(K[T]). Put c=y,—z, d=(p,c, A). Evidently d—y=(u,z,4)e
B(K[T1]), and so de Si(K[T]) by Theorem 1. Further, d is not nilpotent
and G(d)< E< G(y), a contradiction with the minimality of G(y). Thus ¢
does not divide [G]|.

Let I be the ideal generated in T by all ¢,, 2 € A. Put down all subgroups
Hy,..,H, of G such that H,={heG|ht;=e¢,t;} for a non-periodic
element 1, of GT\I. Dcnote by D, the matrix of the relation of G by
H; and set D,(G)=[D,|---|D,]. We arc to prove that g divides every
(m x m)-minor of D,(G).

Since char K=g, it suffices to prove the equality (a,, .., a,,)D,(G)=0,
where y, =37 a;g;, G={g,..8&~} This is equivalent to equalities
(ayy ., a,,)D;=0,i=1,..,n Let (a,,..,a,)D;=(b,, ..., b,,). We claim that
b;=0.

IThc definition of D; shows that b;=3",, ., ax. Take « in I such that
t;,€T,. Since ;€ GT\I, we get aeul\AI, implying y,e,eJ(K[T,]).
In view of the fact that T, is not periodic, Proposition2 yields
yue € I(K, T,, £,). Further, y, e, e K[Ge,] and ¢ does not divide the order
of the group Ge,. Therefore I(K, Ge,, £,)=0, implying y,e,=0. Hence
yut;=0, and so 37'_, a;g;1;=0. Therefore ¥ (=4, ax =0. The equality
gxti=g;!; is cquivalent to g 'g,€ H, by the definition of H,. Hence
b= gictrg A= Lgitim gy, A =0, yiclding (ay, .., a,,) D,(G)=0. Thus G is
g-incomplete in T as required.

Now we will prove the “if” part. Let gen(F) and T contains a g-incom-
plete subgroup G. It is well known that a cancellative Archimedean semi-
group is a group if it contains an idempotent. Therefore T, is a group.

Suppose that T, has a non-periodic clement ¢ and consider the group
H={heG|ht=et}. Clearly H= {e}. Then the matrix D of the relation of
G by H is the identity matrix. Therefore ¢ does not divide det (D) =1, and
D lies in the matrix Dg(G). The contradiction with g-incompleteness of G
shows that T, is a periodic group.

Let G={g,, .., &m}. Since G is g-incomplete, g does not divide m and
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there is an ideal I of T generated by idempotents e,, ..., e, and such that ¢
divides the determinant of every (m x m)-matrix of D,(G). Then e;e T, for
some 2;eI. We may assume that 2, <y, because otherwise one could sub-
stitude ee; for e; and A, for 2; without changing the set of non-periodic
clements in GT\L Writc down all the groups H,,.., H, such that
H,={heG| ht;=e,1;} for non-periodic 7,€ GT\L. Denote by D, the
matrix of the conjugacy relation of G by H; and set D,(G)=[D,|---| D,].
Then g divides the determinant of each (n1 x m)-submatrix of D,(G). There-
fore the g-element ficld GF(q) (or the field of rational numbers, if g=0)
contains elements u,, ..., u,, such that (uy, .., u,,) D,(G)=0, (u,, .., u,,) #0.
Since n(R)=n(F), by the choice of ¢ and F there exists a nonzero re F
such that gr=0. Set x=u,rg,+ --- +u,rg,,. Since g does not divide G
and r¢ B(F)=0, Proposition 2 shows that x is not nilpotent. Put A=
{21, s 2}y y=(1, x, A). We claim that ye Si(F[T]), ie., xe,€ J(F[Q,])
for any Aeulr\Ar.

Indeed, if T, is periodic then the claim follows from Proposition 2 and
reJ(F). Now consider the case where T, has a non-periodic element t.
Then +t¢I implying {heG|ht=e,t}=H; for somc i Write
xt=uyrg;t+ --- +u,rg.,t. Here g;t coincides with g, if and only if g,
and g, liec in the same class of the conjugacy relation of G by H,. This
and (uy, ., 1,,)D,;=0 yield xt=0. Therefore xe=xtt"'=0, and so
ye SI(FET]). By Theorem 1, J(F[T]) contains y, which was proved to be
non-nilpotent. This proves the result.
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